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Abstract—In this paper, an extended Kalman filter (EKF) 

strategy to estimate state variables from noisy measurements in 

flexible joint space manipulators is presented. First, an EKF 

that estimates the link and motor positions/velocities using only 

measurements from motor sensors is developed for space robots 

modeled with a classical linear joint dynamics model. Second, 

an extension for a novel nonlinear joint dynamics formulation is 

provided. The state estimates are coupled to a flexible joint 

adaptive controller in order to provide a complete closed-loop 

solution for real-time estimation and control. In numerical 

simulations, the EKF-adaptive controller combination 

demonstrates, for both dynamics representations, good 

performance when tracking a 12.6 × 12.6 m square trajectory. 

I. INTRODUCTION 

ngoing worldwide space robotic activities concentrate 

on the development of lightweight and autonomous 

robotic manipulators designed specifically for on-orbit 

servicing operations [1]. For such space robot applications, 

the minimization of vibrations and accurate trajectory control 

with the minimum execution time are critical. However, the 

flexibility effects inherent to lightweight space robots 

equipped with harmonic drive gear mechanisms, such as the 

German Aerospace Center (DLR) Robotics Component 

Verification on the International Space Station (ROKVISS), 

make this objective a challenging task. In most cases, joint 

flexibility effect is the limiting factor to the achievable 

performance [2]. 

For such flexible manipulator systems, several controllers 

have been proposed in the literature. However, the vast 

majority of flexible joint control algorithms are classified as 

full-state feedback controllers. Full state feedback control 

requires the knowledge of four state variables: link and 

motor angular positions, q  and 
m

q , and link and motor 

angular velocities, q  and 
m

q . Although some advanced 

space robot systems have access to measurements providing 

a knowledge of joint elasticity effects (for example, the 

DLR’s Lightweight Robot III is equipped with joint torque 

sensors [3]), typical robot manipulators such as the 

Mitsubishi PA10-6CE are instrumented to measure only 

motor positions and velocities with an encoder and a 

tachometer on each motor axis of the manipulator [4]. 

Therefore, since the last few decades, several solutions to 

this state estimation problem have been proposed. The first 
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one consists in designing a nonlinear observer to compute 

one or more states in the flexible joint robot model. Nicosia 

et al. propose a procedure to construct approximate 

nonlinear observers in which an approach to derive observers 

based on the geometric nonlinear control theory is used in 

connection with an approximation technique [5]. Assuming 

as outputs the global link coordinates and their time 

derivatives, a nonlinear observer which reconstructs all state 

variables is proposed by Tomei [6]. Chatlatanagulchai et al. 

designed a neural network observer to determine link and 

motor positions/velocities and combine this observer with a 

robust controller [7]. Similarly, Abdollahi et al. present a 

stable neural network-based observer for flexible joint robots 

[8]. Nicosia and Tomei propose a controller for which only 

link positions are required to be available from 

measurements and where the other variables are provided by 

a nonlinear observer [9]. A global asymptotic link position 

tracking controller that only requires link and motor position 

measurements is proposed by Dixon et al. [10]. Specifically, 

in their work, the authors use a nonlinear link velocity filter 

in order to eliminate link velocity measurements while a set 

of linear filters is utilized to eliminate the need for motor 

velocity measurements. Kim and Lee designed an adaptive 

controller based on link and actuator position measurements 

only where link and motor velocity filters are used to 

estimate the unknown velocity terms [11]. A major problem 

with all these aforementioned methods is that link angular 

position measurements are required in the observation 

process.  

Besides using a nonlinear observer, another solution to 

estimate in real-time state variables not available through 

measurements consists in applying the Kalman filter theory. 

Goudreau and Schwartz developed an extended Kalman 

filter (EKF) to estimate joint positions and velocities based 

on joint measurements and control torques for a direct-drive 

two-link rigid joint manipulator [12]. Lertpiriyasuwat and 

Burg proposed a Kalman Filter (KF) that combines end-

effector position measurements obtained from a laser tracker 

sensor with joint angular position measurements to estimate 

end-effector and orientation in an industrial robot [13]. 

However, in these two studies the KF/EKF are designed 

based on a rigid joint dynamic representation.  

Timcenko and Kircanski developed a linear Kalman filter 

to estimate the control torque in a flexible joint robot and 

used it in a feedforward/feedback controller scheme [14]. 

Hollars and Cannon used a constant-gain EKF (CGEKF) to 

estimate, for use by a state feedback control law, the state of 

a planar two-link robot arm with rigid links and flexibility in 
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its joints [15]. A significant advantage of the CGEKF 

approach is that the computational load is much less than 

that of the EKF. However, as stated in [16], the stability of 

such system must be carefully evaluated since the problem is 

inherently nonlinear. Recently, in 2010, Lightcap and Banks 

presented an Extended Kalman Filter (EKF) to estimate link 

and motor positions/velocities based on motor measurements 

[17]. Although their approach does not use directly link 

position measurements, a real-time knowledge of link 

positions is provided by sets of retro-reflective markers 

positioned on the links, which represent an uncommon 

sensor for robotic manipulators, especially for those 

operating in space. One major problem with these Kalman 

filter-based methodologies for flexible joint robots is that 

despite the fact that experimental studies have shown that 

flexible gears are much more complex than that of a linear 

spring [18], their design and simulation validation are based 

on the classical dynamic representation proposed by Spong 

[19] which models each joint as a linear torsional spring of 

constant stiffness. 

The first contribution of this paper consists in the design 

of two EKFs that estimate link and motor positions/velocities 

for a flexible joint space robotic manipulator: (1) a first EKF 

is designed for a robot modeled with the classical Spong’s 

linear joint model and (2) a second EKF is proposed for a 

space manipulator modeled with a novel nonlinear joint 

dynamics formulation recently proposed by Ulrich and 

Sasiadek [20]. While the second EKF expands upon previous 

work by incorporating nonlinear flexible effects such as 

nonlinear joint stiffness and soft-windup in the process 

model, both EKFs are novel in the sense that their 

applicability to a robot equipped only with motor encoders 

and tachometers is demonstrated. The second contribution of 

this study is the numerical evaluation of the resulting EKF-

adaptive controller combinations for accurate closed-loop 

estimation and control of a flexible joint space robot. 

II. DYNAMICS MODELING 

A. Linear Joint Model 

The classical dynamics equation of a multilink robot with 

rigid links and flexible joints proposed by Spong [19] is 

derived in terms of kinetic and potential energies stored in 

the system by the Euler–Lagrange formulation. With this 

model, each joint is modeled as a linear torsional spring of 

constant stiffness and the resulting dynamics of flexible joint 

manipulators consists in two second-order differential 

equations. Omitting the gravity term for space robot 

applications, the resulting linear joint dynamics model is 

given by 
 

 0qqkqqqCqqM  )(),()(
m

  (1) 

 τqqkqJ  )(
mmm

 , (2) 

 

Where q  is the link angle vector, 
m

q is the vector denoting 

the angular displacements of the motor shaft angles, )(qM  is 

the symmetric and positive definite rigid inertia matrix, τ   is 

the control torque vector, ),( qqC   is a matrix comprising 

Coriolis and centrifugal effects, k  is the diagonal and 

positive definite stiffness matrix of the joints and where 
mJ  

denotes the positive definite motor inertia matrix. For a two-

link robot, )(qM  and ),( qqC  are given by [19] 
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and ),( qqC  is given by 
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where, for 2,1i , mi denotes the mass of link I, Ii represents 

the inertia of link i, 
il  denotes the length of link i  and 

cil  

denotes the distance from the previous joint to center of 

gravity of link i . Equations (1) and (2) can be solved for the 

link and motor acceleration, as follows 
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B. Nonlinear Joint Model 

Although the linear joint model is considered as the 

centerpiece of nearly all work in the area of flexible joint 

control, experimental studies have shown that flexible gears 

are much more complex than that of a linear spring [18, 21]. 

By combining the effects of the nonlinear stiffness torque 

term, soft-windup, frictional loses, and inertial corss-

coupling, the following nonlinear joint dynamics model was 

recently proposed by Ulrich and Sasiadek [20] 
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where the matrix S represents the inertial cross-coupling 

between motor and link accelerations and where the 

nonlinear stiffness matrix ),( mqqk is given by 
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where 
1a  and 

2a are positive definite diagonal matrices of 

stiffness coefficients and ),( msw qqK  is the soft-windup 

correction factor that is modeled as a saddle-shaped function 
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with 
swk  and 

swa  being parameters defining the soft-windup 

function. In Eq. (10), )(qf   denotes the friction torque 

assumed to have the following nonlinear parametrizable form 

 

   qqqqqf 
654321 )tanh()tanh()tanh()(   , (14) 

 

where, for i 1, …, 6, 
i  denotes positive parameters 

defining the different friction components. As a result, the 

link and motor acceleration can be written as 
 

 
mmm
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III. DISCRETE-TIME EXTENDED KALMAN FILTER 

For completeness, a brief review of the EKF theory [22], 

in its discrete form, is summarized in this section. Let a 

nonlinear system be described by the following dynamics 

equation 

 ),,(1 kkkk f wuxx 
 (17) 

 

and whose observations are described by the nonlinear 

measurement equation 
 

 ),( kkk h vxz  , (18) 

 

where 
kx  is the state vector, 

kw  is the process noise, and   

kz  and 
kv  are the measurement vector and the measurement 

noise, respectively, at a discrete time tk. It is assumed that 

kw  and 
kv  are uncorrelated, zero-mean Gaussian noises 

with covariances 

 

   kk
T

kE Qww  , (19) 

   kk
T

kE Rvv  , (20) 

 

where E [ ] denotes the expectation. The initial mean and 

covariance of the state vector are given by 
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where x0  is uncorrelated with 
kw  and 

kv . 
 

Given the initial mean and the state covariance matrix and 

before taking into account any measurements, the state 

estimate at time t is defined by 

 

  kk E xx ˆ , (23) 

 

where ^ denotes the estimate. This predicted estimate 

satisfies the following differential equation 
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which may be integrated to give 

1
ˆ

kx , the a priori, or the 

propagated, state vector. Although the propagation of the 

state vector is performed with the nonlinear model of the 

dynamics, the propagation of state error covariance matrix, 

which is defined by 
 

     T

kkkkk E xxxxP ˆ-ˆ- , (25) 

 

is done with the discrete-time linear model of the system, as 

follows 
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where 

1kP  is the a priori, or propagated, state error 

covariance matrix and where Fk is the discrete state transition 

matrix given by 
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Following a measurement, the predicted state vector is 

updated in order to take into account the measurement 
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where 

1
ˆ

kx  is the a posteriori, or the estimated state vector, 

and where the predicted measurement 
kẑ is  
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In Eq. (28), 
1kK  is the Kalman gain given by 
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Finally, the state error covariance matrix is updated by 
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In Eq. (28), the term  kk zz ˆ  is called the residuals, or 

innovations. It reflects the degree to which the model fits the 

data.  
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IV. FLEXIBLE JOINT ROBOT ESTIMATION 

In this section, the discrete-time EKF equations are 

applied to both the linear and nonlinear joint model. 

A. Linear Joint Model Estimation 

Let the state vector be defined by 

 

   T
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Such that the partial derivative of the robot dynamics with 

respect to the states can be written as  
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where expressions for link accelerations defined in Eq. (8) 

can be substituted in F21. In F21, the partial derivative of the 

robot inertia matrix and Coriolis matrix with respect to the 

link angle vector is given by 
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and the partial derivative necessary for F22 is given by 
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Considering that the only measurements are provided by 

an encoder and tachometer on the motor sides, let define the 

measurement model as 
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The linearization of this measurement model for the robot 

dynamics is as follows 
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B. Nonlinear Joint Model Estimation 

Considering the nonlinear joint model presented in 

Section II, the partial derivatives of the robot dynamics are 
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with 
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V. SIMULATION RESULTS 

In this section, the linear joint-based EKF is applied to 

linear joint dynamics, and the nonlinear joint-based EKF is 

applied to nonlinear joint dynamics. To assess the 

performance of the estimators, a 12.6 × 12.6 m square 

trajectory was required to be tracked in 60 sec. with constant 

velocity by the endpoint of a two-link flexible joint space 
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robot for which the shoulder joint coincides with the fixed 

base of the robot located at the center of the square 

trajectory. For this application, the direct adaptive controller 

proposed in [23] is used. The parameters of the flexible joint 

robot are: 
1l =

2l = 4.5 m, 
1m = 

2m = 1.5075 kg, 
mJ = diag[1] 

kg·m
2
 and k = diag[500] N·m/rad. The parameters for the 

nonlinear joint dynamics model are chosen as 
1a = 

2a = 

diag[500] N·m/rad, 
swk  = diag[10] 

swa  = 3000, S = 










00

0
2m

J , 
1 = 0.5, 

2 = 150, 
3 = 50, 

4 = 2, 
5 = 100, 

and
6 = 0.5. The adaptive controller parameters are selected 

as 
pp = 

pi  = 150, 
dp  = 

di = 25, 
vK = diag[35], and 

p  = 

0.008 and 
d = 0.023. Random zero-mean Gaussian noise 

with standard deviation of 1 deg and 1 deg/s were added to 

the measurement of each motor angular position and 

velocity, respectively. The sampling frequency for both 

sensors is 100 kHz. 

Figures 1 and 2 illustrate the state estimation errors for 

both estimators. From these results, it can be seen that both 

EKFs provide good estimation accuracy since the estimation 

errors remain small in spite of large measurement noises. 

Figures 3 and 4 show the results of tracking endpoint 

trajectories with both EKF-adaptive controller combinations 

in a counter-clockwise direction starting at the lower-right-

hand corner.  As shown in Fig. 3, the linear joint-based 

strategy exhibits minimal overshoots at each corner of the 

trajectory.  On the other hand, the nonlinear joint-based 

strategy yields slightly degraded performance, as shown in 

Fig. 4. Despite the fact that both EKFs yield a similar 

estimation accuracy, this slight decrease in trajectory 

tracking performance for the nonlinear joint dynamics is due 

to the addition of the highly nonlinear effects and friction 

torques which makes the control task more difficult. Finally, 

it must be noted that when the linear joint-based EKF is 

applied to the nonlinear joint dynamic model, the estimation 

results diverge, resulting in an unstable trajectory. This 

illustrates the benefits of using the nonlinear joint-based 

EKF in an actual application, where the dynamics of the 

manipulator is likely to be affected by highly nonlinear 

effects, such as inertial cross-coupling and friction. 

VI. CONCLUSION 

In this paper, an extended Kalman filter (EKF) estimator 

using only motor encoders and tachometers has been 

developed for a flexible joint space robot modeled with both 

the well-established Spong’s linear joint dynamics model and 

a novel nonlinear joint dynamics model. Both EKFs were 

combined to a direct adaptive controller for which the 

controller gains are adapted in real-time. The resulting novel 

estimation and control systems were evaluated in closed-loop 

numerical simulations which demonstrated that good 

estimation and tracking performance are achieved while 

tracking a square trajectory by a flexible joint space robot. 
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Fig. 1.  Linear joint-based EKF estimation results. 

 
Fig. 2.  Nonlinear joint-based EKF estimation results. 

 

Fig. 3.  Linear joint-based EKF-adaptive controller 

tracking results. 

 

Fig. 4.  Nonlinear joint-based EKF-adaptive controller 

tracking results. 
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