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Abstract— In many diverse areas, determining the connec-
tivity of various entities in a network is of significant interest.
This article’s main focus is on a network (graph) of nodes
(vertices) that are linked via filters that represent the edges of
a graph. Both cases of the links being non-causal and causal
are considered. Output of each node of the graph represents a
scalar stochastic process driven by an independent noise source
and by a sum of filtered outputs of nodes linked to the node of
interest. It is shown that the method provided will identify all
true links in the network with some spurious links added. The
spurious links remain local in the sense that they are added
within a hop of a true link. In particular, it is proven that the
method determines a link to be present only between the kins
of a node where kins of a node consist of parents, children and
co-parents (other parents of all of its children) in the graph.
Main tools for determining the network topology is based on
Wiener filtering. Another significant insight provided by the
article is that the Wiener filter estimating a stochastic process,
represented by a node, based on other processes in a network
configuration remains local in the sense that the Wiener filter
utilizes only measurements local to the node being estimated.

I. INTRODUCTION

The interest on networks of dynamical systems is increas-
ing in recent years, especially because of their capability
of modeling and describing a large variety of phenomena
and behaviors. While networks of dynamical systems are
well studied and analyzed in physics [1], [2] and engineering
[3], [4], there are fewer results that address the problem of
reconstructing the topology of a network. Unravelling the
interconnectedness of a set of processes is of significant
interest in many fields, with the necessity for general tools
rapidly increasing (see [5], [6] and [7] and the bibliography
therein for recent results). However, such a problem poses
formidable theoretical as well as practical challenges (see
[8]). Existing results derive a network topology from sampled
data (see e.g. [9], [5], [7], [10]) or to determine the presence
of substructures (see e.g. [2], [6]). A well-known technique
for the identification of a tree network is developed in [9]
for the analysis of a stock portfolio. However, in [11] a
severe limitation of this strategy is highlighted, where it is
shown that, even though the actual network is a tree, the
presence of dynamical connections or delays can lead to the
identification of a wrong topology. In [12] a similar strategy,
where the correlation metric is replaced by a metric based on
the coherence function, is numerically shown to provide an
exact reconstruction for tree topologies. In [12] it is shown
that a correct reconstruction can be guaranteed for a topology
with no cycles.
In [6] different techniques for quantifying and evaluating
the modular structure of a network are compared and a
new one is proposed trying to combine both the topological
and dynamic information of the complex system. However,
the network topology is only qualitatively estimated. In [5]
a method to identify a network of dynamical systems is
described. However, primary assumptions of the technique

are the possibility to manipulate the input of every single
node and the possibility of conducting experiments to detect
the link connectivity.
In [13] an interesting and novel approach based on auto-
regressive models and Granger-causality [14] is proposed
for reconstructing a network of dynamical systems. This
technique relies on multivariate identification procedure to
detect the presence of a link, but still no theoretical sufficient
or necessary conditions are derived to check the correctness
of the results.
In this paper the problem of reconstructing a network of
dynamical systems where every node represents an observ-
able scalar signal and the dynamics is linear and represented
by the connecting links is addressed. The problem, when
analyzed from a systems theory point of view, provides a
method for correctly identifying a topology that belongs to
the pre-specified class of self-kin networks. Moreover, if
the network does not belong to such a class, conditions
about the optimality of the identified topology according
to a defined criterion is estabilished. From this perspective,
sufficient conditions for the exact reconstruction of a large
class of networks, which we name self-kin, are derived. In the
case the network is not self-kin, the reconstructed topology
is guaranteed to be the smallest self-kin network containing
the actual one. The theory developed is not bayesian and
relies directly on Wiener filtering theory. Conditions derived
for the detection of links are based on sparsity properties of
the (non-causal) Wiener filter modeling the network. Indeed,
conditions under which the Wiener filter smoothing a signal
of the network is “local” are derived. From a different
perspective, another important contribution of the paper is
given by providing conditions for a local and distributed
implementation of the Wiener filter.
The results obtained bear a striking similarity to the ones
developed in the area of machine learning for Bayesian
Networks (BNs) [15], [16] where the topology of a network
of nodes that represent random variables is sought. The main
result obtained in the BNs literature (see [17]) is that the
probability distribution of a random variable conditioned on
the rest of the random variables of the network is equal to the
probability distribution of the random variable conditioned
only on the random variables within the kin set of the random
variable. It is assumed that the network has no loops. The
problem considered in this article is for a network of random
processes and is not restricted to random variables as is
the case for BNs. Evidently issues concerning causality and
stability do not arise for BNs which have to be addressed for
a network of random processes. Moreover, in this article no
assumption on the absence of loops is made as is the case
in [17].

The paper is organized as follows. In Section II definitions
are provided based on standard notions of graph theory; in
Section III the main problem is formulated; in Section IV the
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main results are provided for non-causal Wiener filtering; in
Section V the results are extended to causal Wiener filtering
and Granger causality; in Section VI the implementation
of algorithms for the detection of network topologies are
discussed for different scenarios.

Notation:

The symbol := denotes a definition
‖x‖: 2-norm of a vector x
WT : the transpose of a matrix or vector W
W ∗: the conjugate transpose of a matrix or vector W
xi or {x}i: the i-th element of a vector x
Wji: the entry (j, i) of a matrix W
Wj∗: j-th row of a matrix W
W∗i: i-th column of a matrix W
xV : when V = (v1, ..., vn) is a n-tuple of natural numbers
denotes the vector (xv1

... xvn)
T

|A|: cardinality (number of elements) of a set A
E[·]: mean operator;
RXY (τ) := E[X(t)Y T (t+τ)]: cross-covariance function of
wide-sense stationary vector processes X and Y ;
RX(τ) := RXX(τ): autocovariance;
Z(·): Zeta-transform of a signal;
ΦXY (z) := Z(RXY (τ)): cross-power spectral density;
ΦX(z) := ΦXX(z): power spectral density;
bi : i-th element of the canonical base of Rn.

II. PRELIMINARY DEFINITIONS

In this section, basic notions of graph theory, which are
functional to the subsequent developments, will be recalled.
For an extensive overview see [18]. First, the standard
definition of undirected and oriented graphs is provided.

Definition 1 (Directed and Undirected Graphs): An
undirected graph G is a pair (V,A) where V is a set of
vertices or nodes and A is a set of edges or arcs, which are
unordered subsets of two distinct elements of V .
A directed (or oriented) graph G is a pair (V,A) where V
is a set of vertices or nodes and A is a set of edges or arcs,
which are ordered pairs of elements of V .

In the following, if not specified, oriented graphs are con-
sidered.

Definition 2 (Topology of a graph): Given an oriented
graph G = (V,A), its topology is defined as the undirected
graph G′ = (V,A′) such that {Ni, Nj} ∈ A′ if and only if
(Ni, Nj) ∈ A or (Nj , Ni) ∈ A, and top(G) := G′.

By removing the orientation on any edge of an oriented graph
G, an undirected graph G′ is obtained that is its topology. An
example of a directed graph and its topology is represented
in Figure 1.

Definition 3 (Children and Parents): Given a graph G =
(V,A) and a node Nj ∈ V , the children of Nj are defined
as CG(Nj) := {Ni|(Nj , Ni) ∈ A} and the parents of Nj as
PG(Nj) := {Ni|(Ni, Nj) ∈ A}.
Extending the notation, children and the parents of a set of
nodes are denoted as follows

CG({Nj1 , ..., Njm}) := ∪m
k=1CG(Njk )

PG({Nj1 , ..., Njm}) := ∪m
k=1PG(Njk ).

Definition 4 (Kins): Given an oriented graph G = (V,A)
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Fig. 1. A directed graph (a) and its topology (b).
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Fig. 2. An oriented graph (a) and its kin topology (b).

and a node Nj ∈ V , kins of Nj are defined as

KG(Nj) := {Ni|Ni 6= Nj and Ni ∈ CG(Nj) ∪
∪ PG(Nj) ∪ PG(CG(Nj))}.

Kins of a set of nodes are defined in the following way

KG({Nj1 , ..., Njm}) := ∪m
k=1KG(Njk).

Definition 5 (Proper Parents and Proper Children):

Given an oriented graph G = (V,A) and a node Nj , Ni is
a proper parent (child) of Nj if it is a parent (child) of Nj

and Ni /∈ PG(CG(Nj)). Ni is a proper kin if it is a kin and
Ni /∈ PG(Nj) ∪ CG(Nj).
Note that the kin relation is symmetric, in the sense that
Ni ∈ KG(Nj) if and only if Nj ∈ KG(Ni).

Definition 6 (Kin-graph): Given an oriented graph G =
(V,A), its kin-graph is the undirected graph G̃ = (V, Ã)
where

Ã := {{Ni, Nj}|Ni ∈ KG(Nj) for all j}.

and it is denoted as kin(G) = G̃.

A directed graph and its kin-graph are represented in Fig-
ure 2. Note that the kin-graph of G is an undirected graph.
It could be defined as a directed graph, but, because of
the symmetry of the kin relation, a directed graph contains
exactly the same information. Moreover such a choice is
motivated by the following definition

Definition 7 (Self-kin Graph): An oriented graph G is
self-kin if top(G) = kin(G).
Many graphs are self-kin, such as rooted trees, rings and
triangular lattices [18].

Definition 8: Let E be a set containing time-discrete
scalar, zero-mean, jointly wide-sense stationary random pro-
cesses such that, for any ei, ej ∈ E , the power spectral
density Φeiej (z) exists, is real rational with no poles on

the unit circle and given by Φeiej (z) = A(z)
B(z) , where A(z)

and B(z) are polynomials with real coefficients such that
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B(z) 6= 0 for any z ∈ C, with |z| = 1. Then, E is a set of
rationally related random processes.

Definition 9: The set F is defined as the set of real-
rational single-input single-output (SISO) transfer functions
that are analytic on the unit circle {z ∈ C| |z| = 1}.

Definition 10: Given a SISO transfer function H(z) ∈ F ,
represented as

H(z) =

∞
∑

k=−∞

hkz
−k, (1)

the causal truncation operator is defined as

{H(z)}C :=
∞
∑

k=0

hkz
−k. (2)

Lemma 11: For every H(z) ∈ F , it holds that
{H(z)}C ∈ F .

Definition 12: The set F+ is defined as the set of real-
rational SISO transfer functions in F such that

{H(z)}C = H(z). (3)
Definition 13: Let E be a set of rationally related random

processes. The set FE is defined as

FE :=

{

x =
m
∑

k=1

Hk(z)ek | ek ∈ E , Hk(z) ∈ F ,m ∈ N

}

.

Lemma 14: The set FE is a vector space with the field
of real numbers. Let

< x1, x2 >:= Rx1x2
(0) =

∫ π

−π

Φx1x2
(eiω),

which defines an inner product on FE with the assumption
that two processes x1 and x2 are considered identical if
x1(t) = x2(t), almost always for any t.

Proof: The proof is left to the reader
For any x ∈ FE , the norm induced by the inner product

is defined as ‖x‖ :=
√
< x, x >.

Definition 15: For a finite number of elements
x1, ..., xm ∈ FE , tf-span is defined as

tf-span{x1, ..., xm} :=

{

x =
m
∑

i=1

αi(z)xi | αi(z) ∈ F

}

.

Definition 16: For a finite number of elements
x1, ..., xm ∈ FE , c-tf-span is defined as

c-tf-span{x1, ..., xm} :=

{

x =

m
∑

i=1

αi(z)xi | αi(z) ∈ F+

}

.

Lemma 17: The tf-span and c-tf-span operators define a
subspace of FE .

Proof: The proof is left to the reader.
The following definition provides a class of models for

a network of dynamical systems. It is assumed that the
dynamics of each agent (node) in the network is represented
by a scalar random process {xj}nj=1 that is given by the
superposition of a noise component ej and the “influences”
of some other “parent nodes” through dynamic links. The
noise acting on each node is assumed not related with
the other noise components. If a certain agent “influences”
another one a directed edge can be drawn and a directed
graph can be obtained.

Definition 18 (Linear Dynamic Graph): A Linear Dy-
namic Graph G is defined as a pair (H(z), e) where

• e = (e1, .., en)
T is a vector of n rationally related

random processes such that Φe(z) is diagonal
• H(z) is a n×n matrix of transfer functions in F such

that Hjj(z) = 0, for j = 1, ..., n.

The output x := (x1, ..., xc) of the LDG is defined as

x(t) = e(t) +H(z)x(t). (4)

Let V := {x1, ..., xn} and let A := {(xi, xj)|Hji(z) 6= 0}.
The pair G = (V,A) is the associated directed graph of the
LDG. Nodes and edges of a LDG will mean nodes and edges
of the graph associated with the LDG.

Observe that Equation (4) defines a map from a vector
of rationally related processes x to a vector of rationally
related processes e. Indeed, e = (I − H(z))x and each
entry of (I −H(z)) has no poles on the unit circle. If the
operator (I −H(z)) is invertible on the space of rationally
related processes it can be guaranteed that, for any vector of
rationally related processes e, a vector x of processes that
are still rationally related will be obtained. For this reason,
the following definition is introduced.

Definition 19: A LDG (H(z), e) is well-posed if each
entry of (I −H(z))−1 belongs to F . Thus,

x = (I −H(z))−1e.

can be written. A LDG (H(z), e) is causally well-posed if
all the entries of (I − H(z)) and (I − H(z))−1 belong to
F+.

A LDG is a complex interconnection of linear transfer
functions Hji(z) connected according to a graph G and
forced by stationary additive mutually uncorrelated noise.
The following definition will be useful for determining
sufficient conditions for detection of links in a network.

Definition 20: A LDG G = (H(z), e) is topologically
detectable if Φei(e

iω) > 0 for any ω ∈ [−π, π] and for
any i = 1, ..., n.

III. PROBLEM FORMULATION

Problem 21: Consider a well-posed LDG G = (H, e)
where its associated graph G is unknown. Given the Power
(Cross-) Spectral Densities of {xj}j=1,...,n, reconstruct the
unknown topology of G.

IV. SPARSITY OF THE NON-CAUSAL WIENER FILTER

First, a lemma is provided that guarantees that any element
in tf-span{xi}i=1,...,n admits a unique representation if the
cross-spectral density matrix of its generating processes has
full normal rank.

Lemma 22: Let q and x1, ..., xn be processes in the
space FE . Define x = (x1, ..., xn)

T . Suppose that q ∈
tf-span{xi}i=1,...,n and that Φx(e

iω) > 0 almost for any
ω ∈ [−π, π]. Then there exists a unique transfer matrix
H(z) such that q = H(z)x.

Proof: Note that if H(z) is such that q = H(z)x =
0, then Φqq(e

iω) = 0 = H(eiω)Φx(e
iω)H∗(eiω). Since

Φx(e
iω) > 0 for any ω ∈ [−π, π], it holds that

H(eiω) = 0 almost everywhere which implies that
H(z) = 0. Now, by contradiction assume that q =
H1(z)x = H2(z)x, with H1(z) 6= H2(z). Then 0 =
[H2(e

iω)−H1(e
iω)]Φx(e

iω)[H2(e
iω)−H1(e

iω)]∗ implying
that H1(z) = H2(z).
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A specific formulation of the non-causal Wiener filter is
introduced for the defined spaces.

Proposition 23: Let v and x1, ..., xn be processes in
the space FE . Define x := (x1, ...., xn)

T and X :=
tf-span{x1, ..., xn}. Consider the problem

inf
q∈X

‖v − q‖2. (5)

If Φx(e
iω) > 0, for ω ∈ [−π, π], the solution v̂ ∈ X exists,

is unique and with v̂ = W (z)x where

W (z) = Φvx(z)Φx(z)
−1.

Moreover, v̂ is the unique element in X such that, for any
q ∈ X ,

< v − v̂, q >= 0. (6)
Proof: The proof is left to the reader, but it can

be obtained following the standard arguments reported, for
example, in [19].
In the following definition a notion of conditional non-causal
Wiener-uncorrelation is given.

Definition 24: Let v, x1, ..., xn be processes in the
space FE . Define x := (x1, ...., xn)

T and X :=
tf-span{x1, ..., xn}. For any i ∈ {1, ..., n}, the process v
is conditionally non-causally Wiener-uncorrelated with xi

given the processes {xk}k 6=i if the i-th entry of the Wiener
filter to estimate v from x is zero, that is

ΦvxΦ
−1
x bi = 0. (7)

where bi is the vector of Rn that has 1 as the i − th entry
and 0 in all other entries.
The following lemma provides an immediate relationship
between non-causal Wiener-uncorrelation and the inverse of
the cross-spectral density matrix. This result presents strong
similarities with the property of the inverse of the covariance
matrix for jointly Gaussian random-variables. Indeed, it is
well-known that the entry (i, j) of inverse of the covariance
matrix of n random variables x1, ..., xn is zero if and
only if xi and xj are conditionally independent given other
variables.

Lemma 25: Let x1, ..., xn be processes in the space FE .
Define x = (x1, ...., xn)

T . Assume that Φx has full normal
rank. The process xi is non-causally Wiener-uncorrelated
with xj given the processes {xk}k 6=i,j , if and only if the
entry (i, j), or equivalently the entry (j, i), of Φ−1

x (z) is
zero, that is, for i 6= j,

bTj Φ
−1
x bi = bTi Φ

−1
x bj = 0. (8)

Proof: Without any loss of generality, let j = n
and define xn := (x1, ..., xn−1)

T . Suppose the non-causal
Wiener filter estimating xn from xn is Wnn. Then

xn = εn +Wnn(z)xn (9)

where, from (6), the error εn has the property that
Φεnxn

(z) = 0. Define r := (xT
n , εn)

T and observe that

r =

(

I 0
−Wnn(z) 1

)

x; x =

(

I 0
Wnn(z) 1

)

r.

It follows that

Φ−1
x =

(

I Wnn(z)
∗

0 1

)(

Φ−1
xn

0
0 Φ−1

εn

)(

I 0
Wnn(z) 1

)

=

(

Φxn
+

W∗
nnWnn

Φεn
W ∗

nnΦ
−1
εn

Φ−1
εn Wnn Φ−1

εn

)

.

The assertion is proven by premultiplying by bTn and post-
multiplying by bi
The following theorem provides a sufficient condition to
determine if two nodes in a LDG are kins.

Theorem 26: Consider a well-posed and topologically
detectable LDG (H(z), e) with associated graph G. Let
x = (x1, ..., xn)

T be its output. Define the space Xj =
tf-span{xi}i 6=j . Consider the problem of approximating the
signal xj with an element x̂j ∈ Xj , as defined below

inf
x̂j∈Xj

‖xj − x̂j‖2 . (10)

Then the optimal solution x̂j exists, is unique and

x̂j =
∑

i 6=j

Wji(z)xi (11)

where Wji(z) 6= 0 implies {xi, xj} ∈ kin(G).
Proof: The LDG dynamics is given by x = (I −

H(z))−1e implying that

Φ−1
x = (I −H)∗Φ−1

e (I −H). (12)

Consider the j-th row of Φ−1
x . We have

bTj Φ
−1
x = (bTj −H∗

∗j)Φ
−1
e (I −H). (13)

The k−th row element of the vector (bTj − H∗
∗j) is zero if

k 6= j and xk is not a parent of xj . Since Φe is diagonal the
i-th column of Φ−1

e (I −H) has zero entries for any k 6= i
that is not a parent of i. Given i 6= j, if i is not a parent
of j and i is not a child of j and i and j have no common
children (they are not coparents), it follows that the entry
(j, i) of Φ−1

xx (z) is zero. Using Lemma (25) the assertion is
proven.
The following result provides a sufficient condition for the
reconstruction of a link in a LDG.

Corollary 27: Consider a well-posed and topologically
detectable LDG G with associated graph G. Let x =
(x1, ..., xn)

T be its output. Let Wji(z) be the entry of the
non-causal Wiener filter estimating xj from {xk}k 6=j corre-
sponding to the process xi. If G is self-kin, then Wji(z) 6= 0
implies (xj , xi) ∈ top(G).

Proof: Since G is self-kin, PG(xj) ∪ CG(xj) ∪
PG(CG(xj)) = CG(xj)∪PG((xj)). Thus, from the previous
theorem the assertion follows immediately.

The following lemma is a key result to explicitly determine
the expression of the Wiener filter for a LDG in the non-
causal and in the causal scenarios.

Lemma 28: Consider a well-posed LDG G = (H(z), e)
with associated graph G and output x = (x1, ..., xn)

T . Fix
j ∈ {1, ..., n} and define the set

C := {c|xc ∈ CG(xj)} = {c1, ...cnc
}

containing the indexes of the nc children of xj . Then, for
i 6= j,

xi ∈ tf-span







{

⋃

k∈C

(ek +Hkj(z)ej)

}

∪







⋃

k/∈C∪{j}

{ek}













.

Furthermore, if G is causal,

xi ∈ c-tf-span







{

⋃

k∈C

(ek +Hkj(z)ej)

}

∪







⋃

k/∈C∪{j}

{ek}













.
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Proof: Define

εj := 0

εk := ek +Hkj(z)ej if k ∈ C

εk := ek if k /∈ {C} ∪ {j}

ξk :=
∑

Hki(z)xi if k = j

ξk := xk if k 6= j (14)

and, by inspection, observe that[I − H(z)]ξ = ε. Since G
is well posed, [I − H(z)] is invertible implying that the
signals {ξi}i=1,...,n are a linear transformation of the signals
{εi}i=1,...,n. For i 6= j, we have

xi = ξi ∈ tf-span{εk}k=1,...,n = tf-span{εk}k 6=j

where the first equality follows from (14) and last equality
follows from the fact that εj = 0. The causality of G
also implies that xi = c-tf-span{εk}k 6=j . This proves the
assertion.

V. SPARSITY OF CAUSAL FILTERING OPERATORS

First, we need to introduce the following lemma.
Lemma 29: Let E be a space of rationally related pro-

cesses and let v and x1, ..., xn be processes in FE . Define
x := (x1, ...., xn)

T . Assume that Φvx(e
iω) = 0 for all ω ∈

[−π, π]. Then < v, q >= 0 for all q ∈ tf-span{xi}i=1,...,n.
Proof: As q ∈ tf-span{xi}i=1,...,n, it follows that there

exist αi(z) ∈ F such that

q =

n
∑

i=1

αi(z)xi =: α(z)x,

where α(z) = (α1(z), ..., αn(z)) is a row vector of real-
rational transfer functions. Then it follows that

< v, q >=

∫ π

−π

Φvx(e
iω)α(eiω)∗ = 0.

Now, a specific formulation of the standard causal Wiener
filter (see [19]) is introduced for the defined spaces.

Proposition 30: Let v and x1, ..., xn be processes in
the space FE . Define x := (x1, ...., xn)

T and X :=
c-tf-span{x1, ..., xn}. Consider the problem

inf
q∈X

‖v − q‖2. (15)

Let S(z) be the spectral factorization of Φx(e
iω) =

S(eiω)S∗(eiω). If Φx(e
iω) > 0, for ω ∈ [−π, π], the solution

v̂(c) ∈ X exists, is unique and has the form

v̂(c) = W (c)(z)x

where W (c)(z) = {Φvx(z)Φx(z)
−1S(z)}CS−1(z). More-

over v̂(c) is the unique element in X such that, for any q ∈ X ,
satisfies

< v − v̂(c), q >= 0. (16)
Proof: The proof follows the standard derivation of the

Wiener-Hopf filter (see [19]).
The following theorem proves the sparsity of the causal

Wiener filter stating that the causal Wiener filter estimating
xj from the signals xi, i 6= j, has non-zero entries corre-
sponding to the kin signals of xj .

Theorem 31: Consider a well-posed, causal and topologi-
cally detectable LDG. Let x1, ..., xn ∈ FE be the signals
associated with the n nodes of its graph. Define Xj =
c-tf-span{xi}i 6=j . Consider the problem of approximating the
signal xj with an element x̂j ∈ Xj , as defined below

min
x̂j∈Xj

‖xj − x̂j‖2 .

Then the optimal solution x̂j exists, is unique and

x̂j =
∑

i 6=j

Wji(z)xi

where Wji(z) 6= 0 implies (xi, xj) ∈ kin(G).
Proof: For any i 6= j, define εi as in (14). Also note

that

ej := xj −
∑

i

Hji(z)xi. (17)

Consider êj defined as

êj := arg min
q∈c-tf-span{εi}i 6=j

‖ej − q‖ =
∑

i 6=j

C
(c)
ji (z)εi

where the transfer functions C
(c)
ji (z) are given by the causal

Wiener filter estimating ej from {εi}i 6=j . Notice that C
(c)
ji (z)

is equal to zero if xi is not a child of xj . Now, let us consider
the optimization problem

x̂j := arg min
q∈c-tf-span{xi}i 6=j

‖xj − q‖ =
∑

i 6=j

Wji(z)xi

where Wji(z) are the entries of the associated causal Wiener
filter. Its solution x̂j satisfies

x̂j =
∑

i 6=j

Hji(z)xi + arg min
q∈c-tf-span{xi}i 6=j

‖ej − q‖ =

=
∑

i

Hji(z)xi + arg min
q∈c-tf-span{εi}i 6=j

‖ej − q‖

where the first equality derives from (17) and the last one
has been obtained by using Lemma 28. Thus, we have

x̂j =
∑

i 6=j

Wjixi =
∑

i

Hji(z)xi +
∑

i 6=j

Cjiεi.

Substituting the espression of εi, i 6= j, as a function of xi,
i 6= j, the assertion is proven.

The following theorem proves the sparsity of the one step
prediction operator (or Granger-causal operator). Granger-
causality is a wide-spread technique in econometrics to
test the causal dependence of time series. If the stronger
hypothesis of strictly causal transfer functions Hji(z) is met,
one-step predictor provides an exact reconstruction of parent-
child links in a LDG.

Theorem 32: Consider a well-posed, strictly causal and
topologically detectable LDG. Let x1, ..., xn ∈ FE be the
signals associated with the n nodes of its graph. Define
Xj = c-tf-span{x1, ..., xn}. Consider the problem of ap-
proximating the signal zxj with an element x̂j ∈ Xj , as
defined below

min
x̂j∈Xj

‖zxj − x̂j‖2 . (18)
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Then the optimal solution x̂j exists, is unique and

x̂j =

n
∑

i=1

Wji(z)xi (19)

where Wji(z) 6= 0 implies i = j or xi is a parent of xj .
Proof: For any i 6= j, define εi as in (14). Also define

εj := ej . Note that

ej := xj −
∑

i

Hji(z)xi. (20)

Consider the minimization problem

êj := arg min
q∈c-tf-span{εi}i

‖zej − q‖ =
∑

i 6=j

C
(g)
ji (z)εi

where the transfer functions C
(g)
ji (z) are elements of F+.

We have that C
(g)
ji (z) = 0 for any i 6= j. Indeed, since

Φeiej (e
iω) = 0 for i 6= j, it holds that

arg min
q∈c-tf-span{εi}

n
i=1

‖zej − q‖ = arg min
q∈c-tf-span{ei}

n
i=1

‖zej − q‖ =

= arg min
q∈c-tf-span{ej}

‖zej − q‖.

Conversely, from (30), we find C
(g)
jj (z) =

{zSj(z)}Cz−1Sj(z) where Sj(z) is the spectral factor
of ej . Now, let us consider the problem

arg min
q∈c-tf-span{xi}i 6=j

‖zxj − q‖.

Its solution x̂j is

x̂j =
∑

k

zHjk(z)xk + arg min
q∈c-tf-span{xi}i

‖zej − q‖ =

=
∑

k

zHjk(z)xk + C
(g)
jj (z)ej

= C
(g)
jj (z)xj +

∑

k 6=j

[zHjk(z)− C
(g)
jj (z)Hjk(z)]xk.

This proves the assertion.

VI. A RECONSTRUCTION ALGORITHM

The previous section provides theoretical results allowing
for the reconstruction of a topology via Wiener filtering.
It needs to be stressed that even in the case of sparse
graphs, the reconstruction of the kinship topology can be
considered a practical solution. The following algorithm is a
pseudocode implementation of the reconstruction technique
that was developed in the previous section.

Reconstruction algorithm

0. Initialize the set of edges A = {}
1. For any signal xj

2. Determine the Optimal filter entries Wji(z) (non-
causal Wiener, causal Wiener or one-step predictor)

3. For any Wji(z) ≇ 0
4. add {Ni, Nj} to A
5. end
7. end
8. return A

Under the assumption of ergodicity of the signals, there
are a variety of techniques to perform step 2 using data.
Most of them rely on estimating the spectral densities of the
signal involved. For example an efficient technique based on
Gram-Schmidt orthogonalization is described in [20].

VII. CONCLUSIONS

This work has illustrated a simple but effective procedure
to identify the general structure of a network of linear dy-
namical systems. The approach followed is based on Wiener
Filtering in order to detect the existing links of a network.
When the topology of the original graph is described by a
self-kin network, the method developed guarantees an exact
reconstruction. Self-kin networks provide a non-trivial class
of networks since they allow the presence of loops, nodes
with multiple inputs and lack of connectivity. Moreover, the
paper also provides results about general networks. It is
shown that, for a general graph, the developed procedure
reconstructs the topology of the smallest self-kin graph
containing the original one. Thus, the method is optimal in
this sense.
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