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Abstract— The purpose of the presented work is to address
the problem of controlling vehicles subject to nonholonomic
constraints, specifically unicycle mobile robots, while track-
ing another dynamical model (reference system) that is less
constrained. The closed loop stability of the tracking error
dynamics is obtained using Lyapunov theory as well as properly
designing the dynamics of the desired distance between the
vehicle and the reference system. In particular, the vehicle
maintains a time dependent distance to the reference system,
which is tracking the desired trajectory. Results from the
implementation of both the designed controller and a previously
existing tracking controller are presented to verify and compare
its performance and capabilities.

Keywords: Control system design, tracking control, unicycle
vehicles, nonholonomic.

I. INTRODUCTION

Unicycle vehicles are mechanical systems characterized by
kinematic constraints that are not integrable and cannot be
eliminated from the model equations. This class of mobile
robots is subject to nonholonomic constraints, in fact they
can have forward speed but are not capable of instantaneous
lateral motion.

The problem of controlling unicycle mobile robots to track
trajectories continues posing numerous challenges. Although
many control algorithms have been proposed in the past
decades ([2]–[5], [9], [11], [13]), the constrains on this
vehicles induce different challenges according to the desired
objectives, which span from having to stop in a precise
position, in the case of parking ground vehicles, to having to
maintain the velocity in a given range in the case of aerial
vehicles.

Because of the nonholonomic constraints, the set of feasi-
ble trajectories for a unicycle vehicle is limited, and has to
be considered when designing a tracking controller. Several
methods have been developed to solve the problem of path
following for underactuated vehicles ([2]–[5], [9], [11], [13]).
In general, these consist of generating inputs to steer a
unicycle vehicle through an admissible generated path as
close as possible to a desired trajectory which is not subject
to nonholonomic constraints.

Early research results on trajectory tracking control of uni-
cycle vehicles include the work of Kanayama, who proposed
using a sequence of straight lines to define the reference
trajectory for the vehicle ([7]), and later used Lyapunov
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theory to design a local asymptotic tracking controller for a
unicycle vehicle ([6]). Afterward, in [1], the authors proposed
a method for adaptive tracking control of nonholonomic
vehicles, while in [4] backstepping techniques are used to
design an adaptive tracking controller for a nonholonomic
kinematic model with unknown parameters.

In [3], a controller is designed using backstepping so that
the tracking error converges to zero, and the velocity of the
vehicle converges to the desired velocity. While this could
be a desirable behavior, keeping a known distance to the
virtual target or trajectory will allow the vehicle to have
enough space to turn in case the target has lateral motion,
which could help when we account for the fact that unicycle
vehicles can not have instantaneous lateral motion. This is
demonstrated in [11] and [12] where, using Lyapunov theory,
a tracking controller is designed considering the vehicle
dynamics and constraints, where the position error converges
to the desired distance.

The vehicle should be close enough to the desired tra-
jectory to be able to track it correctly, even if the target
has instantaneous lateral motion but, at the same time,
the distance should be large enough so that if the target
undergoes sudden changes in speed, the vehicle will be able
to mimic its behavior. Therefore, we propose a modification
of the tracking controller introduced in [11] and [12], with
the difference that we consider the distance between the
vehicle and the virtual target as a time-varying parameter.
The particular case where the distance directly depends on
the velocity of the virtual target will be considered.

The paper is structured as follows. Section II describes
the mathematical model for both a unicycle vehicle and the
reference system. The tracking control is presented in Section
III. The simulation results are discussed in Section IV, where
the proposed controller is compared to the tracking controller
from [11], to assess its efficacy. The paper is concluded in
Section V.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Consider the kinematic equations for a unicycle vehicle
moving in the horizontal plane ([11])

ṗ(t) =

[
ẋ(t)
ẏ(t)

]
=

[
ν(t) cos(θ(t))
ν(t) sin(θ(t))

]
, (1)

θ̇(t) = ω(t), t ≥ 0, (2)

where p(t) , [x(t) y(t)]T ∈ R2, t ≥ 0, is the vehicle
position, ν(t) ∈ R, t ≥ 0, is the longitudinal velocity, θ(t) ∈
R, t ≥ 0, is the orientation, and ω(t) ∈ R, t ≥ 0, is the
angular velocity of the vehicle.
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The reference system is a virtual target with unitary mass
that the vehicle will track, and is mathematically defined as

p̈r(t) =

[
ẍr(t)
ÿr(t)

]
=

[
fx(t)
fy(t)

]
, t ≥ 0, (3)

where pr , [xr(t) yr(t)]
T ∈ R2, t ≥ 0, is the position

of the reference system, and [fx(t) fy(t)]
T ∈ R2, t ≥ 0,

are the components of a virtual force applied to the virtual
target.

The linear velocity of the reference system is

vr(t) ,
√
ẋr(t)2 + ẏr(t)2, t ≥ 0, (4)

where vr(t) ≥ 0, t ≥ 0.
The goal of the presented work is to derive a control law

for a nonholonomic vehicle described by (1) and (2), so that
it will track a virtual target (3) while guaranteing that the
position error ∥p(t) − pr(t)∥, t ≥ 0, converges to a small
neighborhood of a function δ(t) , [d(t) 0]T, t ≥ 0, as
t → ∞, where d(t), t ≥ 0, is constructed so that it converges
to a desired distance d⋆(t), t ≥ 0.

To reach this objective, we assume in the following that
pr(t), t ≥ 0, is sufficiently smooth with bounded derivatives.

III. TRACKING CONTROL DESIGN

Consider the reference system described by (3) where
fx(t) and fy(t), t ≥ 0, have been designed so that the virtual
target follows a desired trajectory. By guarenteeing that the
vehicle described by (1) and (2) approaches such a reference
system, we can drive the vehicle along the desired trajectory
as well.

Recalling that (1) and (2) describe the model of a uni-
cycle vehicle, if the virtual target is placed on the side of
the vehicle, considering that the vehicle is not capable of
instantaneous lateral motion, it will need to overshoot, turn
and move back to be able to follow the target. Instead, by
designing a tracking controller, which allows the vehicle to
maintain a distance d(t), t ≥ 0, from the reference point
(which is supposed to be constant in [11] and [12]), the
vehicle will have enough space to turn and direct itself to
track the virtual target.

Assuming that the origin of the body-fixed coordinate
frame B and the origin of the global inertial coordinate
frame U coincide with the center of mass of the vehicle
moving in the horizontal plane, we can define an orthonormal
transformation matrix from B to U

R(θ) ,
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (5)

where θ ∈ R. Using (1) and (3), we can define the position
error as

e(t) , RT(θ(t))(pr(t)− p(t)), t ≥ 0, (6)

where e(t) ∈ R2, t ≥ 0. Following the approach introduced
in [11] with the addition of a time dependent distance d(t),

t ≥ 0, between the vehicle and the reference system, we
introduce the following feedback law[

ν(t)
ω(t)

]
= ∆−1(t)(−K tanh(e(t)− δ(t))

+RT(θ(t))ṗr(t) + δ̇(t)), t ≥ 0, (7)

with the distance parameters

δ(t) ,
[

d(t)
0

]
, ∆(t) ,

[
1 0
0 −d(t)

]
, t ≥ 0, (8)

and K is a gain matrix

K ,
[

kx 0
0 ky

]
, (9)

where kx ∈ R and ky ∈ R.
The nonlinear term tanh(·) in the controller allows the

position error to increase the velocity up to a threshold. This
implies that, for large position errors, the vehicle approaches
the virtual target with a constant, maximum velocity until
the position error is within a neighborhood of the origin.

In the proposed controller the distance d(t), t≥ 0, between
the unicycle vehicle and the virtual target is a time-varying
parameter which needs to be selected. We observe that, in
order to be able to define the term ∆−1(t), t ≥ 0, in (7), we
need to guarantee that d(t)>0, t ≥ 0. In particular, if this
distance depends on the velocity of the reference system (4),
the vehicle will be able to track the reference system even
if the target has instantaneous changes of direction at larger
velocities.

Theorem 3.1: Consider the system described by (1) and
(2), the reference system described by (3), and the feedback
controller (7). If the distance d(t), t ≥ 0, is updated accord-
ing to the following

ḋ(t) = ḋ⋆(t)−γ(d(t)−d⋆(t)), t≥0, d(0)=d0, (10)

with γ > 0, then the distance d(t), t ≥ 0, between the vehicle
and the reference system converges to the desired distance
d⋆(t), t ≥ 0, while the tracking error, e(t), t ≥ 0, given by
(6), converges to the distance vector, δ(t) = [d(t) 0]T ∈
R2, t ≥ 0.

Proof:
Consider the Lyapunov function candidate

V (e1, d, t) ,
1

2
eT1 e1 +

1

2
(d(t)− d⋆(t))2, t ≥ 0. (11)

where
e1(t) , e(t)− δ(t), t ≥ 0. (12)

The time derivative of the tracking error e(t), t ≥ 0, given
by (6), is

ė(t) = ṘT(θ(t), ω(t))(pr(t)− p(t))

+RT(θ(t))(ṗ(t)− ṗr(t)), t ≥ 0, (13)

while the derivative of the orthonormal transformation matrix
R(θ) defined in (5) is

Ṙ(θ, ω) =

[
−ω sin(θ) −ω cos(θ)
ω cos(θ) −ω sin(θ)

]
= R(θ)S(ω), (14)
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where
S(ω) ,

[
0 −ω
ω 0

]
. (15)

Substituting (1), (12), and (14) into (13), we can express
the error dynamics as

ė(t) = ST(ω(t))RT(θ(t))(p(t)− pr(t))−RT(θ(t))ṗr(t)

+RT(θ(t))

[
ν(t) cos θ(t)
ν(t) sin θ(t)

]
= −S(ω(t))RT(θ(t))(p(t)− pr(t))

−RT(θ(t))ṗr(t) +

[
ν(t)
0

]
= −S(ω(t))e(t) +

[
ν(t)

−d(t)ω(t)

]
+

[
0

d(t)ω(t)

]
−RT(θ(t))ṗr(t)

= −S(ω(t))e(t) + ∆(t)

[
ν(t)
ω(t)

]
+S(ω(t))δ(t)−RT(θ(t))ṗr(t)

= −S(ω(t))(e(t)−δ(t))−K tanh(e(t)−δ(t))+δ̇(t)

= −S(ω(t))e1(t)−K tanh(e1(t))+δ̇(t), t ≥ 0. (16)

The time derivative of the Lyapunov function (11) is

V̇ (t) = eT1 (t)ė1(t) + (d(t)− d⋆(t))(ḋ(t)− ḋ⋆(t)), t ≥ 0,
(17)

and, by substituting (16) and (10) into (17), we obtain

V̇ (t) = e1(t)
T(−S(ω(t))e1(t)−K tanh(e1(t)))+(d(t)

−d⋆(t))(ḋ(t)−ḋ⋆(t))

= −eT1 (t)S(ω(t))e1(t)−eT1 (t)K tanh(e1(t))

−γ(d(t)−d⋆(t))2

= −eT1 (t)K tanh(e1(t))− γ(d(t)− d⋆(t))2

= −(e(t)− δ(t))TK tanh(e(t)− δ(t))

−γ(d(t)− d⋆(t))2, t ≥ 0. (18)

Therefore, V̇ (t) < 0, t ≥ 0, which proves uniform conver-
gence of the position error e(t), t ≥ 0, to the distance vector
δ(t), t ≥ 0, between the vehicle and the reference system,
while d(t) converges uniformly to the desired position d⋆(t),
t ≥ 0.

IV. SIMULATION RESULTS

To illustrate the performance of the tracking control given
by (7), we compare its behavior with the one obtained in
[11], with both vehicles following the same virtual target, and
the same initial conditions, vehicle position and orientation.
The tracking controller presented in [11], is given by

ud(t) = ∆̄−1(−K tanh(e(t)− δ̄) +RT(θ)ṗr(t)), (19)

where the distance matrix ∆̄ ∈ R, and the distance vector
δ̄ ∈ R are defined as

∆̄ =

[
1 0
0 −d̄

]
, δ̄ =

[
d̄
0

]
, (20)

and the distance d̄ ∈ R from the vehicle to the virtual target
is constant. The desired reference trajectory is a sine-shaped
curve traced with constant velocity in the x-direction, which
is obtained from (3) with

fx(t) , 0, (21)
fy(t) , −20 sin(xr(t)), t ≥ 0. (22)

The corresponding reference and vehicle trajectories with
initial conditions x(0) = xr(0) = 0, ẋ(0) = ẋr(0) =
1, y(0) = yr(0) = 0, ẏ(0) = ẏr(0) = 20, are shown in
Figure 1. The same gain matrix K = I2 was used for both
vehicles, while the distance for the tracking controller from
[11] was d̄ = 2. The desired distance needed in (7) for the
proposed approach was defined as

d⋆(t) , α vr(t) + β, t ≥ 0, (23)

with α = 0.1, β = 0.1, and γ = 1.
Figure 4 shows that the distance d(t), t ≥ 0, converging

to d⋆(t), t ≥ 0. Note that the value of the distance d̄ used
in (19) is in the same range of values of d⋆(t), t ≥ 0.
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Fig. 1. Trajectories of the reference system and the vehicles

As the virtual target moves along the desired trajectory,
the vehicles change their orientation θ(t), t ≥ 0, as shown
in Figure 2, while in Figure 3 the linear and angular velocities
are represented.

Figure 4 shows how the proposed controller allows the
vehicle to get closer to the target point when the velocity
of the reference decreases, where the minimum distance
between the vehicle and the reference system is defined by
the parameter β, which needs to be a positive number to
guarantee d(t) > 0, t ≥ 0.

In order to prevent the vehicle to get too far from the
virtual target, α can be defined as

α , d⋆max − β

vr,max
, t ≥ 0, (24)

where d⋆max ∈ R, t ≥ 0, is the maximum desired distance,
vr,max ∈ R, t ≥ 0, is the maximum velocity that the virtual
target will have, and, as stated before, β is the minimum
distance.
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Fig. 2. Orientation of the vehicles
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Fig. 3. Linear and angular velocities of the vehicles

V. CONCLUSION

This paper presents a tracking controller for unicycle ve-
hicles based on the strategy proposed in [11] and [12]. With
the proposed controller, a vehicle subject to nonholonomic
constrains can track a reference system represented by a
virtual target capable of instantaneous lateral motion, by
maintaining a time varying distance d(t), t ≥ 0, to the
reference system, which in our example, depends on the
linear velocity of said system.

We used a Lyapunov function approach to design the
tracking controller, and proved the convergence of the po-
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Fig. 4. Distances of the vehicles

sition error e(t), t ≥ 0, to a neighborhood of the distance
vector δ(t) = [d(t) 0]T, t ≥ 0, from the unicycle vehicle
to the reference system, while this distance d(t) converges
to the desired distance d⋆(t), t ≥ 0.

In future work, we will test this controller on real unicycle
four-wheeled vehicle. Additionally, the designed tracking
controller can be easily extended to achieve obstacle avoid-
ance and collaborative tracking control when considering
swarms of unicycle vehicles.
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