
  

  

Abstract—Multi-agent consensus problem in an obstacle-
laden environment is addressed in this paper. A novel optimal 
control approach is proposed for the multi-agent system to 
reach consensus as well as avoid obstacles with a reasonable 
control effort. An innovative nonquadratic penalty function is 
constructed to achieve obstacle avoidance capability from an 
inverse optimal control perspective. The asymptotic stability 
and optimality of the consensus algorithm are proven. In 
addition, the optimal control law of each agent only requires 
local information from the neighbors to guarantee the proposed 
behaviors, rather than all agents’ information. The consensus 
and obstacle avoidance are validated through various 
simulations. 

I. INTRODUCTION 
ulti-agent cooperative missions are becoming 
increasingly important and feasible owing to the rapid 

advances in computing, communication, sensing, and 
actuation. Cooperative control has been recognized to be of 
critically importance to the successful accomplishment of 
these cooperative missions. 

As a core of multi-agent cooperative control, consensus 
problem has been extensively studied in recent years [1-4]. 
From the optimization perspective, consensus algorithms 
have been developed along two lines: 1) fastest convergence 
time: the algorithms were designed to achieve the fastest 
convergence time by finding an optimal weighting matrix 
[5], constructing a proper configuration that maximizes the 
second smallest eigenvalue of the Laplacian [6], and 
exploring an optimal interaction graph for the average 
consensus problem [7]; 2) Optimal control design: the 
consensus problem was formulated as an optimal control 
problem and solved using a linear matrix inequality (LMI) 
approach [8], a LQR-based optimal linear consensus 
algorithm [9], a distributed subgradient method for multi-
agent optimization [10], and a locally optimal nonlinear 
consensus strategy by imposing individual objectives [11]. 

In the realistic environment, if obstacles emerge right on 
the trajectory, the multiple agents may not be able to safely 
achieve desired cooperative behaviors. Therefore, intensive 
attention has been paid to the cooperative control problem 
with obstacle/collision avoidance. In [12], three flocking 
algorithms were proposed to achieve both flocking and 
obstacle avoidance by adding obstacle avoidance terms to 
the group objective. In [13], a constraint force, directly 
converted from the structural distance constraints for a 
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desired formation, was introduced to achieve the formation 
as well as the collision avoidance between multiple agents. 
In [14], a new distributed robust model predictive control 
algorithm was developed for multi-agent trajectory 
optimization utilizing constraint tightening to ensure safety 
in the presence of the environmental changes and generate 
an intelligent trajectory around known obstacles. A 
cooperative control law for the individual agent to guarantee 
collision avoidance in multi-agent systems was proposed in 
[15]. However, it is assumed that every agent knows its 
desired state and a LQR based optimal control is designed to 
track the desired state.  

Most of the obstacle avoidance strategies are designed 
either for path planning of the single agent or for multiple 
agents without considering their interaction topologies and 
the information consensus problem. In this paper, we 
address both consensus problem and obstacle avoidance in a 
unified optimal control framework. A novel avoidance 
penalty function is constructed based on an inverse optimal 
control strategy [16, 17] such that an analytical optimal 
control law can be obtained. In addition, it can be shown that 
the resultant consensus algorithm is a linear function of the 
Laplacian, and thus only local information from the 
communication topology is required to implement the 
optimal cooperative control law. 

The remainder of this paper is organized as follows. The 
consensus problem is described in Section II and Section III 
presents the main result of this paper. Simulation results and 
analysis are shown in Section IV. Some conclusion remarks 
are given in Section V. 

II. PROBLEM STATEMENT 
Consider n agents with double-integrator dynamics: 
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where ( ) m
i t R∈p , ( ) m

i t R∈v and ( ) m
i t R∈a are, respectively, 

the position, velocity and control input of agent i. 
TTT⎡ ⎤

⎣ ⎦X = p v and U are the aggregate state and control 

input of all agents. ⊗  denotes the Kronecker product. 
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The consensus problem in this paper is to design a 
distributed control law ( )i ta  based on the information 

exchange topology such that ( ) ( ) 0i jt t− →p p  and 

( ) ( ) 0i jt t− →v v . In addition, each agent is guaranteed to 

avoid the obstacle along its trajectory. 
Fig. 1 shows an example scenario of four agents’ 

consensus problem. R denotes the radius of the obstacle 
detection region and r denotes the radius of the obstacle. The 
dashed line denotes the original consensus trajectory without 
obstacle. The proposed consensus law will be able to not 
only drive all the agents along the solid lines to reach 
consensus but also avoid the obstacle with an optimal 
control effort. 

 
Fig. 1: Multi-agent consensus scenario with an obstacle 

III. OPTIMAL CONSENSUS WITH OBSTACLE AVOIDANCE  
In this section, we propose a unified inverse optimal 

control approach to address the consensus problem with 
obstacle avoidance capability. For the convenience of 
formulation, we define the error state 

                       ˆ ˆ ˆ
TTT

cs
⎡ ⎤= −⎣ ⎦X p v X X�                       (2) 

where                         
TT T

cs cs cs⎡ ⎤= ⎣ ⎦X p v                            (3) 

is the final consensus state. For instance, in a planar motion, 

1 1=
TTT T

cs cs cs n x n xy yα α β β× ×
⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⊗ ⊗⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦X p v 1 1 (4) 

where ,x yα α are the final consensus position along x  axis 

and y  axis, respectively; ,x yβ β  are the final consensus 
velocity along x  axis and y  axis, respectively. Note that 
the consensus state csX  is not known a priori. 

We follow the standard definitions and concepts from the 
graph theory to describe the interconnection of multi-agent 
systems, which can be referred to [18]. In particular, the 
Laplacian matrix L is commonly used to define the 
communication topology among agents. In this paper, the 
information exchange topology is assumed to be undirected 
and connected. Under this assumption, L is positive semi-
definite and the following property holds when the agents 
reach consensus: [18] 

                                1
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                              (5) 

The final consensus state satisfies the dynamic equation 
                             cs cs cs csA B A= + =X X U X�                     (6) 
since cs nm 1×=U 0  when the agents reach consensus.  

Then, from Eq. (1b) and (6) the error dynamics becomes 

                                    ˆ ˆA B= +X X U�                                 (7) 
The consensus is achieved when the system (7) is 
asymptotically stable. 

In this paper, the consensus problem is formulated as an 
optimal control problem with three cost function 
components: 

                                
1 2 3Min :

ˆ ˆ. .

J J J J

S t A + B

= + +

=X X U�                         (8) 

where 1 2 3, ,J J J  represent the consensus cost, obstacle 
avoidance cost, and control effort, respectively.  

The consensus cost has the form of: 
2 2
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                                                                                           (9) 
where pw , vw , and cw  represent the weights on the position 
consensus, velocity consensus, and control effort, 
respectively. It is necessary that 1R  is positive semi-definite, 
which can be shown in the following proposition. 
Proposition 4.1: 1R is positive semi-definite if the graph is 
undirected and connected and 
                                  2 2 2 0v i p c iw e w w e− ≥                        (10) 

where ie is the eigenvalue of L . 
Proof: Since L  is positive semi-definite and it is 
straightforward to show that 2L is also positive semi-definite, 
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where Q is composed of the eigenvectors of L and Λ is the 
diagonal matrix with the diagonal elements being the 
eigenvalues of L . Since L  is positive semi-definite, 0ie ≥ . 

Therefore, 2 2 2v p cw L w w L−  is positive semi-definite if 
2 2 2 0v i p c iw e w w e− ≥  and it follows that 1R is positive semi-

definite. ■ 
Remark 4.1: The condition (10) is required in Proposition 
4.1. One can always find proper weights to satisfy (10). For 
instance, a large vw  and small enough pw  and cw  are 

applicable due to 0ie ≥ .  
The obstacle avoidance cost has the form of 

4 3

1 2

R 
r 
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    2 0
ˆ( )J h dt

∞
= ∫ X                                   (12) 

where ˆ( )h X will be constructed from an inverse optimal 
control approach in Theorem 4.1. 

The control effort cost has the regular quadratic form of  

                                3 20

TJ R dt
∞

= ∫ U U                               (13) 

where 2
2 c n mR w I I= ⊗  is positive definite and cw  is the 

weighting parameter.  
The following lemma is introduced to derive our main 

result.  
Lemma 4.1: [16] Consider the nonlinear controlled 
dynamical system 

              0
ˆ ˆ ˆ ˆ( ) ( ( ), ( )), (0) , 0t f t t t= = ≥X X U X X�         (14) 

with ( , )=f 0 0 0  and a cost functional given by 

                   0 0
ˆ ˆ( , ( )) ( ( ), ( ))J t T t t dt

∞

∫X U X U�                   (15) 

where ( )tU is an admissible control. Let nD ⊆ R  be an 

open set and mΩ ⊆ R . Assume that there exists a 
continuously differentiable function :V D → R  and a 
control law : Dφ → Ω  such that 
                                       ( ) 0V =0                                      (16) 

                          ˆ ˆ ˆ( ) 0, ,V D> ∈ ≠X X X 0                   (17) 
                                      ( )φ =0 0                                       (18) 

                ˆ ˆ ˆ ˆ ˆ'( ) ( , ( )) 0, ,V f Dφ < ∈ ≠X X X X X 0         (19) 

                         ˆ ˆ ˆ( , ( )) 0,H Dφ = ∈X X X                        (20) 

                       ˆ ˆ( , ) 0, ,H D≥ ∈ ∈ΩX U X U                 (21) 

where ˆ ˆ ˆ ˆ( , ) ( , ) '( ) ( , )H T V f+X U X U X X U�  is the 
Hamiltonian function. The superscript '  denotes partial 
differentiation with respect to X̂ . 

Then, with the feedback control 
                                    ˆ( ) ( ( ))t tφ=U X                               (22) 

the solution ˆ ( ) 0t ≡X  of the closed-loop system is locally 
asymptotically stable and there exists a neighborhood of the 
origin 0D D⊆ such that 

                    0 0 0 0
ˆ ˆ ˆ ˆ( , ( ( ))) ( ),J t V Dφ = ∈X X X X              (23) 

In addition, if 0 0
ˆ D∈X  then the feedback control (22) 

minimizes 0
ˆ( , ( ))J tX U  in the sense that 

                 
0

0 0ˆ( ) ( )
ˆ ˆ ˆ( , ( ( ))) min ( , ( ))

t S
J t J tφ

∈
=
U X

X X X U             (24) 

where 0
ˆ( )S X  denotes the set of asymptotically stabilizing 

controllers for each initial condition 0
ˆ D∈X . Finally, if 

,n mD = Ω =R R , and 

                            ˆ ˆ( ) asV → ∞ → ∞X X                         (25) 

the solution ˆ ( ) 0t ≡X  of the closed-loop system is globally 
asymptotically stable. 

Proof: Omitted. Refer to [16].                         ■ 
The main result of this paper is presented in the following 

theorem. 
Theorem 4.1: For a multi-agent system (1) with an 
undirected and connected interaction graph, there always 
exist a large enough vw , small enough pw  and cw , such that 
the feedback control law 

( ) 2
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2
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φ= = − ⊗ − ⊗ −U X p v X (26) 

is an optimal control law for the consensus problem (8) and 
the closed-loop system is globally asymptotically stable.

ˆ( )h X  in the obstacle avoidance cost function (12) is 
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where '( )vg X  and ˆ' ( )T
pg X in (26) and (27) are derived from 

the obstacle avoidance potential function defined by 
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where ˆ'( )pg X  and '( )vg X  represent the partial 

differentiation of ˆ( )g X  with respect to the position error p̂  
and the velocity error v̂ respectively. 
Proof: Specific to this optimal consensus problem, we have 
the following equations corresponding to Lemma 4.1: 
                 1 2

ˆ ˆ ˆ ˆ( , ) ( )T TT R h R= + +X U X X X U U                (31) 

                            ˆ ˆ( , )f A B= +X U X U                             (32) 

A candidate Lyapunov function ˆ( )V X  is chosen to be 

                           ˆ ˆ ˆ ˆ( ) ( )TV P g= +X X X X                          (33) 
where P is the solution of a Riccati equation, which will be 
shown afterwards. 

In order for the function ˆ( )V X in (33) to be a valid 
Lyapunov function, it must be continuously differentiable 
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with respect to X̂  or equivalently ˆ( )g X  must be 

continuously differentiable with respect to X̂ . From the 
equations (28) and (29), it suffices to show that ( )im p is 
continuously differentiable in the safety region

{ }ri bO− >p p . In fact, this is true if ( )im p  and 
( )i

i

dm
d
p
p

 

are continuous at Ri bO− =p . Since Eq. (29) implies that

lim ( ) 0 lim ( )
i b i b

i i
O R O R

m m
− +− → − →

= =
p p

p p , ( )im p  is continuous at 

Ri bO− =p  and thus continuous over the safety region. 

Similarly, it can be easily shown that 
( )i

i

dm
d
p
p

is continuous 

over the safety region. Therefore, ˆ( )g X and the Lyapunov 

function ˆ( )V X  are continuously differentiable with respect 

to X̂  in the safety region. 
The Hamiltonian function can be written as: 
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Setting ˆ ˆ( ) ( , , ' ( ))TH V∂ ∂ =U X U X 0 yields the optimal 
control law: 
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With (35) it follows that 
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2

TS BR B−� . Using (35) and (36) into (34) yields 
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In order to prove that the control law (35) is an optimal 
solution to the consensus problem (8) using the Lemma 4.1, 
the conditions (16)-(21) need to be verified. 
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In order to satisfy the condition (20) in Lemma 4.1 or let 

Eq. (37) be zero, we can let 
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Then, P can be solved in the analytical form  
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Next, the cost function term ˆ( )h X  in 2J  is constructed 
from solving Eq. (39) and using (42): 
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which turns out to be (27).  
Using (38) and (39), (36) becomes 
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It can be seen from (51) that the condition (19) can be met 
if ˆ( ) 0h ≥X  since 1

ˆ ˆT RX X  is positive semi-definite and 
1 1ˆ ˆ ˆ ˆ( ( )) ( ( ))
2 2

T TP+ g' S P + g'X X X X is positive definite. By 

selecting proper values of the weights pw , vw , and cw , one 

can always make ˆ( ) 0h ≥X . Specifically, if all the agents are 

outside the detection region, 
ˆ( ) 0h =X  by the definition of 

pG in (29). ˆ( ) 0h >X  can be guaranteed if one choose a 

large enough vw , small enough pw  and cw  such that the 

positive terms ˆ ˆ( )( )( )T
m p m mL I G I L I⊗ ⊗ ⊗v v  and 
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other sign-indefinite terms.  
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The last equality is obtained using the property (5). 

The Lyapunov function finally turns out to be: 
ˆ ˆ ˆ ˆ( ) ( )TV P g= +X X X X  
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It can be seen from (45) and (46) that the condition (16) is 
satisfied. Moreover, if ˆ ≠X 0 , i.e. cs≠X X , 2( )T

mL I⊗p p  

and ( )T
mL I⊗v v  will not be equal to zero but positive 

according to the property of L, i.e. Eq. (5). Note that =p 0  

and =v 0  that leads to 2( ) 0T
mL I⊗ =p p and 

( ) 0T
mL I⊗v v =  is a special case of cs=p p and cs=v v

when cs =p 0 and cs =v 0 , which implies ˆ =X 0  as well. 

Therefore, the condition (17), ˆ( ) 0V >X  when ˆ ≠X 0  , can 
be met by selecting a large enough vw  for given pw  and cw  

such that the positive terms 2( )T
p v mw w L I⊗p p and

( )T
c v mw w L I⊗v v  are always greater than the sign-indefinite 

terms. 
Substituting P and ˆ'( )g X  into (35) leads to  

  2

1ˆ ˆˆ ˆ( ) ( ) ( ) '( )
2

p v
m m v

c c c

w w
L I L I g

w w w
φ = − ⊗ − ⊗ −X p v X    (47) 

which turns out to be Eq. (26) by substituting ˆ cs−p = p p and 
ˆ cs−v = v v into (47) and using the property of (5). Note that 

the optimal control law (26) is only a function of X . This is 
desired because csX  is not known a priori. 

Now, all the conditions (16)-(21) in Lemma 4.1 can be 
satisfied by selecting a large enough vw and small enough 

pw  and cw . Furthermore, this rule of weight selection also 
applies to satisfy the condition (10). Therefore, according to 
Lemma 4.1, the control law (26) is an optimal control law for 
the problem (8) in the sense of (23) and (24), and the closed-
loop system is asymptotically stable. It implies cs=X X and 
the consensus is achieved. 

In addition, it can be easily seen from (46) that 
ˆ ˆ( ) asV → ∞ → ∞X X . Therefore, the closed-loop system 

is globally asymptotically stable. Note that the globally 
asymptotic stability region excludes the undefined area 

{ }ri bO− ≤p p , which is physically meaningful because 

no agent can start from inside the obstacle.                          ■ 
Remark 4.2: As can be seen from Theorem 4.1, the optimal 
consensus algorithm is developed from an inverse optimal 
control approach since the cost function ˆ( )h X is not given a 
priori but constructed from the optimality condition (39). 
Remark 4.3: From (26) and '( )vg X  in (30), it can be also 
seen that the optimal control law of each agent only requires 
the local information based on the information exchange 
topology since it is a linear function of L.  

IV. SIMULATION RESULTS AND ANALYSIS 
In this section, two simulation scenarios are used to 

validate the proposed optimal consensus algorithm. Consider 
a planar motion in Fig. 1 with 4 agents and thus 2m = .  

The initial positions are given by (-2, -2), (2, -2), (2, 2) 
and (-2, 2), respectively. The initial velocities are assumed to 
be (0.2, 0.4), (-0.4, 0.2), (-0.2, -0.4), and (0.2, -0.2), 
respectively. The weights in the consensus algorithm are set 
to 0.04pw = , 1.2vw = , and 0.8cw = . 
A. Consensus without obstacles on the trajectories 

In this scenario, an obstacle is assumed to appear on (2, 
0), which is not on the trajectory of any agent. The radius of 
the obstacle and the detection region are set to 
r 0.1 and R 0.5= = . The simulation results of the four 
agents’ motion are shown in Fig. 2. As can be seen, the 
obstacle avoidance does not take effect since no agent steps 
into the detection region and the four agents achieve 
consensus. 

 
Fig. 2: Trajectories of the four agents without obstacle  

Note that ˆ( )h X  in the obstacle avoidance cost function is 
equal to zero since all the agents are outside the detection 
region, which implies that the problem is just a normal 
optimal consensus problem. It has the same form as the 
conventional consensus algorithm for networked double 
integrator systems [18] except the weighting parameters. 
B. Consensus with multiple obstacles on the trajectories  

In this scenario, one obstacle with the same radius and 
detection region as Scenario A is assumed to appear on (1, 
1.3), which is on the trajectory of agent 3. The other obstacle 
with r 0.2 and R 0.8= = is assumed to appear on (0.5, 3.2), 
which is on the trajectories of agent 1 and agent 4. 

The simulation results are shown in Figs. 3-5. Fig. 3 
demonstrates that all agents avoid the obstacles and reach 
the final consensus. Fig. 4 presents the time histories of the 
agents’ positions and velocities. The optimal control inputs 
are shown in Fig. 5. In the bottom two subfigures of Fig. 5, 
the time histories in the first 50 seconds are shown for better 
illustrating the transient responses. The velocity response 
and the control response show that the optimal obstacle 
avoidance control law does not require large control effort. 
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Fig. 3: Trajectories of the four agents with two obstacles  

 
Fig. 4: Time histories of the four agents’ positions and velocities 

 
Fig. 5: Time histories of the four agents’ optimal control inputs 

V. CONCLUSION 
In this paper, a novel optimal control law was developed 

for multi-agent consensus with obstacle avoidance. The 
primary contribution is to formulate the consensus problem 
and obstacle avoidance in a unified optimal control 
framework. A nonquadratic obstacle avoidance cost function 

was constructed from an inverse optimal control approach 
such that the optimal control law can be obtained in an 
analytical form and was shown to be a linear function of the 
Laplacian matrix, which indicates that the control law 
requires only the local information and offers a great 
implementation advantage. Both globally asymptotic 
stability and optimality of this algorithm have been proven. 
The simulation results have demonstrated that the proposed 
optimal approach is capable of solving the consensus 
problem under different obstacle avoidance scenarios. 
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