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Abstract— A common approach to process monitoring based
on principal component analysis (PCA) assumes that fault-free,
noise-free data is sampled from a low-dimensional subspace.
Although widely described and applied, process fault detection
and isolation using PCA is not robust to outliers in the
training data, is hard to properly tune, and is not capable
of isolating multiple faults. A newly introduced method called
principal component pursuit (PCP) optimally decomposes a
data matrix as the sum of a low-rank matrix and a sparse
matrix. When applied to the process monitoring problem, PCP
simultaneously accomplishes the objectives of model building,
fault detection, fault isolation, and process reconstruction with a
single convex optimization problem, thereby overcoming the key
shortcomings of PCA-based approaches for process monitoring.
The use of PCP for process monitoring is described and
illustrated using data from a manufacturing process.

I. INTRODUCTION

Data-driven approaches for process monitoring are widely

applied because they are developed, deployed, and main-

tained at low cost. The principal component analysis (PCA)

approach to process monitoring assumes that process data,

in the absence of noise or faults, is sampled from a low-

dimensional subspace. This paper compares existing PCA-

based approaches for process monitoring to a technique

based on a new matrix decomposition technique called

principal component pursuit (PCP), which decomposes a

matrix as the sum of a low-rank matrix and a sparse matrix.

Like PCA-based approaches, the PCP approach to process

monitoring assumes that process data, in the absence of

noise or faults, is sampled from a low-dimensional subspace.

However, the PCP approach remedies the key shortcomings

of PCA-based approaches.

Section II provides a description of the PCA-based ap-

proach to process fault detection, isolation, and reconstruc-

tion. Section III describes the shortcomings of the PCA-

based approach. Section IV develops a PCP-based approach

for process fault detection, isolation, and reconstruction.

Section V provides a comparison of the PCP-based approach

to the PCA-approach, highlighting connections between the

two methods and describing ways in which PCP solves long-

standing problems. Section VI provides experimental results

on the application of PCA- and PCP-based methods for

process monitoring.
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II. PROCESS FAULT DETECTION, ISOLATION, AND

RECONSTRUCTION USING PCA

Principal component analysis is widely used as the basis

for data-driven fault detection and isolation of industrial

processes [1]. Given a training data matrix X containing

m rows of observations of n columns of process variables

which have been autoscaled so that each process variable has

zero mean and unit variance, a PCA model is constructed

using the singular value decomposition 1√
m−1

X = UΣV T

where the matrix Σ contains the non-negative real singular

values of decreasing magnitude along its main diagonal

(σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0), and zero off-diagonal

elements. The PCA loading vectors are the orthonormal

column vectors in the matrix V. One selects the columns

of the loading matrix P to correspond to the loading vectors

associated with the first a singular values, and the projections

of the observations in X into the lower-dimensional space

are contained in the score matrix, T = XP . A low-rank

reconstruction of the process data is X̂ = XPPT . The PCA

model-building process is equivalent to solving for a low-

rank reconstruction X̂ of the data X by solving the following

optimization problem:

minimize||X − X̂||2 subject to rank
(

X̂
)

≤ a. (1)

The T 2 statistic for PCA-based fault detection is a scaled,

squared distance from the mean, and is defined as T 2 =
xTPΣ−2

a PTx where Σa contains the first a rows and

columns of Σ. An alternative statistic for fault detection is

the squared prediction error Q = xT P̃ P̃Tx where P̃ =
I − PPT is the principal component residual space. Both

fault detection statistics have the quadratic form xTMx with

M = PΣ−2
a PT for the T 2 statistic and M = P̃ P̃T for the

Q statistic.

For testing data, a fault is detected if the T 2 or Q
statistic exceeds a threshold. Once a fault has been detected,

fault isolation is performed. Although there a number of

techniques for PCA-based fault isolation, the approach with

the best theoretical grounding calculates the reconstruction-

based contribution [2] of each process variable to the fault

detection statistic.

The reconstructed vector in the direction ei of process

variable i is

yi = x− eifi (2)

where fi is the magnitude of the fault. The value of the

fault detection statistic for the reconstructed data vector is

yTMy. The task of reconstruction is to find a value of the
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fault magnitude fi such that the fault detection statistic for

the reconstructed process condition is minimized. The value

of fi meeting this objective is [2]

fi = (eTi Mei)
−1eTi Mx. (3)

The reconstruction-based contribution (RBC) of variable

xi to the fault detection statistic (Q or T 2) is RBCi =
||eifi||2M , and the isolated fault direction is that which has

the maximal contribution. Once a fault has been detected and

isolated, process reconstruction to remedy the effect of the

fault can be accomplished with (2).

III. SHORTCOMINGS OF PCA-BASED APPROACHES

In the model building, fault detection, fault isolation, and

reconstruction steps, PCA has a number of shortcomings

which increase the complexity and limit the applicability of

the approach. These limitations are discussed in the following

subsections.

A. Model building

A first shortcoming of PCA-based approaches is that the

calculated principal components are sensitive to the presence

of outliers in the data set. It follows from Lemma 1 in the

Appendix that a single anomalous row in a data matrix X can

arbitrarily increase the singular values and rotate the princi-

ple components of an otherwise low-rank training data set.

Thus it becomes critical to remove outliers from the training

data set prior to the construction of the principal component

model. A variety of techniques for robust outlier have been

proposed [3], but the selection of one of these techniques

and its application complicates the implementation of PCA

for fault detection and isolation. More important, prior to

the introduction of PCP, “none of the existing approaches

yields a polynomial-time algorithm with strong performance

guarantees under broad conditions” [4].

Another shortcoming of PCA-based methods is that one

most decide on the number of principal components to

be retained, as the fault detection and isolation results are

sensitive to the reduction order. As noted in the literature,

several techniques have been proposed but there appears to

be no dominant technique [1].

B. Fault detection

A weakness of the PCA-based approach to fault detection

is that the T 2 and Q statistics are known to be sensitive to

different types of faults [1], the use of one without the other

may mean that certain types of faults are not detected and

isolated.

C. Fault isolation

The PCA-based approach to fault isolation with the best

theoretical grounding consists of finding the magnitude of a

fault in a specific fault direction that minimizes the value of

the fault detection statistic:

minimizef∈R,e∈E (x− fe)TM(x− fe) (4)

where e is a nonnegative unitary vector corresponding to a

fault direction, f is a real number representing the magnitude

of the fault, and E is the set of all fault directions considered.

This approach is termed reconstruction-based contribution

because x−fe is the best reconstruction of the process data

over a finite set of fault directions E if

(f, e) = arg minf∈R,e∈E (x− fe)TM(x− fe). (5)

Explicit solution of (4) is not viable for the unsupervised

isolation of multiple faults (fault directions of cardinality

greater than one). Even if the fault direction vectors are

constrained such that each positive element is equal, the

number of such fault directions for a given fault cardinality

grows combinatorially with the number of process variables.

Specifically, if there are n process variables and one limits

E to unitary vectors of cardinality c with equal positive

elements, the size of |E| is |E| = C(n, c) = n!
c!(n−c)! .

Furthermore, as will be described below, the PCA-based

approach to fault detection and isolation becomes ill-posed

in the presence of faults of large cardinality.

Because of the above limitations associated with PCA-

based fault isolation, authors have suggested augmenting

PCA-based fault isolation with expert knowledge of the

process, such as that captured in a sign-directed graph [5] or

in a structured residual model [6], in order to successfully

isolate multiple faults.

D. Process reconstruction

Process reconstruction is the estimation of the values of

process variables known to be affected by a fault in the

scenario where the fault is corrected. Reconstructed process

variables can be used for data reconciliation and for fault-

tolerant control. The main limitation of PCA-based process

reconstruction is a consequence of the main limitation PCA-

based fault isolation: the unsupervised method is not capable

of the isolation of multiple faults, and therefore, process

reconstruction cannot remedy the effects of multiple faults.

IV. PROCESS FAULT MONITORING USING PRINCIPAL

COMPONENT PURSUIT

This section describes principal component pursuit and

develops techniques for fault detection, isolation, and recon-

struction using PCP.

Given a data matrix X , principal component pursuit (PCP)

is the solution of the convex optimization problem

minimize ||Y ||∗ + λ||Z||1 (6)

subject to X = Y + Z

with ||A||∗, the nuclear norm, equal to the sum of the singular

values of A and with ||A||1 equal to the sum of the absolute

values of the elements of A [4]. Under certain conditions on

a low-rank matrix Y0, a sparse matrix Z0, and a Lagrange

multiplier λ, the optimization problem (6) recovers Y0 and

Z0 exactly given the input X = Y0 + Z0 [4], [7]. The

optimization problem is convex and linearly constrained, and

a number of efficient algorithms are available [4].

Consider the process model: X = Y + G +H where Y
is a low-rank matrix corresponding to a fault-free process

condition, G has nonzero entries corresponding to sensor
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noise, and H has nonzero entries corresponding to sensor

and process faults, and each matrix is m×n. In what follows,

dmin = min(m,n) and dmax = max(m,n).
For the purpose of process fault detection, isolation, and

reconstruction, the following assumptions on Y , G, and H
are made:

(A) The matrix Y is µ-incoherent. If Y = UΣV ∗ is the

reduced singular value decomposition, and r is the rank

of Y , then Y is µ-incoherent if maxi ||U∗ei||2 ≤ µr/m,

maxi ||V ∗ei||2 ≤ µr/n, ||UV ∗||∞ ≤
√

µr/mn [8].

(B) With probability ρ < 1, any entry gij of G is a random

variable with a cumulative distribution function F g
j (·)

having a median of zero; with probability 1−ρ, gij = 0.

(C) With probability π < 1, any entry hij of H is a random

variable with a cumulative distribution function Fh
j (·)

having a median of zero; with probability 1−π, hij = 0.

Let η = 1 − (1 − ρ)(1 − π) be the probability that any

particular entry of Z = G+H is nonzero.

A qualitative statement of assumption (A) when µ is small

is that the principal axes of Y are not closely aligned with the

standard basis. This assumption is reasonable in situations

where PCA would be applied because it is a key motivating

assumption for the use of PCA for process monitoring [1].

One of the implications of assumptions (B) and (C) is

that noise and faults of negative signs and positive signs

occur with equal probability. Another implication is that

sensor noise, sensor faults, and the fault-free process are

independent random variables. Both implications are reason-

able assumptions and would likely be default assumptions

in the absence of specific contrary knowledge. Examples

of probability distributions with a median of zero include

a zero-mean Gaussian distribution, a zero-mean uniform

distribution, and a binomial distribution over a negative and

positive alternatives with parameter ρ = 0.5.

The following theorem establishes the optimality of PCP

in recovering low-rank process data from noise and faults.

Theorem 1: If X = Y0 + G0 + H0 and assumptions

(A),(B), and (C) hold, then there exists a value of λ for

which principle component pursuit (6) exactly recovers the

matrices Y0 and Z0 = G0 + H0 with high probability if

the rank r of Y0 satisfies r < C1dmin

µ log2 dmax

for some nonzero

numerical constant C1.

Proof: Assumption (A) is the same as [8, Theorem 1].

If assumptions (B) and (C) are satisfied, then the elements

of Z = G +H take positive and negative signs with equal

probability, and assumption (B) of [8, Theorem 1] is satisfied.

The result follows from [8, Theorem 1], generalized to non-

square matrices following [4].

Given the optimality of PCP in recovering Y0 and Z0 from

X = Y0 +Z0, and assumptions (B) and (C), the PCP-based

approach for fault detection, isolation, and reconstruction is

simple. One uses PCP to decompose the autoscaled process

data X as X = Y + Z. A fault is detected and isolated in

variable j in measurement i if zij 6= 0 and one rejects the

null hypothesis that zij is sampled from the noise distribution

F g
j (·) in favor of the alternative hypothesis that hij , the entry

of the fault matrix, is nonzero. The mechanism for separation

of noise from faults in Z takes the form of a threshold on

the absolute value |zij | if the noise and fault distributions are

both Gaussian and the fault distribution has a larger variance.

If a fault is detected and isolated, an estimate of the fault

magnitude is zij and a reconstructed estimate of the fault-

free, noise-free variable is yij .

V. ADVANTAGES OF PCP RELATIVE TO PCA

This section describes the advantages of a PCP-based

approach to fault detection, isolation, and reconstruction

relative to a PCA-based approach. Relationships between

PCA process monitoring and an online version of PCP

process monitoring are described.

A. Model building

The singular value decomposition used to construct a PCA

model is not robust to outliers in the training data set. In

contrast, the PCP is provably robust at recovering a low-

rank reconstruction in the presence of outliers in the data

set, as stated in Theorem 1. This is a key advantage of PCP

relative to PCA.

Another advantage of PCP approach relative to PCA is

that PCP does not require the selection of a model order. To

apply PCP to a data matrix X and achieve an optimal low-

rank reconstruction Y0, the rank of Y0 need not be known

or assumed a priori, it must only be low relative to the

dimensions of X .

The only tuning parameter for PCP model building is the

constant λ in (6). The optimal value for this parameter is

known to be O
(

1√
n

)

[4], and tighter bounds on the optimal

value of λ are available if η is known [8].

B. Fault detection

The fault detection and isolation decision for PCP amounts

to determining whether a deviation from zero can be ex-

plained well by the properties of noise of a particular sensor,

whereas fault detection for the PCA-based method is based

on a multivariate statistic. The process for establishing fault

detection thresholds for PCP is a univariate problem where

physical intuition is more readily applied.

A second advantage of PCP relative to PCA for fault

detection, described below, is that PCP is sensitive to both

faults that would elevate the PCA T 2 statistic and to faults

that would elevate the PCA Q statistic.

Consider now the relationship between fault detection

results produced by the PCA method and the PCP method.

These relationships are illustrated with the following sce-

nario. A training data set X is available. PCP has been used

to perform the decomposition X = Y + Z, and PCA has

been used to develop a singular values and loading vectors.

A new measurement x is made, and PCP is applied to find

the optimal decomposition

[

X
x

]

= Y ′ + Z ′.

At one extreme, all of x can be assigned to low-rank Y ′

and none to sparse Z ′. The singular value decomposition

of Y , Y = UΣV T , where the matrix Σ contains the non-

negative real singular values of Y along its main diagonal
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(σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0), and zero off-diagonal

elements, will be used to analyze the nuclear norm of Y ′.
If the matrix Y is augmented with the testing vector x such

that the augmented matrix Y’ is Y ′ =

[

Y
x

]

, it is shown in

Lemma 1 in the Appendix that the singular values of the

matrix Y ′ correspond to the singular values of the matrix
[

Σ 0
t
√
Q

]

(7)

where t = [t1 . . . tn] is a row vector of scores defined by

t = V Tx and Q is the PCA fault detection statistic,
√
Q =

||(I − V V T )x||.
The singular values τj of the matrix (7) (which are the

singular values of Y ′) satisfy the secular equation

0 = Q− τ2j −
n−1
∑

i=1

t4i
σ2
i − τ2j

. (8)

Consider two limiting cases on the nuclear norm of Y ′,
when a new observation is appended to Y . The first limiting

case is when x is orthogonal to a basis for Y . In this case,

all the scores ti are zero and Q is nonzero and it can be

verified from (8) that the increase in the nuclear norm ||Y ′||∗
is simply

√

Q+
∑

σi.

Another limiting case is when x is in the direction of a

principal component of Y. In this case, Q is zero and there

is a single nonzero score ti. In this case, it can be verified

verified from (8) that the nuclear norm is given by ||Y ′||∗ =
√

σ2
i + t2i .

In the general case, it is shown in Lemma 2 in the appendix

that bounds on ||Y ′||∗ are
√

Q+
∑

i

t2i + σ2
i ≤ ||Y ′||∗ ≤

√

(n+ 1)(Q+
∑

i

t2i + σ2
i ).

(9)

It is evident that ||Y ′||∗ is more closely related to the

square root of the PCA-based statistics Q and T 2 then to the

unmodified statistics. The following asymptotic relationships

exist:

||Y ′||∗ − ||Y ||∗ → 0 as Q→ 0, T 2 → 0 (10)

||Y ′||∗ − ||Y ||∗ →
√

Q as
∑

i

t2i ,→ 0

||Y ′||∗ − ||Y ||∗ → σi

√
T 2 as ti →∞,

Q+
∑

j 6=i t
2
j

ti
→ 0.

C. Fault isolation

This section describes the relationship between PCA-based

fault isolation and PCP-based fault isolation and explains

why, unlike PCA, PCP is optimal for isolating multiple faults.

The PCP approach for fault isolation can be developed as

a refinement of the PCA-based approach to fault isolation.

A generalization of the PCA-approach to fault isolation (4)

which allows for arbitrary fault directions is

minimizey,z yTMy (11)

subject to x = y + z,

where M = PΣ−2
a PT (for the T 2 statistic) or M = P̃ P̃T

(for the Q statistic), y is the reconstructed process data,

and z is an arbitrary fault vector. This problem is ill-posed,

because it has a trivial solution y = 0. A well-posed PCA-

based version of the problem of isolation of multiple faults

incorporates a constraint on the cardinality of the fault x is

minimizey,z yTMy (12)

subject to x = y + z, ||z||0 ≤ c

where y is the reconstructed process data and z is a fault

vector, and ||z||0 is the cardinality of the fault direction. The

standard PCA approach to fault isolation described in Section

III solves this problem with c = 1.

The 1-norm is often used as a convex heuristic for the

0-norm. Making this substitution of norm and putting the

cardinality constraint in Lagrangian form, one has

minimizey,z yTMy + λ||z||1 (13)

subject to x = y + z.

This formulation of PCA-based fault-detection, isolation, and

reconstruction is a tractable convex optimization problem

which allows for the isolation faults of cardinality greater

than one. If one accepts the optimality of PCP, then it seems

unlikely that the formulation (13) has optimal properties, due

to the fact that, as shown in the previous section, yTMy is

more closely related to the square of the nuclear norm then

to the nuclear norm of the data matrix.

If the PCA-based fault detection term yTMy is replaced

with the nuclear norm, one arrives at an online formulation

of Principal Component Pursuit:

minimizey,z

∣

∣

∣

∣

∣

∣

∣

∣

[

Y
x

]
∣

∣

∣

∣

∣

∣

∣

∣

∗
+ λ||z||1 (14)

subject to x = y + z,

where Y is a set of low-rank, fault-free data produced from

the training problem (6). To compute this online version,

one need not store the entirety of Y, but only its singular

values Σ and loading vectors V, as shown in Lemma 1 in

the Appendix.

D. Process reconstruction

The advantage of PCP relative to PCP for process recon-

struction is a result of the fact that PCP is capable of isolating

multiple faults, and is therefore capable of reconstructing

the effects of multiple faults. Unlike PCA, PCP provably

recovers low-rank, fault-free process data in the presence of

multiple faults.

VI. EXPERIMENT AND RESULTS

This section describes the application of PCA- and PCP-

based techniques for process fault detection, isolation, and

reconstruction to process data collected during the quality

assurance testing of fuel cell power plants.
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Fig. 1. Autoscaled process data from fuel cell power plants.

A. Data Description

Data was collected from a manufacturing process for fuel

cell power plants. One of the final steps of the manufacture is

an operational check of each power plant in which the power

plant is operated at steady-state at four operating points as

a quality check. Each of the 33 power plants in the data set

has 66 measured variables. The data matrix X consists of

132 columns (four operating points for each of the 33 power

plants) and 66 rows, one for each measurement variable. In

general, process faults were not corrected until after each

power plant had been operated at each of the four operating

points.

B. Experimental Set-Up

Prior to application of the process monitoring techniques,

the data was autoscaled so that each measured variable had

zero mean and unit variance over the entire data set. The

autoscaled process data is depicted in Figure 1.

Five different algorithms for fault detection, isolation, and

reconstruction were tested: 1) the PCA-based technique with

the T 2 statistic, applied without removing outliers from the

original data set (“PCA T 2”); 2) the PCA-based technique

with the Q statistic, applied without removing outliers from

the original data set (“PCA Q”); 3) principal component

pursuit, as described in Section III (“PCP”); 4) a robust

PCA-based technique with the T 2 statistic, applied after

removing outliers from the data using PCP (“rPCA T 2”);

and 5) a robust PCA-based technique with the Q statistic,

applied after removing outliers from the data using PCP

(“rPCA Q”). Fault isolation and reconstruction for the PCA-

based methods was performed using the reconstruction-based

contribution method, with fault directions of cardinality one.

Principal component pursuit was performed using an aug-

mented Lagrangian method [9], with parameter λ = 1√
n

.
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Fig. 2. Number of faults consistently isolated (isolated in at least three
of the four operating conditions) as a function of threshold for the process
monitoring methods. The threshold for the PCA-based methods is expressed
as a multiplier of the median value of the fault detection statistic over the
training set. The threshold for separation of faults from noise for the PCP
method is expressed in terms of number of standard deviations of the process
variable in the training set.

Twenty principal components were retained for the PCA-

based techniques.

C. Experimental Results

The fault-free process data Y and the fault and noise data

Z reconstructed by PCP are shown in Figure 3.

The number of faults detected and isolated is a function

of the threshold applied to the fault detection statistic (for

the PCA based methods) and the threshold for separating

noise from faults (for the PCP-based method). Because faults

were not typically corrected during the course of the quality

assurance test, a fault was said to be consistently isolated if

the particular fault was isolated for a particular power plant in

at least three of the four operating conditions. The number of

faults consistently isolated for each of the process monitoring

methods, as a function of the threshold, is shown in Figure 2;

PCP is capable of consistently isolating more faults than the

other methods. An engineer familiar with the quality-control

process indicated that the majority of the faults consistently

isolated by PCP corresponded to known sensor faults.

VII. CONCLUSIONS

Like PCA-based approaches for process monitoring, the

PCP-based approach to process monitoring is based on the

premise that process data in the absence of faults and noise

is sampled from a low-dimensional subspace. The PCP-

based approach remedies the key shortcomings of PCA-

based methods and allows faults and noise to be isolated

from otherwise low rank process data.
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APPENDIX

Lemma 1: The singular values of a matrix

[

Y
x

]

are the

singular values of

[

Σ 0
t
√
Q

]

, where Y = UΣV T is the

SVD of Y , t = V Tx and
√
Q = ||(I − V V T )x||.

Proof: Any m by n matrix A can be factored with

the singular value decomposition A = UΣV T , where U is

unitary, V is unitary, and Σ is diagonal [10].

Note that
[

Y
x

]

=

[

UΣV T

x̂+ x̃

]

=

[

U 0
0 I

] [

Σ 0
t
√
Q

] [

V
r

]T

(15)

where t = V Tx, (I −V V T )x =
√
Qr, r is a unitary vector

orthogonal to the columns of V , and
√
Q, a scalar, is the

length of (I − V V T )x.

Let

U ′Σ′V ′T ←−−
SVD

[

Σ 0
t
√
Q

]

. (16)

Then
[

U 0
0 I

]

U ′Σ′
([

V
r

]

V ′
)T

(17)

is a singular value decomposition of

[

Y
x

]

because
[

U 0
0 I

]

U ′ is a unitary matrix, Σ′ is diagonal, and

[

V
r

]

V ′

is a unitary matrix.

Lemma 2: Let Y ′ =

[

Y
x

]

, with Y = UΣV T the singular

value decomposition of Y . Then
√

Q+
∑

i

t2i + σ2
i ≤ ||Y ′||∗ ≤

√

(n+ 1)(Q+
∑

i

t2i + σ2
i )

(18)

where the ti are the elements of the row vector t = V Tx

and the σi are the diagonal elements of Σ.

Proof: The nuclear norm is the sum of the singular val-

ues of a matrix. By the previous lemma, the singular values

of

[

Y
x

]

are the singular values of

[

Σ 0
t
√
Q

]

. The singular

values of this matrix can be found by taking the square root

of each eigenvalue of the matrix

[

Σ 0
t
√
Q

] [

Σ 0
t
√
Q

]T

.

By the trace theorem [11],
∑n+1

j=1 τ2j = Q +
∑

i σ
2
i + t2i .

We desire to establish bounds on the sum of the singular

values
∑n+1

j=1 τj in terms of a known sum of the eigenvalues
∑n+1

j=1 τ2j . The lower bound follows from the generalized

triangle inequality
√

∑

uj ≤
∑√

uj [12].

The upper bound follows from the fact that the square

root is a concave function. For a concave function f(u) and

nonnegative mixing weights qi :
∑

qi = 1,

f(q1u1 + · · ·+ qnun) ≥ q1f(u1) + · · ·+ qnf(un). (19)

The upper bound follows if one sets f(u) =
√
u and q1 =

q2 = qn+1 = 1
n+1 .
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