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Abstract— In this paper, we develop a semistability analy-
sis framework for retarded functional differential equations
(RFDE) having a continuum of equilibria with time-varying
parameters and delays with applications to stability analysis
of multiagent dynamic networks with consensus protocols in
the presence of unknown heterogeneous time-varying delays
and parameters along the communication links. We show that
for such a retarded functional differential equation, if the
system asymptotically converges to an autonomous functional
differential inclusion with constant time-delays and this new
system is semistable, then the original retarded functional
differential equation system is semistable, provided that the
delays are just bounded, not necessarily differentiable. In
proving our results, we extend the limiting equation approach
to the retarded functional differential equation systems and also
develop some new convergence results for functional differential
equations and differential inclusions.

I. INTRODUCTION

Delays are unavoidable in communication, where infor-

mation has to be transmitted over a physical distance. Un-

fortunately, very little research has been done to investigate

the effect of delays on stability of consensus of multiagent

networks. To accurately describe the evolution of networked

cooperative systems, it is necessary to include in any math-

ematical model of the system dynamics some information

about the past system states. In this case, the state of the

system at a given time involves a portion of trajectories in

the space of continuous functions defined on an interval of

the state space, which leads to (infinite-dimensional) delay

dynamical systems [1].

Previously, most of the reported work has either explicitly

or implicitly employed the assumption that delays are known

and continuously differentiable. Under such an assumption,

one can use the delayed state of an agent in its own local

control law to match the delays of the states from the

neighboring agents [2]–[6], i.e. agent i can use a delayed

version of its own state, xi(t−τij(t)). Under that assumption,

the control law is

ui =
∑

j∈Ni

aij(xj(t − τij) − xi(t − τij)), (1)

where Ni denotes the set of all other agents having a

communication with agent i. If the delays are constant and

uniform, τij = τ for all ij, then the network dynamics are

of the form of time-delayed linear systems with the system

matrix being the Laplacian, ẋ = Lx(t − τ), for which
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various analysis tools for linear systems with delays can

be applied [3], [5], [6]. Additionally, the control law in (1)

allows one to utilize disagreement dynamics, in which the

disagreement xj(t− τij)−xi(t− τij) is the delayed version

of the disagreement xj(t)− xi(t). Because of the preceding

property, one can study the behavior of the networks using

disagreement dynamics or reduced disagreement dynamics

in a similar fashion to the case without delays (the reduced

disagreement dynamics are asymptotically stable). However,

if the delays are unknown, time-varying, and not uniform

over the communication links, the assumption that agent i
has access to the delayed state xi(t−τij(t)) raises a practical

concern. If agent i does not have xi(t− τij(t)) to use in the

control protocol (in which case we say that the delays are

asymmetric), the control law actually becomes

ui =
∑

j∈Ni

aij(xj(t − τij) − xi(t)). (2)

Because xj(t− τij)− xi(t) is no longer the delayed version

of the disagreement xj(t) − xi(t), the derivatives of the

disagreements are not functions of the disagreements only),

and hence, the approaches in [3], [5], [6] are not applicable to

networks with the protocol (2). Stability of dynamic networks

in such a situation has only recently been addressed [7]–

[9], most of which are limited to the case of constant time

delays. In particular, the authors in [7] have shown that

dynamic networks with consensus protocols in the presence

of heterogeneous delays are stable for arbitrary constant

delays. Another closely related work is [10], where the

authors consider networks with different arrival times for

communication and with zero-order hold control laws, which

leads to discrete-time dynamic networks formulation without

time-delays for the overall closed loop. At the same time the

authors in [11] explores the time-varying delays for network

consensus. However, a major deficiency in [11] is that one

has to assume the delays are sufficiently heterogeneous so

that the closed-loop system does not have a limit cycle. This

assumption is extremely difficult to verify for a nonlinear

time delay system and hence, the results in [11] are not really

useful. Left open is the problem of stability and convergence

of time-varying consensus dynamic networks in the presence

of unknown asymmetric non-uniform time-varying delays,

which turns out to be a consequence of the more general

results in this paper.

In this paper, we develop a general framework for semista-

bility analysis of retarded functional differential equations

having a continuum of equilibria and time-varying delays in

which the delays are unknown and continuous with respect

to time, not necessarily continuously differentiable. Here
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semistability is the property whereby every trajectory that

starts in a neighborhood of a Lyapunov stable equilib-

rium converges to a (possibly different) Lyapunov stable

equilibrium. The basic assumption for the main result in

this paper involves the idea of limiting equations [12] by

assuming that the original retarded functional differential

equation system asymptotically converges to an autonomous

functional differential inclusion system with constant delays.

Using these results, next we present stability analysis of time-

varying consensus dynamic networks in the presence of time-

varying parameters and unknown asymmetric non-uniform

time-varying delays. The main feature of the proposed frame-

work is that the assumption on continuous differentiability of

the time delays is considerably weakened by use of a limiting

function assumption, which is more natural and useful in

practical systems. The proposed new results can be viewed

as a generalization of network consensus with constant time

delays in [7].

II. MATHEMATICAL PRELIMINARIES

Let R
n denote the real Euclidean space of n-dimensional

column vectors and let ‖x‖ denote the norm of the vector x
in R

n. Let r ≥ 0 be given and let C = C([−r, 0], Rn) denote

the space of continuous functions that map the interval

[−r, 0] into R
n with the topology of uniform convergence

and designated norm given by ‖φ‖ := sup−r≤θ≤0 ‖φ(θ)‖
for φ ∈ C. Even though double bars are used for norms in

different spaces, no confusion should arise. If x : [−r,∞) →
R

n be continuous, then for any t ≥ 0, xt ∈ C is defined by

xt(s) = x(t + s), −r ≤ s ≤ 0.

Consider a retarded functional differential equation

(RFDE) [1] on C given by

ẋ(t) = f(t, xt), (3)

where f : R×C → R
n satisfies the Carathéodory condition

[1, p. 58] and maps closed and bounded sets into bounded

sets. Define the equilibrium set of (3) as E := {φ ∈ C :
f(t, φ) = 0, ∀ t ∈ R}. Given φ ∈ C and τ > 0, a function

x(φ) is said to be a solution to (3) on [−r, τ) with initial

condition φ if φ ∈ C([−r, τ), Rn), xt ∈ C, x(t) satisfies (3)

for t ∈ [0, τ) and x(φ)(0) = φ, where x(φ)(·) denotes the

solution through (0, φ).
Throughout this paper, we make the following standing

assumption on (3).

Assumption 2.1: E is a connected set.

Recall that a set E ⊆ C is connected if every pair of open

sets Ui ⊆ C, i = 1, 2, satisfying E ⊆ U1∪U2 and Ui∩E 6= ∅,

i = 1, 2, has a nonempty intersection. Assumption 2.1

implies that (3) has a continuum of equilibria. In other words,

the equilibria of (3) are not isolated equilibrium points. This

situation occurs in many practical problems such as compart-

mental modeling of biological systems [13], thermodynamic

systems [14], multiagent coordinated networks [5], [7], [11],

and synchronization of coupled oscillators [8].

Example 2.1: Consider a special case of (3) where

f(t, xt) = E(t)x(t) +
∑m

k=1 Fk(t)x(t − τk(t)) and

E(t), Fk(t) ∈ R
n×n are matrix functions, k = 1, . . . , m.

If E(t) +
∑m

k=1 Fk(t) is singular for all t ∈ R, then E is

a connected set, i.e., (3) has a continuum of equilibria. A

relevant example for this case is the consensus problem with

time-varying delays given by the consensus protocol

ẋ(t) = E(t)x(t) +
m

∑

k=1

Fk(t)x(t − τk(t)), (4)

where 0 ≤ τk(t) ≤ r and E(t)+
∑m

k=1 Fk(t) is a Laplacian

matrix function. N

Recall that a point z ∈ C is a positive limit point of a

solution x(t) to (3) with x(s) = φ(s), −h ≤ s ≤ 0, if there

exists a sequence {tn}∞n=1 with tn → +∞ and x(tn) → z
as n → +∞. The set ω(φ) of all such positive limit points

is the positive limit set of x0 = φ ∈ C [1, p. 102]. Motivated

by Lemma 2.2 of [15], we have the following result.

Lemma 2.1: Assume that the solutions of (3) are bounded

and let x(·) be a solution of (3) with x0 = φ ∈ C. If z ∈
ω(x0) is a Lyapunov stable equilibrium point of (3), then

z = limt→∞ x(t) and ω(φ) = {z}.

Definition 2.1: i) An equilibrium point x ∈ E is

semistable if there exists an open set U ⊆ C containing x
such that for every initial condition in U , the trajectory of (3)

converges, that is, limt→∞ x(t) exists, and every equilibrium

point in U is Lyapunov stable. The system (3) is semistable

if every equilibrium point in E is semistable.

ii) An equilibrium point x ∈ E is uniformly semistable if

there exists an open set U ⊆ C containing x such that for

every initial condition in U , the trajectory of (3) uniformly

converges, that is, limt→∞ x(t) converges uniformly in the

initial time instant, and every equilibrium point in U is

uniformly Lyapunov stable. The system (3) is uniformly

semistable if every equilibrium point in E is uniformly

semistable.

III. MAIN RESULTS

A. Nonlinear RFDE Systems

In this section, we use a limiting system approach to

study the asymptotic behavior of the non-autonomous RFDE

(3). Here our limiting system becomes a retarded functional

differential inclusion (RFDI), which is more general and

flexible than a differential equation always considered in

the literature. To this end, we first introduce the notion of

weak asymptotic autonomy for (3). This notion has been

introduced in [16] for finite-dimensional non-autonomous

differential equations.

Definition 3.1: Let U denote the class of set-valued maps

z 7→ F(z) ⊂ R
n, defined on C, that are upper semicon-

tinuous at each z ∈ C and take non-empty convex compact

values. The vector field f : R × C → R
n of (3) is said to

be weakly asymptotically autonomous (WAA) if there exists

F ∈ U such that for all compact D ⊂ C and all ε > 0, there

exists T ≥ 0 such that

ess sup
t≥T

dist(f(t, z),F(z)) < ε, ∀z ∈ D. (5)
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If (5) holds with F singleton-valued (i.e., F : z 7→ {f∗(z)})

for some completely continuous function f∗ : C → R
n, then

f is said to be asymptotically autonomous (AA).

Remark 3.1: Condition 5 implies that f(t, z) essentially

approaches F(z) locally uniformly with respect to z as t →
∞.

Definition 3.2: Suppose all the conditions in Defini-

tion 3.1 holds. Then the RFDI

ẋ(t) ∈ F(xt), (6)

is called a limiting system of (3).

Remark 3.2: The idea of the limiting equation approach

was originally from [12] and has been extended to various

finite-dimensional dynamical systems by changing the defi-

nition of limiting functions [16]–[18]. Our definition extends

this approach to infinite-dimensional time-varying dynamical

systems and gives a new definition of limiting systems for

time-delay systems.

Lemma 3.1: If f is WAA, then the limiting system (6) has

the same equilibrium set as (3).

The following technical result demonstrates compactness

of trajectories for RFDIs. To state this result, however, we

need to define some notions first. Let A be a separable

Banach space. A multifunction Γ : A → C is a mapping from

A to the subsets of C. If D is a subset of A, we say that Γ is

closed, compact, convex, or nonempty on D if for each x ∈
D, the set Γ(x) has that particular property. A multifunction

Γ : D → C is said to be measurable if for all x ∈ D,

the nonnegative-valued function ω 7→ dist(x, Γ(ω)) :=
inf{‖x − y‖ : y ∈ Γ(ω)} is measurable [19]. Consider the

case where D = [a, b]. We say that Γ is integrably bounded

on [a, b] if there is an integrable function κ(t) such that for

all t in [a, b] and all γ in Γ(t), ‖γ‖ ≤ κ(t). Let S,Kt be the

sets defined by S := {t : (t, x) ∈ K for some x in C} and

Kt := {x ∈ C : (t, x) ∈ K}. K is called a tube if the set S is

an interval (say, [a, b]) and there exist a continuous function

w(t) and a continuous positive function ε(t) on [a, b] such

that Kt = Bε(t)(w(t)), where Br(s) denotes the open ball

centered at s with radius r.

Let Γ be a multifunction defined on a tube K on [a, b].
We assume that Γ is integrably bounded by κ on K and Γ
is nonempty, compact, and convex on K. Furthermore, we

assume that there exist a multifunction X : [a, b] → C and a

positive-valued function ε(t) with the following properties:

1) For all t ∈ [a, b], Bε(t)(X(t)) ⊂ Kt.

2) For every t ∈ [a, b] and every x ∈ Bε(t)(X(t)), the

multifunction φ 7→ Γ(t, φ) is upper semicontinuous at

x.

3) For every (t, x) in the interior of K, the multifunction

t′ 7→ Γ(t′, x) is measurable.

An arc is a function x(·) having a derivative at t denoted

by ẋ(t) for almost all t ∈ [a, b] and which is the integral of

its derivative. A trajectory for Γ is an arc x such that for

almost all t ∈ [a, b], ẋ(t) belongs to the set Γ(t, x(t)), i.e.,

ẋ(t) ∈ Γ(t, x(t)) a.e. and “a.e.” denotes almost everywhere.

Lemma 3.2: Let {xj} be a sequence of arcs on [a, b]
satisfying

i) xj(t) ∈ X(t) and ‖ẋj(t)‖ ≤ κ(t) for almost all t in

[a, b].
ii) ẋj(t) ∈ Brj(t)(Γ(t, xj(t) + yj(t))) for t ∈ Aj , where

{yj}, {rj} are sequences of measurable functions on

[a, b] which converge uniformly to 0, and {Aj} is a

sequence of measurable subsets of [a, b] such that the

measure of Aj converges to (b − a).
iii) The sequence {xj(a)} is bounded.

Then there exists a subsequence of {xj} which converges

uniformly to an arc x which is a trajectory for Γ.

Based on the notion of limiting systems, we have the

following convergence result.

Lemma 3.3: Consider the RFDE (3). Assume the trajecto-

ries of (3) are bounded. Furthermore, assume (6) is a limiting

system of (3), that is, f is WAA. Let x(t) be a global solution

to (3). Then x(t) → F−1(0) as t → ∞ and ω(x) ⊆ F−1(0).
Lemma 3.4: Consider the RFDE (3). Assume the trajecto-

ries of (3) are bounded. Furthermore, assume (6) is a limiting

system of (3), that is, f is WAA. Then ω(φ) is invariant with

respect to (6) for every initial condition x0 = φ ∈ C.

Lemma 3.5: Consider (6). If the trajectories of (6) con-

verge, that is, limt→∞ zt(φ) exists for every φ ∈ C, then

the function Ω : C → C defined by Ω(φ) = limt→∞ zt(φ),
φ ∈ C, is an equilibrium point for (6).

Now we have the main result for this paper. For the

definition of semistability of differential inclusions, see [20].

Theorem 3.1: Consider the RFDE (3). Assume (3) is

Lyapunov stable. Furthermore, assume (6) is a limiting

system of (3) and (6) is semistable. Then (3) is semistable.

Alternatively, if (3) is uniformly Lyapunov stable, (6) is a

limiting system of (3), and (6) is uniformly semistable, then

(3) is uniformly semistable.

Remark 3.3: To discuss semistability of (3) using The-

orem 3.1, one has to know the information on Lyapunov

stability of (3). Note that here we only assume τk(t) is

continuous for every k = 1, . . . , m. Hence, it is very difficult

to use the Lyapunov-Krasovskii functional approach [1], [21]

to prove the Lyapunov stability of (3) since it requires the

first-order derivative of τk(t). In this case, the Lyapunov

stability of (3) may be verified using Razumikhin theorems

via Lyapunov-Razumikhin functions [1], [22], [23].

Example 3.1: Consider the scalar time-delay system given

by

ẋ(t) = −a(t)x(t) + b(t)x(t − τ(t)), (7)

where x(t) ∈ R, a(·), b(·), and τ(·) are continuous, |b(t)| ≤
a(t), and 0 ≤ τ(t) ≤ h for all t ∈ R. Consider the Lyapunov-

Razumikhin function given by V (x) = (x−α)2/2, where α
is an arbitrary constant. Then it follows from Theorem 4.1

of Chapter 5 of [1] that (7) is uniformly Lyapunov stable.

See [1, p. 154] for a detailed proof. N

Remark 3.4: Consider the RFDE (3) with f(t, xt) =
F (t, x(t))+G(t, x(t−τ1(t)), . . . , x(t−τm(t))). Suppose the

trajectories of (3) are bounded. If limt→∞ F (t, x) = f̄(x),
f̄(·) is a continuous function, G(t, x(t − τ1(t)), . . . , x(t −
τm(t))) =

∑m

k=1 gk(t, x(t − τk(t))), gk(t, x) is glob-

ally Lipschitz continuous with respect to x, ‖gk(t, 0)‖ ≤
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Mk, limt→∞ gk(t, x) = ḡk(x), k = 1, . . . , m, and

limt→∞ τk(t) = hk for every k = 1, . . . , m, then (6) is a

limiting system of (3). To see this, suppose ‖x(t)‖ ≤ M .

Then from (3), there exists ǫ > 0 such that ‖ẋ(t)‖ ≤
ǫ + sup‖z‖≤M ‖β(z)‖ +

∑m

k=1(LkM + Mk) := K , where

Lk is the Lipschitz constant, k = 1, . . . , m. Because

x(t − τk(t)) − x(t − hk) =
∫ t−τk(t)

t−hk
ẋ(s)ds, it follows

that ‖x(t − τk(t)) − x(t − hk)‖ ≤ K|τk(t) − hk|. Hence,

‖gk(t, x(t−τk(t)))− ḡk(x(t−hk))‖ ≤ ‖gk(t, x(t−τk(t)))−
gk(t, x(t − hk))‖ + ‖gk(t, x(t − hk)) − ḡk(x(t − hk))‖ ≤
Lk‖x(t− τk(t))−x(t−hk)‖+‖gk(t, x(t−hk))− ḡk(x(t−
hk))‖ ≤ KLk|τk(t)−hk|+‖gk(t, x(t−hk))−ḡk(x(t−hk))‖.

Thus, if limt→∞ τk(t) = hk and limt→∞ gk(t, x) = ḡk(x),
then limt→∞{f(t, xt)− [f̄(x)+

∑m

k=1 ḡk(x(t−hk))]} = 0.

By definition,

ż(t) = f̄(z(t)) +

m
∑

k=1

ḡk(z(t − hk)) (8)

is a limiting system of (4).

Next, motivated by [20], we present a Lyapunov-type

result for semistability of autonomous functional differen-

tial inclusions with constant time delays using Lyapunov-

Krasovskii functionals. This result will help us determine

the semistability of (6) which is required by Theorem 3.1.

For the notion of weakly positive invariance, see [20] for the

details.

Theorem 3.2: Consider the RFDI (6). Assume the tra-

jectories of (6) are bounded and there exists a continuous

functional V : C → R such that V̇ is defined on C and

V̇ (φ) ≤ 0 for all φ ∈ C. If every point in the largest weakly

positively invariant set M of V̇ −1(0) is a Lyapunov stable

equilibrium point of (6), then (6) is semistable.

As an alternative to Theorem 3.2, we present a Lyapunov-

Razumikhin function approach to semistability analysis of

RFDIs with constant time delays. Motivated by [24], this

result gives a different method to prove semistability of (6)

other than Theorem 3.2, which is useful for many cases in

that constructing a Lyapunov-Krasovskii functional for (6)

may not be an easy task in these cases.

Theorem 3.3: Consider the RFDI (6). Assume the tra-

jectories of (6) are bounded and there exists a continuous

function V : C → R such that V̇ is defined on C and V̇ (φ) ≤
0 for all φ ∈ C such that V (φ(0)) = max−h≤s≤0 V (φ(s)).
If every point in the largest weakly positively invariant

set M of R := {φ ∈ C : maxs∈[−h,0] V (zt(φ)(s)) =
maxs∈[−h,0] V (φ(s)), ∀t ≥ 0} is a Lyapunov stable equi-

librium point of (6), then (6) is semistable.

B. Specialization to the Consensus Problem

Lemma 3.6: Consider the time-delay system (4). Assume

the trajectories of (4) are bounded. If limt→∞ E(t) = E,

limt→∞ Fk(t) = Fk, and limt→∞ τk(t) = hk for every k =
1, . . . , m, where E, Fk are some constant matrices, then

ż(t) = Ez(t) +

m
∑

k=1

Fkz(t − hk) (9)

is a limiting system of (4).

Next, we present a Lyapunov stability result for (9). Define

F :=
∑m

k=1 Fk . For a matrix A ∈ R
m×n, we use A(i,j) to

denote the (i, j)th element of A.

Lemma 3.7: Consider the time-delay system (9) having

the following structure: all the elements in Fk are nonnega-

tive, k = 1, . . . , m,

E(i,j) =

{

−
∑n

k=1 aik, i = j,
0, i 6= j,

(10)

F(i,j) =

{

0, i = j,
aij , i 6= j,

(11)

aij ≥ 0, i, j = 1, . . . , n. Then (9) is Lyapunov stable.

The following proposition regarding semistability of time-

varying delay network consensus protocols given by (4)

follows directly from Lemmas 3.6 and 3.7, Theorem 3.1, and

a result from [7]. To state this result, define 1 = [1, . . . , 1]T ∈
R

n.

Proposition 3.1: Consider the time-delay system (4). As-

sume that limt→∞ E(t) = E, limt→∞ Fk(t) = Fk, and

limt→∞ τk(t) = hk for every k = 1, . . . , m. Furthermore,

assume that E and Fk have the structure given by (10) and

(11), (E+F )T1 = (E+F )1 = 0, and rank(E+F ) = n−1.

Then for every α ∈ R, α1 is a semistable equilibrium point

of (4). Furthermore, x(t) → α∗1 as t → ∞, where

α∗ =
1Tφ(0) +

∑m

k=1

∫ 0

−hk
1TFkφ(θ)dθ

n +
∑m

k=1 hk1TFk1
. (12)

Next, we generalize Proposition 3.1 to the nonlinear

system given by

ẋ(t) = a(t)f(x(t)) +

m
∑

k=1

bk(t)gk(x(t − τk(t))), (13)

where f = [f1, . . . , fq]
T and a(·), bk(·) are scalar continuous

functions. Using some result from [7], we have the following

stability result for the nonlinear network consensus with

time-varying delays given by the form of (13). Recall that for

a diagonal matrix Λ ∈ R
n×n, the Drazin inverse ΛD ∈ R

n×n

is given by ΛD
(i,i) = 0 if Λ(i,i) = 0 and ΛD

(i,i) = 1/Λ(i,i) if

Λ(i,i) 6= 0, i = 1, . . . , n [25, p. 227].

Proposition 3.2: Consider the time-delay system (13)

where f(0) = 0, gk(0) = 0, k = 1, . . . , m, and fi(·) is

strictly decreasing for fi 6≡ 0, i = 1, . . . , n. Assume (13) is

Lyapunov stable, 0 < limt→∞ a(t) = limt→∞ bk(t) < ∞,

and limt→∞ τk(t) = hk for every k = 1, . . . , m. Next,

assume that 1T(f(x) +
∑m

k=1 gk(x)) = 0 for all x ∈ R
n

and f(x) +
∑m

k=1 gk(x) = 0 if and only if x = c1 for some

c ∈ R. Furthermore, assume that there exist nonnegative

diagonal matrices Pk ∈ R
n×n, k = 1, . . . , m, such that

P :=
∑m

k=1 Pk > 0, PD
k Pkgk(x) = gk(x) for every x ∈ R

n

and k = 1, . . . , m, and

m
∑

k=1

gT
k (x)Pkgk(x) ≤ fT(x)Pf(x), x ∈ R

n, (14)

m
∑

k=1

fT(x)PPD
k Pf(x) ≤ fT(x)Pf(x), x ∈ R

n. (15)
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Then for every α ∈ R, α1 is a semistable equilibrium point

of (13). Furthermore, x(t) → α∗1 as t → ∞, where α∗

satisfies

nα∗ +

m
∑

k=1

hk1Tgk(α∗1)

= 1Tφ(0) +

m
∑

k=1

∫ 0

−hk

1Tgk(φ(θ))dθ. (16)

The inequality conditions (14) and (15) in Proposition 3.2

are implicit constraints in the sense that they are not the

conditions in terms of P and Pk alone. Next, we present a

sufficient condition on P and Pk to guarantee (15).

Lemma 3.8: Let Pi = diag[p1
i , . . . , p

q
i ] ∈ R

q×q , where

pj
i ≥ 0, i, j = 1, . . . , q and P =

∑q

i=1 Pi =
diag[p1, . . . , pq]. For any fc, the equality

fT
c (x)Pfc(x) =

q
∑

i=1

fT
c (x)PPD

i Pfc(x), x ∈ R
q (17)

holds if and only if for any j, there exists only one ij such

that pj = pj
ij

and all the other pj
i = 0, i 6= ij , or in other

words, each diagonal element of P comes from just one

single Pi.

Now we have a corollary for Proposition 3.2.

Corollary 3.1: Consider the time-delay system (13) where

f(0) = 0, gk(0) = 0, k = 1, . . . , m, and fi(·) is strictly

decreasing for fi 6≡ 0, i = 1, . . . , n. Assume (13) is

Lyapunov stable, 0 < limt→∞ a(t) = limt→∞ bk(t) < ∞,

and limt→∞ τk(t) = hk for every k = 1, . . . , m. Next,

assume that 1T(f(x) +
∑m

k=1 gk(x)) = 0 for all x ∈ R
n

and f(x) +
∑m

k=1 gk(x) = 0 if and only if x = c1 for some

c ∈ R. Furthermore, assume that there exist nonnegative

diagonal matrices Pk ∈ R
n×n, k = 1, . . . , m, such that

P :=
∑m

k=1 Pk > 0, each diagonal element of P comes from

just one single Pk, PD
k Pkgk(x) = gk(x) for every x ∈ R

n

and k = 1, . . . , m, and (14) holds. Then for every α ∈ R,

α1 is a semistable equilibrium point of (13). Furthermore,

x(t) → α∗1 as t → ∞, where α∗ satisfies (16).

IV. CONCLUSIONS

A new general framework concerning semistability of

RFDEs having a continuum of equilibria and asymptot-

ically converging to an autonomous RFDI is presented

and its applications to stability analysis of multiagent dy-

namic networks with consensus protocol in the presence of

time-varying parameters and unknown heterogeneous time-

varying delays are discussed in this paper. Those time delays

are not necessarily differentiable and known. We provided

conditions, in terms of the limiting system–a RFDI, to

guarantee semistability of nonlinear time-varying systems

with multiple time-varying delays and applied those stability

results to show that multiagent dynamic networks can still

achieve consensus in the presence of time-varying parameters

and heterogeneous delays, provided that the parameters and

the delays converge to their limits asymptotically.

There are many future research directions regarding

semistability theory of RFDEs. For example, the existence

of converse Lyapunov theorems for semistability of RFDEs

remains an open problem. For finite-dimensional nonlinear

systems, this has been proved by [26].
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