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Abstract— A semantic framework for information fusion in
sensor networks for object and situation assessment is proposed.
The overall vision is to construct machine representations
that would enable human-like perceptual understanding of
observed scenes via fusion of heterogeneous sensor data. In
this regard, a hierarchical framework is proposed that is based
on the Data Fusion Information Group (DFIG) model. Unlike a
simple set-theoretic information fusion methodology that leads
to loss of information, relational dependencies are modeled
as cross-machines called relational Probabilistic Finite State
Automata using the xD-Markov machine construction. This
leads to a tractable approach for modeling composite patterns
as structured sets for both object and scene representation.
An illustrative example demonstrates the superior capability of
the proposed methodology for pattern classification in urban
scenarios.

I. INTRODUCTION

A sensor network consists of a dense collection of minia-

ture platforms each containing sensing, communication and

computing devices. Embedded in or positioned close to

physical phenomenon, it can provide real-time physical data

that forms the backbone of any surveillance, reconnaissance

or monitoring system for military and civil operations [1].

Practical utilization of this new frontier in technology for

achieving higher levels of autonomy for real-time situational

awareness presents the following research challenges that

need to be simultaneously addressed.

1) Resource-constrained nodes prohibit central data pro-

cessing due to communications overheads.

2) Limited computing power requires efficient onboard

data processing algorithms.

3) Heterogeneous sensing calls for a common framework

for in-network information fusion.

Information dominance and real-time situational aware-

ness are deemed critical for both military and civilian ap-

plications and have found relevance in various applications

such as tactical plan recognition [2] [3], battlefield situation

awareness problem [4], threat evaluation in air defense

scenarios [5], and disaster response [6].
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Fig. 1. DFIG Information Fusion Model

The Data Fusion Information Group (DFIG) [7] has

proposed a seven layer model for information fusion as

shown in Figure 1. While Data Assessment, involves signal

conditioning, transformation and signal state estimation, the

objective of the Object Assessment layer is to estimate

and predict entity states, such entity type, position and

orientation, using data association. This is the layer where

fusion of information first occurs - signal features from

different sensing modalities, observing the various footprints

of an entity, must be fused for estimation and prediction of

the object states. This involves estimation of relationships

between the footprints observed in various modalities for

accurate and robust estimation of the observed entity. At the

Situation Assessment layer, the objective is the estimation

and prediction of the relations among entities identified at

the object level for scene analysis and understanding.

Many techniques have been developed for object assess-

ment while situation assessment is less well understood.

In [8], the authors point out that situations should be modeled

by some particular situation objects and some relations

between these individual objects. The difficulty lies in how

to properly model these relations.

The Bayesian belief network [9] [10] is one of the most

popular frameworks used for situation assessment. In this

framework, situations become hypotheses and objects are

treated as evidences. Relations among the objects and the

situations are modeled through the topology of the network
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Fig. 2. A Set-theoretic approach to information fusion

and the conditional probabilities. A generalization of the

Bayes’ theory is the Dempster-Shafer theory [11]. The pri-

mary disadvantage of this kind of methods is the maintenance

of the model, especially when a new situation of interest is

added.

The fuzzy belief network is utilized for force aggregation

and classification in situation assessment in [12]. The

advantage is that the fuzzy logic is direct, intuitive and

computational efficient. However, it is a heuristic approach.

An ontology-based approach is investigated in the com-

puter science community [13]. Ontologies explicitly encode

a shared understanding of some domain that can be agreed

among different parties (people or computers) via a vocab-

ulary of terms, and some specification of meaning for the

terms grounded in some forms of logic [14]. However, build-

ing such an ontology model is relatively difficult for situation

assessment because it is very subjective and restricted to the

designers’ understanding of the situation.

The knowledge based approach is mentioned in [15]. It

starts with the modeling of the situation and then performs

a pattern matching to identify the ongoing activity.

In this paper, we propose a data-driven approach for

object and situation assessment in a semantic framework.

Probabilistic finite state automata (PFSA) are used as se-

mantic models for object assessment. Relational PFSA are

constructed via the xD-Markov algorithm to capture the

relational dependence among the objects at the data level. A

situation is classified based on the objects and the relational

PFSA. The advantage of our work is that we can obtain

non-heuristic semantic models for different situations with

computationally efficient algorithms. These models could be

the potential inputs into higher layers of the DFIG fusion

model.

This paper is organized as follows. In section II, we

present our semantic framework for object assessment and

situation assessment in the context of DFIG information

fusion model and the xD-Markov algorithm for construction

of the relational PFSA. In section III we discuss a target

identification application in an urban scenario using our

proposed framework to validate the theory. The paper is

concluded with the recommendation for future work in

Section IV.

II. THE PROPOSED ARCHITECTURE

A. Preliminary concepts and notations

In the formal language theory [16], an alphabet Σ is a

(non-empty finite) set of symbols. A string x over Σ is

a finite-length sequence of symbols in Σ. The length of a

string x, denoted by |x|, represents the number of symbols

in x. The Kleene closure of Σ, denoted by Σ⋆, is the set of

all finite-length strings of events including the null string ǫ.

Throughout the paper, σ or τ is used to denote a symbol in

Σ and x, y, z are referred to strings. Let {∗x} denote the set

of all strings with suffix x in Σ⋆. The set of all strings of

length d ∈ N over Σ is denoted as Σd.

Definition 2.1 (PFSA): A probabilistic finite state au-

tomaton (PFSA) is a tuple L = (Q,Σ, δ, q0, π̃), where

• Q is a (nonempty) finite set, called set of states;

• Σ is a (nonempty) finite set, called input alphabet;

• δ : Q× Σ → Q is the state transition function;

• q0 ∈ Q is the start state;

• π̃ : Q×Σ → [0, 1] is an output mapping which is known

as a probability morph function (or matrix) and satisfies

the condition
∑

σ∈Σ
π̃(qj , σ) = 1 for all qj ∈ Q.

The basic idea of using a symbolic approach for pattern

recognition (called symbolic dynamic filtering (SDF) [17]) is

the following. The observed or pre-processed time-series data

from the physical process are converted to a symbol sequence

based on some partitioning technique with the proper choice

of the alphabet. Then the tools of computational mechanics,

such as D-Markov [18] and CSSR [19], are used to identify

statistical patterns of these symbol sequences through con-

struction of a PFSA for each symbol sequence. Transition

probability matrices of a PFSA capture the underlying pattern

of the physical process, generating the symbol sequences,

in the slow scale. During the training phase, a pattern

library consisting of reference patterns, modeled as PFSAs,

is obtained from the physical processes of interest. In the

operational phase, PFSA are constructed from the observed

processes. The corresponding transition probability matrices

are compared with an appropriate metric (e.g. ℓ2-norm) to

discover how close a particular pattern is to the set of

reference patterns in the pattern library.

B. Fusion architecture

Let L = {L1,L2, . . . ,LN} be the universal set of atomic

patterns. The atomic pattern library L is set of modal

footprints identified from individual sensing modalities for

various objects or events discovered via PFSA construction.

Given the atomic pattern library, a popular framework for

addressing information fusion for object and situation as-

sessment is what we call the set-theoretic approach. In this

framework, higher level patterns, events and scenes or con-

texts are modeled as subsets of L. Thus a composite pattern,

representing an object or even an event, is a collection of

elements from L and the composite pattern library is defined

as L
∗ ⊂ 2L. A set-theoretic approach to information fusion

that is based on the DFIG information fusion model is shown

in Figure 2. Objects (at level 1) are thought of as a collection
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of atomic patterns and scenes or situations as a collection of

objects.

The disadvantage of this approach is that it considers

only modal footprints for constructing composite patterns

as a bag of atomic patterns; relational dependencies, if any,

between patterns are disregarded. In the proposed framework,

it is assumed that objects are not just a collection of modal

footprints but they also contain certain dependencies between

the footprints that must be included in their representation.

Similarly, the overall situation cannot be modeled as a

collection of objects present but must also include relational

dependencies between objects.

Our hierarchical semantic framework for object and situ-

ation assessment that is inspired from the DFIG information

fusion model is shown in Figure 3. The objective is to have

a common approach to information fusion going from one

level to another and to include relational dependencies for

composite pattern representation. In the proposed hierarchy,

the lowest level consists of atomic patterns identified as

PFSAs. These automata are constructed by working in the

symbol space that is generated by converting sensor data

time series to symbol sequences via phase space partitioning.

The middle layer consists of composite patterns for objects

that are identified as a structured set that contains atomic

patterns and relationships between them. These relation-

ships are modeled as cross-dependence between sensor data

streams using a relational finite state machine. Situations are

modeled as objects and relationships between these objects

are modeled in a similar fashion using finite state ma-

chines. Machines for scene representation work on a higher

level and use object-labeled temporal sequences of symbols

generated by object dynamics. This top level essentially

contains description of scenarios modeled as probabilistic

finite state machines that have events and objects for its

symbol sequences.

Composite pattern representation form the key feature of

the proposed model, that is used for modeling both objects

using atomic patterns and scene using objects and events. A

composite pattern is defined as a structured set or a digraph

to include both the constituent units and relations between

them. A formal definition is as follows:

Definition 2.2 (Composite pattern representation): Let

L = {L1,L2, . . . ,LN} be the atomic pattern library. Let

L
∗ ⊂ 2L be the set of allowable primitives for a scenario.

Then a composite pattern library H
r = {Hr

1,H
r
2, . . . ,H

r
M}

where a composite pattern Hr
i is digraph Hr

i = (LVi
, EVi

);
LVi

⊂ L
∗ with the index set Vi ⊂ {1, 2, . . . , N} and

EVi
= {Rjk|(j, k) ∈ Vi × Vi} is a set of relational PFSAs

where: (see Figure 4)

• the digraph for the composite pattern has atomic pat-

terns modeled as PFSAs for its nodes;

• relational dependencies between these nodes are mod-

eled as relational probabilistic state machines R (rela-

tional PFSAs);

• relational PFSAs are discovered using xD-Markov ma-

chine construction to determine co-dependence. (Note:

xD-Markov is pronounced cross D-Markov)
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Fig. 3. Proposed semantic framework for information fusion via hierar-
chical pattern composition using relationship identification.

C. The xD-Markov machine

Definition 2.3: Given two symbol streams S
1 = {s1i }

K
i=1

over the alphabet Σ1 and S
2 = {s2i }

K
i=1 over the alphabet

Σ2, the d-th order xD-Markov machine that predicts S2 by

observing S1 is constructed as a tuple M12 , (Q,A2, δ, Π̃)
such that:

• the state set Q = {q = {∗x} : x ∈ Σd
1};

• the transition map δ : Q× Σ1 → Q is defined as

δ({∗x}, σ) = {∗y} (1)

if y is the last d symbols of the xσ, where xσ is the

concatenation of x and σ.

• the (probability) morph matrix Π̃ : Q× Σ2 → [0, 1] is

Π̃({∗x}, τ) =
|{i : s1i s

1
i+1 . . . s

1
i+d−1

= x, s2i+d = τ}|

|{i : s1i s
1
i+1 . . . s

1
i+d−1

= x}|
(2)

where 1 ≤ i ≤ K − d.

The xD-Markov algorithm looks similar to the D-Markov

algorithm of PFSA construction reported in [18]. Each state

q in the d-th order xD-Markov machine is uniquely labeled

with a string x of length d. Every string with a suffix x goes

into the state q and this defines the transition map. However,

the difference lies in the domain of the morph matrix Π̃,

which is over Σ2 rather than Σ1. The meaning of Π̃({∗x}, τ)
in Equation 2 is the relative frequency of generating the

next symbol τ ∈ Σ2 in S2 given that a string x ∈ Σd
1 is

observed in S1. Note: It is assumed that the symbol rate i.e.

the number of symbols per unit time or time discretization , is

approximately the same for both symbol streams S1 and S2.

Relational machine construction for mismatched symbol rate

can be addressed by using the finer of the time discretizations

3
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Fig. 4. General construction algorithm for the xD-Markov machine

for S1 and S2; effects of such a symbol rate mismatch would

be explored as future work.

The xD-Markov machines, as outputs of the xD-Markov

algorithm, are not PFSA in the sense of Definition 2.1. Math-

ematically, the xD-Markov machines are exactly the hidden

Markov models (HMM) [20] with Σ1 and Σ2 as input and

output alphabet, respectively. However, as opposed to HMM,

the state sequence of a xD-Markov machine is not hidden

since the state sequence is observed in the symbol stream S
1

over A1. Thus the xD-Markov algorithm can be regarded as a

special case of learning algorithms of HMM, which predicts

the (output) symbol distribution in S
2 given the knowledge of

the observed states from S
1. Figure 4 schematically describes

the algorithm for xD-Markov machine construction.

The set-theoretic approach falls at one end of the spectrum

for modeling complex objects and scenes that cannot be

represented or observed in a single sensing modality or

using a single sensor. In this approach, all relationships are

excluded and any fusion is solely done in the decision-

theoretic sense where the presence (or absence) of one or

more footprints is used to estimate the label of the object

under consideration (e.g. Bayesian classification). The other

end of the spectrum is to fuse data at the lowest level

and extract features (e.g. by constructing PFSAs) working

in the product space of all sensors. This approach would

be able to extract modal dependencies before they are lost

when constructing separate machines for individual sensor

or modalities. But working in the product space has the

danger of state space explosion especially when the sensors

and sensing modalities can be numerous, which is the case

of a sensor network. The proposed approach is a trade-off

between the two ends of the spectrum and attempts to include

relational dependencies between sensing modalities, while

keeping it tractable for a practical application. A hierarchical
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Fig. 5. Simulation set-up containing sensors (grey squares), target trajectory
(black line) and buildings (Bi)

approach ensures that composite patterns are identified only

when their constituting units at the lower level have been

observed. In the current framework we have considered

relations taken only two at a time, but we propose to explore

relations between higher order cliques as future work.

III. TARGET IDENTIFICATION

This section presents the results of target identification

done in an urban scenario using the proposed framework.

The urban sensor network scenario is set up by creating an

environment containing blocks of buildings (Bi, i = 1, 2, . . .
in Figure 5) placed as manhattan blocks with a sensor nodes

distributed in a grid surrounding these blocks. The sensor

network is made up of an equally-spaced grid of acoustic

sensors. The detected acoustic signature is filtered into the

high frequency component and the low frequency component
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Fig. 7. Estimated location (T1) and detection frequency for four cases:
(1) one target (T1) with both atomic patterns L1 and L2 and set-theoretic

identification (red circles); (2) one target (T1) with both atomic patterns
L1 and L2 and xD-Markov -based identification (yellow squares); (3) two
targets (T2 & T3) with atomic patterns (L1) and (L2) respectively and set

theoretic approach identification (blue diamonds) and (4) two targets (T2 &
T3) with atomic patterns (L1) and (L2) respectively and xD-Markov -based
identification (green triangles). Bar chart shows the number of detections
identified as T1 (red) or ¬T1 for not T1 (yellow) for set-theoretic and
proposed approach (xD). Note: location is estimated only when target is
identified as T1.

on each sensor node (data assessment). Signatures of interest

in each frequency band are extracted as PFSA using the

D-Markov machine (Section II-A): these modal (atomic)

footprints are L1 for the high frequency component and L2

for the low frequency component.

A target of interest (T1)(possibly malicious) is assumed

to carry both modal footprints L1 and L2. The goal is to

identify a target T1 in an urban scenario where targets with

footprints L1 only (T2) and L2 only (T3) can also be present.

This is a representative model of an urban scenario where

chance co-occurrence of targets would be the norm rather

than an exception.

We model a target object using the proposed framework as

a composite pattern and define the composite pattern library

H
r = {Hr

1, . . . ,H
r
4} as follows: T1 is represented as a

composite pattern Hr
1 = (L1,L2;R12,R21), where R12 and

R21 are relational PFSA. Targets T2 and T3 are modeled as

Hr
2 = (L1) and Hr

3 = (L2) respectively. While a situation

where T2 and T3 are both present in the environment is

modeled as Hr
4 = (L1,L2; ∅, ∅), where absence of relational

patterns R12 and R21 is denoted by ∅.

Following the methodology given in Section II-A, atomic

patterns are constructed via the D-Markov algorithm with an

alphabet size of four (|A| = 4) and depth (D) of one. The

relational patterns are extracted by the xD-Markov algorithm

with depth value set to one. During the training phase, atomic

patterns L0
1 and L0

2 and relational patterns R0
12 and R0

21 are

obtained. We show that the previous frameworks based on

the set-theoretic approach do not distinguish between a single

target vehicle with both pattern L1 and L2, and two separate

vehicles moving together, one with the pattern L1 and one

with pattern L2; while such scenarios can be distinguished

within our proposed framework.

Figure 6 show the distribution of distance measure

d(Π̃, Π̃0) when one target with both atomic patterns (L1 &

L2), and two targets moving closely, with atomic patterns

(L1) and (L2) respectively, are observed in the environment.

The measure d(Π̃, Π̃0) is computed as the ℓ2-norm distance

between the morph matrix of the detected pattern, Π̃, and

that of the reference pattern Π̃0 . It can be clearly seen from

the bar plots of the distribution of the distance measure that a

simple threshold on the chosen distance measure can be used

to distinguish the two cases. In this example, the thresholds

of the atomic patterns are chosen to be the same α = 0.012
and those of the relational patterns are α12 = 0.025 and

α21 = 0.0125, respectively.

When running the urban scenario, acoustic signals emitted

from the vehicles are sampled by individual sensor nodes to

collect 5000 samples. Due to background noise, SNR drops

quickly with distance from the target and only nearby sensor

nodes are able to record any meaningful signal. An inter-

node distance of 100 units ensures a fully covered field with

minimal sensor nodes for a grid placement. Sensor data is

transformed into a symbol sequence (using |A| = 4) at each

node which is used to create atomic and relational patterns. In

general, if a pattern (atomic or relational) closely resembles

its corresponding reference pattern when compared using the

ℓ2 distance measure d, then that component of the composite

pattern Hr
i is said to be detected. Only if both atomic

signatures are detected, the two relational patterns R12 and

R21 are extracted for the cross dependence between symbol

sequences. They are compared with their corresponding

reference R0
12 and R0

21. At this point, if both relational

patterns are matched, then the sensor declares the detection

of the composite pattern Hr
1 for target T1 and its position

estimation is done via multilateration.

The results of target identification are shown for four

cases in Figure 7 where the estimated location and detection

frequency are shown for four cases. As mentioned earlier,

the location is estimation only when sensor nodes identify

the target as T1. The four cases are: (1) one target (T1) with

both atomic patterns L1 and L2 and identification done using

set-theoretic approach for composite pattern representation

(red circles); (2) one target (T1) with both atomic patterns

L1 and L2 and identification done using proposed approach

5
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for composite pattern representation (yellow squares); (3)

two targets (T2 & T3) with atomic patterns (L1) and (L2)
respectively moving close to each other in the sensor field

and identification is done using the set theoretic approach

(blue diamonds) and (4) two targets (T2 & T3) with atomic

patterns (L1) and (L2) respectively moving close to each

other in the sensor field and identification is done using the

proposed approach (green triangles).

Figure 7 also shows the number of detections identified

as T1 (red) or ¬T1 for not T1 (yellow) for set-theoretic

and proposed approach (xD). The false alarm rate in the

two target case and the set theoretic approach is a full

100%. This is expected since the set-theoretic approach

disregards relational dependence between patterns and is

therefore confuses co-occurrence of targets T2 and T3 with

the presence of T1. On the other hand, the false alarm rate

with our approach is 13.3%. The performance of the object

and situation assessment is greatly improved in this example

by use of the relational PFSA to capture dependence between

the atomic patterns. Also, it can be seen that utilization of

the proposed methodology did not lead to any noticeable

decrease in the detection frequency of the one target with

both pattern case (T1).

IV. CONCLUSION AND FUTURE WORK

A data-driven semantic framework is proposed for ob-

ject assessment and situation assessment in sensor net-

works in the context of the Data Fusion Information Group

(DFIG) model. Distinct from the set-theoretic approach, the

xD-Markov algorithm is introduced to extract the cross-

dependencies among the objects as relational PFSA. Situ-

ations are classified based on both atomic PFSA and rela-

tional PFSA. A target identification application shows that,

in comparison to the set-theoretic approach, the proposed

approach for composite pattern representation with relational

PFSA significantly improves the false alarm rate in a sensor

network. Moreover, it provides for a tractable approach, par-

ticularly suited for sensor networks for onboard processing,

that has the ability to capture the relational dependence

between data streams.

To enhance the performance of the xD-Markov algorithm,

the following issues are suggested to be addressed as future

work.

• Similar to the model structure selection procedure for

D-Markov machines proposed earlier in [18], [21], [22],

a methodology for depth selection is required for the

xD-Markov machine during the training phase.

• Partitioning for symbol sequence generation is currently

done to suit the extraction of unimodal patterns using

the D-Markov machine. However, partitioning methods

may need to be adapted for relational PFSA construction

using the xD-Markov algorithm.

• The robustness of the xD-Markov algorithm for rela-

tional PFSA construction to the phase shifts in the input

symbol sequences and mismatched symbol rates should

be investigated.

• Higher order cliques (≥ 2) for relationship identification

between atomic patterns should be considered.

• Experimental validation and online testing of the pro-

posed methodology.
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