
  

  

 

Abstract— The class of parameter estimation problems is 

characterized for which only the ratio of the model parameters 

can be identified. A mathematical signature is provided for 

identifying such systems, which include fed-batch reactors 

commonly operated in the chemical and biotechnology 

industries, in which reaction networks operate under 

quasi-steady-state conditions due to limiting addition of a 

reagent. The theoretical results are demonstrated through 

application to a single-walled carbon nanotube (SWNT) reaction 

network relevant to the design of nanobiosensors. Sensitivity 

analysis implies that such a quasi-steady-state operation of a 

fed-batch reactor results in the loss of information, in which 

none of the model parameters can be estimated. 

I. INTRODUCTION 

arallel reaction networks are common in chemical and 

biological processes, including in polymerization [1], 

membrane reactors [2], isomerization in porous catalysts [3], 

hydrodesulfurization to remove sulfur from petroleum [4], 

Diels-Alder reactions to produce organic compounds with 

cyclohexene rings [5], hydrotreating for disposal of toxic 

wastes [6], multispecies reactive transport in porous media 

[7], carbon nanotube reaction networks [8], protein signaling 

networks [9], biological neural networks [10], immune 

systems [11], fermentations [12], and anaerobic digestion 

[13]. Most of these reactions are commonly carried out in the 

laboratory or at the production scale in fed-batch operations, 

in which fresh feed is added continuously or periodically. 

Some applications of fed-batch operations include catalytic 

degradation of organic molecules in wastewater [14], organic 

and heavy metal removal from landfill leachate by coagulation 

and flocculation using CaO or FeCl3 [15], microbially-derived 

plastics [16,17], the fermentation of ethanol and butanol from 

biomass [18,19], and microbial production of proteins, amino 

acids, growth factors, antibodies, and antibiotics [20-23]. A 

large number of papers have considered the estimation of 

kinetic parameters in reaction networks from experimental 

data collected during fed-batch operations [24-27]. 
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The accuracy of the kinetic parameters in reaction networks 

and in fed-batch operations depends strongly on the operating 

conditions of the experiment [28,29]. While some papers 

propose to rapidly vary the flow rate of fresh feed to excite the 

process dynamics [28,29], other papers propose to design 

fed-batch operations so that the system operates at 

steady-state, quasi-steady-state, or nearly quasi-steady-state 

conditions [26,30-32]. This paper considers a potential 

consequence of the latter operations on the identifiability of 

the estimated kinetic parameters, namely, that for some 

reaction networks such operations can lead to an inability to 

estimate any of the kinetic parameters from the experimental 

data. More specifically, a mathematical signature is derived 

that identifies parameter estimation problems for which only 

the ratios of model parameters can be identified. Identifying 

such experimental designs before completing the experiments 

would save time and effort, as well as reduce the chance of 

encountering this phenomenon as a surprise during the data 

analysis. 

The theoretical results are applied to an experimental design 

in which 4-hydroxybenzene diazonium reacts with 

single-walled carbon nanotubes (SWNTs) of varying chirality 

[8,32,33]. This chirality, which is uniquely characterized by a 

pair of integers (n,m), defines the geometric structure of the 

nanotube and specifies electronic structure and hence 

reactivity. The interest in SWNTs is motivated by their 

commercial potential as nanoscale wires, nanotube field effect 

transistors [34], and sensors [35,36]. The determination of the 

rate constants for SWNT parallel reaction networks is needed 

for the design of chirality distributions to enhance 

performance in SWNT-based devices [32]. 

II. STRUCTURAL IDENTIFIABILITY 

The next result characterizes a class of systems for which 

values for none of the parameters can be identified from the 

measured variables. 

Theorem 1: For a system with measured variables ry ∈ℜ , 

assume that y is a continuously differentiable function of the 

vector of parameters 

sk ∈ ℜ and there are no constraints or 

prior information regarding the parameters. If the vector of 

parameters k is in the null space of the sensitivity matrix 

r s
k y ×∇ ∈ℜ then no parameter ki can be uniquely estimated. 

It is not surprising that some loss in parameter identifiability 

occurs when k is in the null space of k y∇ ; Theorem 1 is 

interesting in that it shows that identifiability is lost for all of 
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the model parameters for a class of systems in which k y∇ is 

nearly full column rank. The proof of Theorem 1 indicates 

that, if the vector of model parameters is in the null space of 

the sensitivity matrix, then a scaling of the model parameters 

by a constant does not affect the measured variables and no 

model parameter can be identified. Theorem 1 provides a 

necessary condition for any of a system’s parameters to be 

structurally identifiable [37], that is, for it to be possible to 

uniquely estimate any parameter from the measured variables 

y (as is common in the control systems literature, e.g., [37], for 

brevity the dependency on the measured variables on the 

experimental design inputs is suppressed). In most 

applications the sensitivity matrix k y∇ is a function of the 

vector of parameters k. Since the value of k is unknown before 

the experiments have been carried out, in applications where 

Theorem 1 is applied, k is typically in the null space of k y∇ for 

all k (see Section III). 

Theorem 1 is complemented by the following result, which 

relates the structural identifiability of ratios of parameters to 

the above null-space condition. 

Theorem 2: For a system with measured variables ry ∈ℜ , 

assume that y is a continuously differentiable function of the 

vector of parameters 

sk ∈ ℜ , the parameters ki are nonzero, 

and there are no constraints or other prior information 

regarding the parameters. If y is a function only of ratios of 

parameters, then the vector of parameters k is in the null space 

of the sensitivity matrix 

r s
k y ×∇ ∈ℜ . 

 For dynamical systems it is much more common to have 

available an explicit analytical expression for dy/dt in terms of 

the model parameters than to have such an expression for y. 

For this reason, the following corollary to Theorem 2 is 

typically more useful in applications to dynamical systems. 

Corollary 1: For a system with measured variables ry ∈ℜ , 

assume that y is a continuously differentiable function of the 

vector of parameters 

sk ∈ ℜ , the parameters ki are nonzero, 

there are no constraints or other prior information regarding 

the parameters, and the initial value of y is independent of the 

parameters ki. If dy/dt is a function only of ratios of 

parameters, then the vector of parameters k is in the null space 

of the sensitivity matrix 

r s
k y ×∇ ∈ℜ . 

The above results are complemented by the following 

result, which is a test for whether all of the ratios of the model 

parameters are structurally identifiable. 

Theorem 3: For a system with measured variables ry ∈ℜ , 

assume that (i) y is a continuously differentiable function of 

the parameters 

sk ∈ℜ , (ii) the parameters ki are nonzero and k 

is in the null space of the sensitivity matrix 

r s
k y ×∇ ∈ℜ , and 

(iii) there are no other constraints or prior information 

regarding the parameters. Then all of the ratios of the model 

parameters are structurally identifiable if and only if the rank 

of the sensitivity matrix is  s– 1. 

Theorem 3 characterizes systems with experimental designs 

in which the relative values of parameters can be determined. 

To simplify notation, the vector of experimental design 

variables in the above results is implicit in the definition of the 

vector of measurements y. A different experimental design 

can change the experimental design variables as well as the 

dependency of y on k. In either case, the above results can be 

applied for each y to compare different experimental designs 

in terms of their ability to identify the vector of parameters k. 

The next section demonstrates the application of the 

theoretical results for a parallel reaction network of carbon 

nanotubes. 

III. APPLICATION TO THE DIAZONIUM-SWNT SYSTEM 

The reaction of SWNTs with diazonium follows a two-step 

process [38]: an (n,m)-selective adsorption step followed by a 

covalent reaction step, with the adsorption step being rate 

limiting. The rate constants are different for SWNTs of 

different chirality due to the differences in electronic 

structures. The reaction network consists of a large number of 

parallel reactions, in which each path in the network is 

associated with SWNTs of one chirality. For each (n,m) 

nanotube:          

( , ) ( , )

( , ) ( , ) ( , )

n m n m
A R

n m n m n m

k k
D A Pθ θ θ+ → →        (1) 

where D denotes the 4-hydroxybenzene diazonium molecule, 

( , )
0

n m

Ak > is an adsorption rate constant, 

( , )
0

n m
Rk > is a 

reaction rate constant, and θ(n,m), Aθ(n,m), and Pθ(n,m) refer to the 

vacant sites on the nanotube, sites occupied by the adsorption 

intermediate, and sites occupied by the reaction product, 

respectively. 

Consider a fed-batch reactor in which diazonium is 

introduced at a known molar flow rate 

0DF . The conservation 

equations for 4-hydroxybenzene diazonium (ND) and for 

vacant sites on each nanotube
( , )

( )
n m

Nθ are 

0 ( , )
( , )

D D n mT
n m

N F t N Nθ= − + ∑ ,                    (2) 

( , )

( , )

( , )n m

n m

n m D
A

R

dN N
k N

dt V
= −

θ
θ ,                   (3) 

where NT is the total moles of sites on all the nanotubes in 

solution and VR is the volume of reactants, which are both 

known during an experiment. The value of ND is too low to be 

directly measured during an experiment, and the terms on the 

right-hand side of (2) are not measured within sufficient 

accuracy for (2) to be used as a way of indirectly measuring 

ND (the right-hand side of (2) involves the difference between 

two large numbers of very similar magnitude, NT 
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and
( , )

( , )
n m

n m

Nθ∑ ; even very accurate measurement of these 

values results in order-of-magnitude errors in ND if an attempt 

is made to estimate ND from the right-hand side of (2)). Taking 

ratios in (3) relates the coverages of nanotubes of different 

chiralities to each other:  

,

( , ) ( , )

( , ) ( )

( , )

( , )

n m

n m n m

n m

n m
A

n m
A

dN k N

dN k N

θ θ

θ θ ′ ′′ ′
′ ′

=    

⇒

( , ) ( , )

( , )

( , ) 0( , )
0( , )

/n m n m
A A

n m

n m n m
n m

k k
N

N N
N

θ

θ θ
θ

′ ′

′ ′

′ ′

=
 
 
 
 

.  (4) 

Inserting (2) and (4) into (3) results in decoupled differential 

equations [8]: 

( , )

0

( , ) ( , )( , )

( , )

0( , )
0( , )

( , )

( , )

/ .

n m

n m n mn m
A A

n m

n m

n m

D T
n m

A

R

n m

dN

dt

F t N

k N
k k

N
V

N
N

′ ′

′ ′′ ′

′ ′

′ ′

′ ′

=

− + 
 
 

−   
  
  
  

∑

θ

θ

θ

θ
θ

(5) 

The values of 

( , )n m
N

ɶ ɶθ at each time in the experiment can be 

measured by deconvolution of the absorption spectrum of the 

SWNT solution [39], which is a very large quantity of highly 

informative data for estimating the adsorption rate constants 

( , )n m
Ak
ɶ ɶ

, in that the states are measured for all time during a 

dynamic experiment and all of the parameters enter the 

decoupled state equations (5) in a simple algebraic manner. It 

can be shown, however, that the structural identifiability of all 

of the rate constants is lost when the experiment is operated in 

a quasi-steady-state manner. Specifically, assume that the 

fresh feed is added slowly so that the diazonium concentration 

is not allowed to accumulate
1
 [32]: 

( , )0

( , )

( , )

0
n m

n mD D
AD

R n m

dN N
F k N

dt V θ= − ∑ ≐   

 
1
 This is the quasi-steady-state approximation, as described in any chemical 

reaction engineering textbook, e.g., [40].  The convention used in such 

textbooks (e.g., see page 343 of [40]) is to use equality signs in (6) and (7) to 

indicate that the left- and right-hand sides are so close to being equal as to be 

indistinguishable in experiments, usually with less than 0.1% error except for 

very short times. This paper uses the rigorous notation ≐ . For a detailed 

singular perturbation analysis of the accuracy of such the quasi-steady-state 

approximation for a particular reaction network, see pages 104-108 of [41]. 

There is no value in analyzing the higher order terms in a singular 

perturbation expansion when considering structural identifiability for this 

example because such higher order terms are not measurable in the 

experiment. 

⇒  
0

( , )

( , )

( , )
n m

D R

D n m
A

n m

F V
N

k Nθ∑
≐    (6) 

so that the operations are always at quasi-steady-state. 

Substituting (4) and (6) into (3) results in 

( , ) 0 ( , )

( , )

0( , )
0( , )

( , ) ( , )
( , )

( , )
( , )

/

n m n m

n m

n m
n m

D

n m n m
n m A A

A
n m

n m A

dN F N

dt k k
Nk

N
Nk

θ θ

θ

θ
θ

′ ′ ′ ′

′ ′

′ ′

′ ′

′ ′

−

 
 
 
 

∑

≐

       (7) 

which indicates that the derivative of the number of vacant 

sites on a nanotube has only the ratios of rate constants as 

parameters (as well as the flow rate
0DF and the initial 

conditions). Application of Corollary 1 to (7) implies that 

( ) 0k y k∇ ≐ , where 

sk ∈ℜ  is the vector of rate constants 

( , )n m
Ak stacked in any order and 

ry ∈ℜ  is the vector of 

open-site coverages 

( , )n m
Nθ stacked up for all (n,m) and all 

measurement times t. This result and Theorem 1 imply that no 

rate constant 

( , )n m
Ak can be uniquely estimated from 

experimental data collected from the quasi-steady-state 

operations.  

To assess what information on the model parameters can be 

determined from experimental data, first consider experiments 

in which 4-hydroxybenzene diazonium D is added to the 

reactor at any rate. To apply Theorem 3, it is useful to 

arbitrarily select SWNTs of chirality ( , )n m′ ′ as a reference to 

which the coverages of nanotubes of other chiralities will be 

related, and apply the chain rule to (4) to determine the 

elements of the sensitivity matrix k y∇ as (without loss in 

generality, it is assumed that 
( , )

0
n m

Ak
′ ′

≠ ): 

( , ) ( , ) ( , ) ( , ) ( , )

0( , )( , )

( , )

( , ) ( , ) ( , ) ( , )
,ln

n m n m n m n m n m

n mn m

n m
A

n m n m n m n m
A A A A

N k N N N N

Nk k N k k

θ θ θ θ θ

θθ

′ ′ ′ ′

′ ′′ ′

′ ′ ′ ′

∂ ∂
= +

∂ ∂

( , ) ( , ).n m n m′ ′≠    (8) 

( , ) ( , ) ( , )

( , )

( , )

( , ) ( , ) ( , )
,

n m n m n m

n m

n m
A

n m n m n m
A A A

N k N N

k k N k

θ θ θ

θ

′ ′

′ ′

′ ′

∂ ∂
=

∂ ∂
ɶ ɶ ɶ ɶ

 

                                               ( , ) ( , ) ( , ),n m n m n m′ ′≠ ≠ɶ ɶ    (9) 
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( , ) ( , ) ( , )

( , )

( , ) ( , )

0( , )

( , )

( , ) ( , ) ( , )

( , )

( , ) 2
,ln

( )

n m n m n m

n m

n m n m

n m

n m
A

n m n m n m
A A A

n m
A

n m
A

N k N N

k k N k

k N N

Nk

′ ′

′ ′

′ ′

′ ′

′ ′ ′ ′ ′ ′

′ ′

∂ ∂
=

∂ ∂

−

θ θ θ

θ

θ θ

θ

 

( , ) ( , ).n m n m′ ′≠   (10) 

Pre- and post-multiplication of the sensitivity matrix by two 

full-rank matrices results in 

( , )

( , )

( , ) ( , )

0( , )

( , )
( , )

1 1( , ) ( , )

1 1
1 1

( , )

0 10 1

diag ln 0

n m

k
n m

n m n m

n m

n m
n m

A
A

s sn m n m
A A

s
s

n m
A

k N k
I I

yk N k

N N

Nk

′ ′

′ ′

′ ′

− −′ ′ ′ ′

× −
× −

′ ′

∇

                 − −                         

 
 
 
  =

⋮
⋮

⋮
⋮

θ

θ

θ θ

θ

( , ) ( , )

1 1

( , )

( , ) ( , ) ( , )
( , )

,

n m n m

s

n m
A

n m n m n m
n mA A A

N Nk

k k k

′ ′ ′ ′

− ×

′ ′

 
 
 
 
 

∂ ∂  
  
  ∂ ∂  

∑⋯ ⋯
θ θ

 

(11) 

where this 

sy ∈ℜ  has been defined for a single time instance 

and its elements 

( , )n m
Nθ ordered to correspond to the same 

order of the rate constants 

( , )n m
A

k in k. The nonzero value for 

the (s,s) principal minor in (11) implies that the sensitivity 

matrix
k

y∇ is full rank and all of the parameters are 

structurally identifiable if and only if  

( , )( , )

( , )
( , )

0
n mn m

A n m
n m A

N
k

k

θ ′ ′
∂

≠
∂

∑ .      (12) 

Equations (8)-(10) imply that 

( , )
( , )

( , )

( , )

( , )( , )
( , )

( , )

( )

1

n m
n m

k
n m

n m
A

n mn m
A n mA

n m A

k N
N

y k kk N
k

′ ′

′ ′

′ ′∇

 
 
 

∂ 
=  

∂ 
 
 
 

∑

⋮

⋮

θ
θ

θ
.    (13) 

Comparison of the last element of (13) with the above result 

that ( ) 0k y k∇ ≐ for the quasi-steady-state operations implies 

that  

( , )( , )

( , )
( , )

0
n mn m

A n m
n m A

N
k

k

θ ′ ′
∂

∂
∑ ≐        (14) 

for such experiments, which is consistent with condition (12) 

being necessary and sufficient for all of the parameters to be 

structurally identifiable. The nonzero value for the (s,s) 

principal minor in (11) implies that the sensitivity matrix has 

rank s–1 when (14) holds, which implies from Theorem 3 that 

all of the ratios of the rate constants are structurally 

identifiable under quasi-steady-state operations, from 

experimental data collected at a single time instant. The ratios 

can be estimated by fitting (7) to experimental data, with the 

accuracy of the ratios improved by including data from 

multiple time points.  

IV. CONCLUSIONS 

The behavior characterized in Theorems 1-3 and Corollary 

1 is likely to occur in reaction networks with parallel 

intermediate reactions with quasi-steady-state operation in the 

initial or subsequent reactions. Such behavior may not be 

obvious from inspection in a highly integrated complex 

reaction network. The theoretical results provide signatures 

that can be used to identify such behavior. While analytical 

expressions for the sensitivity matrix can be derived for some 

systems, such as the diazonium-SWNT reaction network, 

usually the sensitivity matrix for complex reaction networks is 

computed numerically by applying finite differences to a 

simulation model. In this case, the null space and rank 

conditions in Theorems 1 and 3 can be evaluated for the 

numerically obtained sensitivity matrix without requiring any 

algebraic manipulations. When ( ) 0k y k∇ = then none of the 

model parameters can be uniquely estimated and if also 

rank { } dim{ } 1k y k∇ = − then all of the ratios of model 

parameters are structurally identifiable. When ( ) 0k y k∇ = is 

observed and the value for each model parameter is desired 

then the experimental apparatus or process operations should 

be redesigned to better excite the process dynamics, such as 

by D-optimal design (e.g., see [37,43-45] and citations 

therein).  

APPENDIX 

Proof of Theorem 1: Given ( ) 0k y k∇ = , the measurement 

vector y is not affected by multiplication of the parameter 

vector k by any scalar:  

( ) ( ) ( ) 0.k k ky y k y k y kγ γδ = ∇ δ = ∇ = ∇ =         (A1) 

Since scaling all of the parameters by a constant has no effect 

on the measurement vector y, no parameter can be uniquely 

estimated (identified) from y.  QED. 

Proof of Theorem 2: Under the assumptions, all ratios of 

parameters can be written in terms of the elements of 

1 1

T
[ / / ]s s sk k k k k−′ = ⋯ and the ith measurement is a 
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continuously differentiable function of these ratios, 

( ).i iy f k ′=  Then 

 
1 1

11

2 2
1 1

1 1
( )

( / ) ( / )

0.
( / ) ( / )

i i
k i

s s s s s

i i s

s s ss s

f f
y k

k k k k k k

f f kk
k

k k k kk k

−

−

−

∇
∂ ∂

= ∂ ∂

∂ ∂   
− + + − =  ∂ ∂   

⋯

⋯

 (A2) 

QED. 

Proof of Corollary 1: Under the assumptions, following 

similar steps as in the proof of Theorem 2,  

0i
k

dy
k

dt

 
∇ = 
 

,        (A3) 

where k is the vector of adsorption rate constants. Swapping 

the order of differentiation gives 

( ) 0( ) ( )i
k k i k i

dy d d
k y k y k

dt dt dt

 
∇ = ∇ = ∇ = 
 

.  (A4) 

The independence of the initial value of y with respect to k 

implies that 

0
( ) 0k i t

y k
=

∇ = .                                (A5) 

Together (A4) and (A5) imply that ( ) 0k iy k =∇ and 

( ) 0k y k =∇ for all time t > 0.  QED.                                                     

Proof of Theorem 3: For the vector of parameters k = 

[k1 ⋯ ks]
T
, define the vector of parameter ratios as 

1 1

T
[ / / ]s s sk k k k k−′ = ⋯ , which is identifiable if and only if all 

parameter ratios are identifiable. Given ( ) 0k y k∇ = and all ki ≠ 

0, the differential in the ratio of the parameters satisfies 

[ ]

2

1: 1 1: 1

0

δ

0 0

 

δ δ( / ) δ / δ / for 1,..., 1

δ δ
δ

δ δ
( )

δ
( ) ( ) ( ) δ

0

s k

i i s i s i s s

s s

s

s s
k k

s

s k s k s s k s

k
k y

k

k k k k k k k k i s

k k k
k k

k

k k k
y y k y k

k

k
y y k y k− −

′
∇

′ = = − = −

′ 
= + 
 

′    
δ = ∇ δ = ∇ + =    

    

′ 
′= ∇ ∇ = ∇ 

 

   

 
  (A6) 

Applying equation (6.1.57) from Beck and Arnold [42] to this 

system results in the equivalent conditions 

2 T
1: 1 1: 1

1: 1

 is structurally identifiable ( ) ( ) 0

rank ( ) 1,

s k s k s

k s

k k y y

y s

− −

−

′ ⇔ ∇ ∇ >

⇔ ∇ = −

(A7) 

which are used to prove Theorem 3 in the forward direction: 

1: 1 (i) is structurally identifiable rank ( ) 1

rank ( ) 1

(ii)  at least 1 nonzero vector in the null space of 

rank ( ) 1 

(i) and (ii) rank ( ) 1.

k s

k

k

k

k

k y s

y s

y

y s

y s

−
′ ⇒ ∇ = −

⇒ ∇ ≥ −

∃ ∇

⇒ ∇ ≤ −

⇒ ∇ = −

(A8) 

The reverse direction of Theorem 3 is shown by proof by 

contrapositive. Denote the columns of the sensitivity matrix 

by 1 2[ ]sk y c c c∇ = ⋯ . If all of the ratios of the parameters are 

not structurally identifiable, then (A7) implies that 

1 1

1 2

:

1

1

1

, }

rank ( ) 1 

the vectors { , ,  are linearly dependent

 a non-zero vector  such that 0.

k s

s

s

i i
i

y s

c c c

c

−

−

−

=

∇ < −

⇒

⇒ ∃ =∑

⋯

β β  

  (A9) 

Then 

1

1

T

1 2 1

T

1 2 1

 0 0 

 [ 0] is in the null space of 

  at least two linearly independent vectors in the null  

space of  (i.e., [ 0] and  where 0)

 rank ( ) 1.
k

s

i i p

i

s k

k s s

c c

y

y k k

y s

−

=

−

−

+ =

⇒ ∇

⇒ ∃

∇ ≠

⇒ ∇ ≠ −

∑

⋯

⋯

β

β β β

β β β

 

QED. 
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