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Abstract— This paper addresses the mean-module filtering
problem for a stochastic polynomial system with Gaussian
white noises. The obtained solution contains a sliding mode
term, signum of the innovations process. It is shown that
the designed sliding mode filter generates the mean-module
estimate, which yields a better value of the mean-module
criterion in comparison to the mean-square polynomial filter.
The theoretical result is complemented with an illustrative
example verifying performance of the designed filter, which is
compared to the mean-square polynomial filter. The simulation
results confirm an advantage in favor of the designed sliding
mode filter.

I. INTRODUCTION

Since the sliding mode control was invented in the be-
ginning of 1970s (see a historical review in [1], [2], [3]),
it has been applied to solve several classes of problems.
For instance, the sliding mode control methodology has been
used in stabilization [4], [5], tracking [6], [7], observer design
[8], [9], frequency domain analysis [10], and other control
problems. Further modifications of the original sliding mode
concept, such as integral sliding mode [11] and higher order
sliding modes [12], [3], have been developed. The sliding
mode optimal regulators have been recently designed for
linear systems with non-quadratic Bolza-Meyer criteria [13],
[14]. Application of the sliding mode method is extended
to stochastic systems [15], [16], [17], [18] and stochastic
filtering problems [19], [20], [21], [22], [23]. The last two
papers present mean-square and mean-module sliding mode
filters for stochastic linear systems.

This paper presents the solution to the mean-module
filtering problem for a stochastic polynomial system, which
contains a sliding mode term, signum of the innovations
process. The mean-module sliding mode filter is obtained in a
closed form, which includes the equations for a mean-module
estimate and a filter gain matrix. It is shown that the designed
sliding mode filter generates the mean-module estimate,
which yields a better value of the mean-module criterion
in comparison to the mean-square polynomial filter [24]. To
the best of our knowledge, this is the first designed sliding
mode filter for stochastic polynomial systems that is optimal
with respect to the mean-module criterion. The theoretical
result is complemented with an illustrative example verifying
performance of the designed filter, which is compared to the
conventional mean-square polynomial filter. The simulation
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results confirm an advantage in favor of the designed sliding
mode filter.

The paper is organized as follows. Section 2 states the
mean-module filtering problem for stochastic polynomial
systems with Gaussian white noises. The sliding mode solu-
tion to the mean-module filtering problem is given in Section
3. The proof of the obtained results is given in Appendix.
Section 4 contains an illustrative example.

II. MEAN-MODULE FILTERING PROBLEM STATEMENT

Let (Ω,F,P) be a complete probability space with an
increasing right-continuous family of σ -algebras Ft , t ≥ t0,
and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be indepen-
dent standard Wiener processes. The Ft -measurable random
process (x(t),y(t)) is described by a nonlinear differential
equation with a polynomial drift term for the system state

dx(t) = f (x, t)dt +b(t)dW1(t), x(t0) = x0, (1)

and a linear differential equation for the observation process

dy(t) = (A0(t)+A(t)x(t))dt +B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the linear
observation vector, m ≤ n. The initial condition x0 ∈ Rn is a
Gaussian vector such that x0, W1(t) ∈ Rp, and W2(t) ∈ Rq

are independent. The observation matrix A(t) ∈ Rm×n is
not supposed to be invertible or square. It is assumed that
B(t)BT (t) is a positive definite matrix, therefore, m ≤ q.
All coefficients in (1)–(2) are deterministic functions of
appropriate dimensions.

The nonlinear function f (x, t) is considered polynomial of
n variables, components of the state vector x(t) ∈ Rn, with
time-dependent coefficients. Since x(t) ∈ Rn is a vector, this
requires a special definition of the polynomial for n > 1.
In accordance with [24], a p-degree polynomial of a vector
x(t) ∈ Rn is regarded as a p-linear form of n components of
x(t)

f (x, t)= a0(t)+a1(t)x+a2(t)xxT + . . .+ap(t)x . . .p times . . .x,

where a0(t) is a vector of dimension n, a1 is a matrix of
dimension n×n, a2 is a 3D tensor of dimension n×n×n, ap
is an (p+1)D tensor of dimension n× . . .(p+1) times . . .× n,
and x × . . .p times . . .× x is a pD tensor of dimension n ×
. . .p times . . .× n obtained by p times spatial multiplication
of the vector x(t) by itself. Such a polynomial can also be
expressed in the summation form

fk(x, t) = a0 k(t)+∑
i

a1 ki(t)xi(t)+∑
i j

a2 ki j(t)xi(t)x j(t)+ . . .
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+ ∑
i1...ip

ap ki1...ip(t)xi1(t) . . .xip(t), k, i, j, i1 . . . ip = 1, . . . ,n.

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm, m ≤ n,
is the observation process. The initial condition x0 ∈ Rn

is a Gaussian vector such that x0, W1(t), and W2(t) are
independent. It is assumed that B(t)BT (t) is a positive
definite matrix. All coefficients in (1)–(2) are deterministic
functions of time of appropriate dimensions.

The state and observation equations can also be written in
an alternative form

ẋ(t) = f (x, t)dt +b(t)ψ1(t), x(t0) = x0, (1∗)

y(t) = A(t)x(t)+B(t)ψ2(t), (2∗)

where y(t) = Ẏ (t), and ψ1(t) and ψ2(t) are white Gaus-
sian noises, which are the weak mean-square derivatives of
standard Wiener process W1(t), and W2(t) (see [25]). The
representations (1),(2) and (1∗),(2∗) are equivalent ([26]).
The equations (1∗),(2∗) present the conventional form for
the equations (1),(2), which is actually used in practice.

The mean-square filtering problem is to find the estimate
x̂(t) of the system state x(t), based on the observation process
Y (t) = {y(s), t0 ≤ s ≤ t}, that minimizes the mean-square
norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[z(t) | FY
t ] means the

conditional expectation of a stochastic process z(t) = (x(t)−
x̂(t))T (x(t)− x̂(t)) with respect to the σ - algebra FY

t gener-
ated by the observation process Y (t) in the interval [t0, t]. The
solution to this filtering problem for polynomial systems is
given by the mean-square polynomial filter [24] generalizing
the optimal Kalman-Bucy filter [27] for linear systems.

This paper addresses the mean-module filtering problem
to find the estimate x̂(t) of the system state x(t), based on the
observation process Y (t) = {y(s), t0 ≤ s ≤ t}, that minimizes
the mean-module norm

J = E[(| x(t)− x̂(t) |) | FY
t ] (3)

at every time moment t. Here, | x |= [| x1 |, . . . , | xn |] ∈ Rn is
defined as the vector of absolute values of the components
of the vector x ∈ Rn

The solution to the stated filtering problem, involving the
sliding mode term, is given in the next section and then
proved in Appendix. As demonstrated, the obtained sliding
mode filter is optimal with respect to the criterion (3).

III. SLIDING MODE MEAN-MODULE FILTER DESIGN

The solution to the mean-module filtering problem for the
linear system (1) and the criterion (3) is given as follows.
The mean-module estimate satisfies the differential equation
with the sliding mode term (the proof is given in Appendix)

ṁ(t) = E( f (x, t) | FY
t )dt +Q(t)AT (t)(B(t)BT (t))−1× (4)

A(t)Sign[AT (t)(A(t)AT (t))−1y(t)−m(t)].

with the initial condition m(t0) = E(x(t0) | FY
t0 ). Here, the

Signum function of a vector x = [x1, . . . ,xn] ∈ Rn is defined

as Sign[x] = [sign(x1), . . . , sign(xn)] ∈ Rn, and the signum
function of a scalar x is defined as sign(x) = 1, if x > 0,
sign(x) = 0, if x = 0, and sign(x) =−1, if x < 0 ([28]).

The matrix function Q(t) satisfies the matrix equation with
time-varying coefficients

Q̇(t) = b(t)bT (t)+E( f (x, t)(x(t)−m(t))T ) | FY
t ), (5)

with the initial condition Q(t0) = E[(x(t0) −
m(t0))(Sign(AT (t0)(A(t0)AT (t0))−1A(t0)x(t0) − m(t0)))T |
FY

t0 ].
Note that the equations (4) and (5) do not form a closed

system of equations due to the presence of polynomial terms
depending on x, E( f (x, t) |FY

t ), and E( f (x, t)(x(t)−m(t))T ) |
FY

t ), which are not expressed yet as functions of the filter
variables, m(t) and Q(t) (or P(t)). However, as shown in
[29], the closed system of the filtering equations can be
obtained for any polynomial state (1) over linear observa-
tions (2), using the technique of representing of superior
moments of the conditionally Gaussian random variable
x(t)−m(t) as functions of only two its lower conditional
moments, m(t) and P(t) (see [29] for more details of this
technique). Apparently, the polynomial dependence of f (x, t)
and f (x, t)(x(t)−m(t))T on x is the key point making this
representation possible.

Next, a closed form of the filtering equations is obtained
from (4) and (5) for a third-order function f (x, t) in the
equation (1), as follows. It should be noted, however, that
application of the same procedure would result in designing
a closed system of the filtering equations for any polynomial
function f (x, t) in (1).

Let the function

f (x, t) = a0(t)+a1(t)x+a2(t)xxT +a3(t)xxxT (6)

be a third-order polynomial, where x is an n-dimensional
vector, a0(t) is an n-dimensional vector, a1(t) is a n× n-
dimensional matrix, a2(t) is a 3D tensor of dimension n×
n× n, a3(t) is a 4D tensor of dimension n× n× n× n. In
this case, the following filtering equations for the optimal
estimate m(t) and the filter gain matrix Q(t) are obtained

ṁ(t) = a0(t)+a1(t)m(t)+a2(t)m(t)mT (t)+ (7)

a2(t)Q(t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |+

3a3(t)m(t)Q(t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |+

a3(t)m(t)m(t)mT (t)+Q(t)AT (t)(B(t)BT (t))−1×

A(t)Sign[AT (t)(A(t)AT (t))−1y(t)−m(t)],

m(t0) = E(x(t0) | FY
t )),

Q̇(t) = a1(t)Q(t)+2a2(t)m(t)Q(t)+ (8)

a3(t)[Q(t)Q(t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |+

3m(t)mT (t)Q(t)])+b(t)bT (t),

Q(t0) = E[(x(t0)−m(t0))×

(Sign(AT (t0)(A(t0)AT (t0))−1A(t0)x(t0)−m(t0)))T | FY
t0 ].
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Consequently, this result is formulated in the following
theorem and proved in Appendix.

Theorem 1. The mean-module filter for the third degree
polynomial system state (6) over the linear observations (2)
is given by the equation (7) for the estimate m(t) and the
equation (8) for the filter gain matrix Q(t).

IV. EXAMPLE

This section presents an illustrative example of designing
the mean-module sliding mode filter for a second degree
polynomial state (6) over linear observations (2), using the
filtering equations (7),(8).

Consider a scalar linear unmeasured state

ẋ(t) = 0.1x2(t)+ψ1(t), x(0) = x0, (9)

and the scalar linear observation process

y(t) = x(t)+ψ2(t), (10)

where ψ1(t) and ψ2(t) are white Gaussian noises, which
are the weak mean-square derivatives of standard Wiener
processes (see [25]). The equations (6),(7) correspond to
the alternative conventional form (1∗),(2∗) for the equations
(1),(2).

The filtering problem is to find the mean-module estimate
for the second degree polynomial state (9), using linear
observations (10) confused with independent and identically
distributed disturbances modeled as white Gaussian noises.

The filtering equations (7),(8) take the following particular
form for the system (9),(10)

ṁ(t) = 0.1m2(t)+ (11)

0.1Q(t) | y(t)−m(t) |+Q(t)sign[y(t)−m(t)],

with the initial condition m(0) = E(x(0) | y(0)) = m0,

Q̇(t) = 0.2m(t)Q(t)+1, (12)

with the initial condition Q(0) = E((x(0) −
m(0))(Sign(x(0)−m(0)))T | y(0)).

The estimates obtained upon solving the equations
(11),(12) are also compared to the estimates satisfying the
mean-square filtering equations [24] for the second degree
polynomial system (9),(10)

ṁP(t) = 0.1m2
P(t)+0.1P(t)+P(t)[y(t)−mP(t)], (13)

with the initial condition m(0) = E(x(0) | y(0)) = m0,

Ṗ(t) = 1+0.4mP(t)P(t)−P2(t), (14)

with the initial condition P(0) = E((x(0)− m(0))(x(0)−
m(0))T | y(0)).

Numerical simulation results are obtained solving the
systems of filtering equations (11),(12) and (13),(14). The
obtained values of the estimates m(t) and mP(t) satisfying
the equations (11) and (13), respectively, are compared to
the real values of the state variables x(t) in (9).

For each of the two filters (11),(12) and (13),(14) and
the reference system (9),(10), involved in simulation, the
following initial values are assigned: x0 = 1, m0 = 4, P(0) =

Q(0) = 100. The filtering horizon is set to T = 0.4. Gaussian
disturbances ψ1(t) and ψ2(t) in (9),(10) are realized using
the built-in MatLab white noise function.

Note that the initial conditions P(0) and Q(0) are assigned
equal for simulation purposes, since the results should be
compared with respect to the mean-module criterion (3). If
the initial value for Q is assigned as Q(0) = 10, the mean-
square polynomial filter of [24] would yield a better result
as the mean-square polynomial filter.

The following graphs are obtained: graphs of the reference
state x(t), satisfying the equation (9), the mean-module
sliding mode filter estimate m(t), satisfying the equations
(11), and the mean-square polynomial filter estimate mP(t),
satisfying the equation (13), are shown in the entire simula-
tion interval [0,0.4] in Fig. 1.

It can be observed that the mean-module sliding mode
filter (11),(12) yields a certainly better value of the mean-
module criterion (3) in comparison to the mean-square
polynomial filter (13),(14).

Note that the comparison of the designed mean-module
sliding mode filter (11),(12) to the mean-square polynomial
filter (13),(14) with respect to the criterion (3) is conducted
for illustration purposes, since the filter (11),(12) should
theoretically yield a better result, as follows from Theorem
1.

V. APPENDIX

Proof of Theorem 1. According to the general filtering
theory based on the innovations process [25], the optimal
estimate is a linear function of the minimized residual
criterion. For instance, the mean-square polynomial estimate
linearly depends on the integral of x(t)−E(x(t) | FY

t ), which
is the derivative of the minimized mean-square residue
(1/2)(x(t)−E(x(t) | FY

t ))T (x(t)−E(x(t) | FY
t )), given that

the right-side of the mean-square polynomial filter estimate
equation linearly includes the derivative term x(t)−E(x(t) |
FY

t ) (see [24]). Similarly, the mean-module estimate equation
linearly includes the derivative Sign(x(t)−E(x(t)) | FY

t ) of
the minimized mean-module residue | x(t)−E(x(t) | FY

t ) | in
the criterion (3). Therefore, the mean-module estimate can
be represented by the equation

ṁ(t) = a0(t)+a1(t)m(t)+a2(t)m(t)mT (t)+a2(t)P(t)+

3a3(t)m(t)P(t)+a3(t)m(t)m(t)mT (t)+

+Q(t)AT (t)(B(t)BT (t))−1×

A(t)Sign[AT (t)(A(t)AT (t))−1y(t)−m(t)].

with the initial condition m(t0)=E(x(t0) |FY
t0 ). Here, the gain

matrix Q(t) should be selected to minimize the conditional
variance of the estimation error produced by the estimate
m(t). According to the Ito formula (see, for example, [25]),
the equation for the estimation error conditional variance
P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY

t ], produced by the
estimate m(t), takes the form

Ṗ(t) = (a1(t)P(t)+P(t)aT
1 (t)+
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2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T+

3(a3(t)[P(t)P(t)+m(t)mT (t)P(t)])+

3(a3(t)[P(t)P(t)+m(t)mT (t)P(t)])T+

+b(t)bT (t)−Q(t)AT (t)(B(t)BT (t))−1A(t)×

E(Sign(AT (t)(A(t)AT (t))−1A(t)x(t)−m(t))×

×(x(t)−m(t))T | FY
t )−E((x(t)−m(t))×

×(Sign(AT (t)(A(t)AT (t))−1A(t)x(t)−m(t))T | FY
t )×

AT (t)(B(t)BT (t))−1A(t)QT (t)+

Q(t)AT (t)(B(t)BT (t))−1A(t)QT (t).

As follows from the preceding equation, the variable
P(t) is minimized, if the gain matrix Q(t) is assigned as
Q(t) = E((x(t)− m(t))(Sign(AT (t)(A(t)AT (t))−1A(t)x(t)−
m(t)))T | FY

t ). In view of the definition of Q(t), the
equation for m(t) is represented as (7) and, in view
of the Ito formula [25], the equation for Q(t) is given
by (8), with the initial condition Q(t0) = E[(x(t0) −
m(t0))(Sign(AT (t0)(A(t0)AT (t0))−1A(t0)x(t0) − m(t0)))T |
FY

t0 ]. The theorem is proved. �

VI. CONCLUSIONS

This paper presents a mean-module filtering problem and
designs, as a solution, a filter based on a sliding mode
gain. The mean-module filtering problem is considered for
a stochastic polynomial system with Gaussian white noises.
It is shown that the designed sliding mode filter generates
the mean-module estimate, which yields a better value of
the mean-module criterion in comparison to the mean-square
polynomial filter. This conclusion is theoretically proved and
numerically verified in an illustrative example. The proposed
approach based on involving a sliding mode innovations term
is expected to be applicable to other non-mean-square filter-
ing problems for nonlinear systems, where the conventional
mean-square polynomial filter would not work.
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