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Abstract—An efficient global optimization method based on 

multi-unit extremum seeking has been proposed recently for 

scalar and two-input systems. For scalar systems, the global 

optimum is obtained by controlling the finite-difference 

gradient and reducing the offset used for calculating this 

gradient. With two inputs, the uni-variate method is repeated 

on the circumference of a circle of reducing radius. In this 

paper, the concept is extended to three-input systems where the 

circle of varying radius sits on a shrinking sphere. The 

theoretical concepts are illustrated on the global optimization 

of several examples. The results show the capability of the 

proposed technique in deterministic convergence to the global 

optimum of the three-input systems. 

I. INTRODUCTION 

inding the global optimum of an industrial process has 

always been attractive in many engineering applications 

including chemical and petrochemical production plants. 

The global optimization has a rich volume of literature [6]. 

There is a large variety of different optimization algorithms 

which are applied to different problems. However, many of 

these optimization algorithms make assumptions about the 

properties of the objective functions which restrict their 

application. It is also important to note that the class of real-

world optimization problems is often not easy to identify in 

order to apply the appropriate optimization algorithm. The 

model-based optimization methods are not always capable to 

find the best operating set points. Moreover, sometimes 

there is no appropriate model of the process and the only 

measurable data are input/output of the system.  

Optimization problems which have few available 

knowledge about the properties of the problem admit an 

alternative design approach, the so-called “black-box 

optimization”. These problems have an objective function 

that may not be easily differentiable. Black-box algorithms 

handle a more general class of problems and consider less 

assumption about the objective function [10]. The global 

optimization methods which take account of prior 

information about the characteristics and structure of the 
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objective function cannot be considered as black-box 

optimization. Therefore a model-free global optimization 

strategy for black-box systems is needed in order to adjust 

the process on its best operating point. Different 

deterministic and stochastic methods have been developed to 

handle these kinds of optimization problems [8], [9]. On the 

other hand, extremum-seeking schemes are model-free 

methods which recast the optimization problem as a control 

problem and take advantage of sensitivity reduction and 

disturbance rejection. The construction of these techniques is 

suitable for optimizing the black-box objective functions [7]. 

However, the objective function value must be measured on 

line. The gradient estimation is the main difference between 

different alternatives of these techniques. In extremum 

seeking control based on perturbation, an external excitation 

signal is used in order to numerically compute the gradient 

[1], [11]. As an alternative, in multi-unit optimization 

framework the gradient is estimated by finite difference of 

the outputs of two identical units driven with the inputs that 

differ by an offset [14].  The gradient is pushed to zero by an 

integral controller. Although the latter method shows a faster 

convergence to the optimal point, however, the convergence 

of both of these techniques depends to their initial condition 

which makes the system to converge to the closest local 

optimum. 

There has always been a debate on how efficient gradient 

estimation techniques of the continuous processes can be 

used for global optimization purposes without the 

intermediary of a model. Herein, some extremum seeking 

schemes based on perturbation have been used as a tool 

for global optimization [15]. However, the main drawback 

of these schemes is their restriction to a specific class of 

nonlinear maps. Towards this end, a deterministic global 

optimization technique using multi-unit adaptation 

framework for a general class of nonlinear scalar systems 

has been recently proposed by [4]. The idea of multi-unit 

extremum-seeking is to control the gradient evaluated using 

finite difference between two identical units operating with 

an offset. For scalar systems, it was shown that the global 

optimum could be obtained by reducing the offset to zero. 

For two-input systems, the uni-variate global optimization is 

performed on the circumference of a circle of reducing 

radius [5]. In this paper, the concept is extended to three-

input systems where the circle of varying radius sits on a 

shrinking sphere. The idea is to perform uni-variate global 

optimization on the circle of varying radius that sweeps the 

surface of a shrinking sphere. The key contribution lies in 

formulating the rotation required to keep the best point 
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found in the search domain. The dynamics of each unit is 

formulated in a way that the movement of each unit is 

towards a better local operating point on nonlinear map. The 

deterministic nature of this approach guarantees the 

convergence of the algorithm to the global optimum. Two 

key aspects are emphasized: (i) the rotation of the circle to 

keep the global optimum in the search domain and (ii) time-

scale separation between the different layers of adaptation. 

Generalization of the proposed algorithm to higher 

dimensions is indeed a main challenge. In fact, extension 

from two dimensions to three requires “Rodrigues” rotation 

matrix. To reach higher than three dimensions the tools 

needed are even more involved. The paper is arranged as 

follows. Section II provides a brief overview on global 

optimization using multi-units for scalar and two-input 

systems. Section III presents the extension of the method to 

optimization of three-input systems. In section IV, the 

established algorithm is applied on several illustrative 

examples and its convergence is outlined. The conclusions 

are addressed in section V. 

II. MULTI-UNIT EXTREMUM SEEKING CONTROL 

The multi-unit optimization method is a real-time 

extremum seeking technique that estimates the gradient by 

the finite difference of the outputs of two identical units 

where the inputs differ by an offset Δ [14]. An integral 

controller then forces the gradient to zero. The basic 

schematic of this technique (where Δ is fixed) converges to a 

local optimum of the objective function. The extension of 

the local extremum seeking control using multi-units to 

global optimization of the static nonlinear systems was 

developed by Azar et al. [3, 4]. 

A. Global Optimization for Scalar Systems 

The idea of global optimization using extremum-seeking 

is to monotonically decrease the offset to zero. The 

schematic is presented in figure 1. 

 
Fig. 1. Unconstrained global extremum-seeking with multi-units for scalar 

systems 

The update equations and adaptation laws for global 

optimization (minimization) of a scalar and continuous 

function f(u) are given by, 

,a bu u u u                         (1)                                                                   

     0, (0)u k sign f u f u u u


             (2)                                        

0, (0) 0k


        .              (3)                                                                   

Depending on the rate of convergence k, the offset Δ 

decreases to zero exponentially. The proof of convergence 

for this algorithm has been provided using mathematical 

contradiction formalism. This algorithm was also extended 

to handle the constrained optimization problems [3]. 

B. Global Optimization for Two-input Systems 

The scalar algorithm was extended to optimize the two-

input black-box functions f(u1, u2) [5], by repeating uni-

variate global optimization on the circumference of a circle 

of reducing radius. Three iterative layers for the algorithm 

are considered: (Layer 1) Global optimization along the 

circumference of a circle (Layer 2) Recursive global 

optimization and (Layer 3) Reducing the radius of the circle.  

In layer 1 the input values of the two units ua and ub 

evolve along the circumference of a circle, 

1 1

2 2

cos( )

sin( )

b b

b b

u u

u u





  

  
         

1 1

2 2

cos( )

sin( )

a a

a a

u u

u u





  

  
  (4)                                         

a         ,    b                        (5)                                                         

( )a bk sign f f 


                        (6)                                                            

k  



    .                             (7)                                                                                      

This corresponds to uni-variate global optimization along 

the circle of radius Δ using the angle θ, and is depicted in 

figure 2. 

 
Fig. 2.  Global optimization along the circumference of a circle 

 

The adaptation laws (for minimization) along the 

circumference of the circular path stay similar to the uni-

variate case. Here, θa and θb are the angles of the two units 

and Δθ is the offset between these angles.  fa and fb are 

objective function values provided by two units “a” and “b” 

and kθ > 0 is a parameter that determines the rate at which Δθ 

is reduced. In layer 2 the initial conditions of the (6) and (7) 

are reinitialized periodically as follows, 

( ) miiT                              (8)                                                                     

( )iT    .                            (9)                                                                         
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The optimization along the circumference of the circle is 

repeated every Tθ time units. “i” denotes the number of 

iteration (i = 0,1,2,…) and at the beginning of each iteration, 

Δθ is initialized to π in order to cover the entire circle. θmi 

corresponds to the converged value and it represents the 

global optimum along the circumference of the circle of 

iteration “i-1”. At the beginning of first iteration (i.e. i=0), 

the initial value of θm0 is arbitrarily set at zero. In the next 

iterations, θmi is computed from the values of θa and θb at the 

end of the previous iteration as, 

( )

( )

a a b

mi

b a b

iT if f f

iT if f f















 


                 (10)                                                                     

In layer 3 the radius of the circle is monotonically reduced 

to zero i.e., 

0, (0) 0ck


        ,                 (11)                                                                 

where kc > 0 is a parameter that determines the rate at 

which Δ is reduced. The coordinates which correspond to the 

global optimum of each iteration are as follows (Figure 2),  

1 1

2 2

cos( )

sin( )

m mi

m mi

u u

u u





  

  
                     (12)                                                                  

The adaptation laws of the center of the circle are so 

chosen to keep the global optimum found. In other words, 

the circle with the radius Δ and center (u1,u2)  is contracted 

in such a manner as to keep (u1m,u2m) at the same point i.e. 

1 2( , ) (0, 0)m mu u   . So, the adaptation laws are given by, 

1 1 10

2 2 20

cos( ) (0)

sin( ) (0)

mi

mi

u u u

u u u





 

 

   

   

          (13)                                                         

One of the key aspects of this algorithm is the time-scale 

separation. The radius of the circle needs to be reduced 

much slower than the rate at which the circumference of the 

circle is swept. This means that kc << kθ. 

III. CONSTRUCTION OF ALGORITHM FOR THREE INPUT 

SYSTEMS 

Consider the problem of minimizing, y = f(u1, u2, u3), 

where f: R3R, is a non-convex continuous nonlinear 

function. The problem may have multiple local optima, (u1k
*, 

u2k
*, u3k

*) k = 1, 2… m, but a unique global minimum, (u1
**, 

u2
**, u3

**). In the rest of the paper, it is assumed that the 

global minimum is unique. The proposed algorithm uses the 

spirit of the global optimization by multi-units for two-input 

systems. Similarly, we need two units referred to as “a” and 

“b”.  The idea for generalizing the algorithm to three 

dimensions is to perform the global optimization on the 

circumference of a circle of varying radius that sweeps the 

surface of a shrinking sphere. In order to mathematically 

formulate the above mentioned methodology, five iterative 

layers for the proposed optimization algorithm are 

considered. 

A. Layer 1: Global optimization along the circumference 

of a circle on a three-dimensional sphere 

Consider the surface of a sphere centred at the input 

values u = (u1, u2, u3) and a radius of Δ. Let (φ ,θ) represent 

the elevation and azimuth angles in the three-dimensional 

polar system. The circle on which the uni-variate 

optimization will be performed is traced by having the same 

elevation but varying azimuth. So, the angle φ is common 

between the coordinates of vectors “a” and “b”, while θa and 

θb vary. The input values of the two units are given by, 

,a ra b rb   u u Μu u u Μu ,     (14)                              

where, 

cos( ) cos( )

sin( ) cos( ) , sin( ) cos( )

sin( ) sin( ) sin( ) sin( )

ra a rb b

a b

 

   

   

    

   
   
   

       

u u  (15)                               

For the moment, consider M=I3×3 (the identical matrix). 

This rotation matrix will be used later. The adaptation laws 

(for minimization) along the circumference of the circle on 

the sphere stay the same as (5), (6), (7). Here, these 

equations correspond to the uni-variate global optimization 

along the circle of radius Δsin(φ) on a three-dimensional 

sphere. 

B. Layer 2: Recursive global optimization along the circle 

The initialization of the initial conditions also remains the 

same as (8), (9). Here, θmi represents the azimuth angle in 

three-dimensional space that is associated to the best 

optimum at the end of each iteration. θmi is updated 

according to (10).  

C. Layer 3: Variation of the radius of the circle 

The key differences between the two-input and three-input 

cases lie in this layer. In the two-input case, the radius of the 

circle was reduced to zero. However, in the three-input case, 

it needs to be so arranged to sweep the surface of the sphere. 

This can be done by exponentially decreasing the angle φ as 

shown below, 

k 


  .                                (16)                                                                                       

Note that though φ decreases monotonically from 2π to 

zero, the radius of the circle Δsin(φ) would initially increase 

and then decrease to zero when φ goes from 2π  to π. Then 

again, the radius will increase and decrease as φ goes from π 

to 0. To make further development easier, the elevation 

angle will be kept constant during an iteration and will be 

changed from one iteration to another using, 

1 (1 )i i k T     .                    (17) 

In the two-input case, the center of the circle was moved 

to compensate for the shrinking of the circle so as to keep 

the best point found in the search domain. In the three-input 

case, the circle has to be rotated on the surface of the sphere 

to keep the best point found. The idea is to compensate for 

the variation of φ from one iteration to another by an 

appropriate rotation. The coordinates of the best point found 
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at the end of iteration (i) is,          

mi i rmi u u Μ u                      (18)                                                                          

1 1

2 2

3 3

cos( )

, , sin( ) cos( )

sin( ) sin( )

m i

m m rm i i m i

m i m i

u u

u u

u u



 

 

     

     
   
     

          

u u u (19)                             

Mi is the rotation matrix that is updated at each iteration. 

At the beginning of iteration (i+1), φi changes to φi+1, and to 

compensate for this change Mi needs to be changed to Mi+1. 

In order not to change the best point found, 

1 ( 1)i s i m i  M v v , 
                

(20)                                                                   

where,                                                                                   

(21) 

1

( 1) 1

1
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sin( ) cos( )

sin( ) sin( )

i

s i i m i

i m i



 

 



 



 

 
 
 

  

v , 

cos( )

sin( ) cos( )

sin( ) sin( )

i

m i i i m i

i m i



 

 

 

 
 

 

  

v M                  

The rotation matrix can be obtained by the “Rodrigues” 

rotation matrix formula [12],                                       (22) 
2

1 1 2 3 2 1 3

2

3 1 2 2 1 2 3

2

2 1 3 1 2 3 3

cos (1 cos ) (1 cos ) sin sin (1 cos )

sin (1 cos ) cos (1 cos ) sin (1 cos )

sin (1 cos ) sin (1 cos ) cos (1 cos )

     

     

     

             
 

              

 
              

M

where the axis of rotation Γ and the angle of rotation γ  can 

be computed as, 

( 1)

( 1)

arccos

T

si m i

m i

si m i






 
 
 
 

v v

v v
                 (23)                                                              

( 1)m i si m i Γ v v .                        (24)                                                                            

D. Layer 4: Recursive global optimization along the sphere 

In order to repeatedly sweep the surface of the sphere, the 

initial condition for the adaptation law (16) is set to, 

( ) 2jT                               (25)                                                                     

where “j” denotes the number of sweeps on the sphere (j = 

0,1,2,…) The period of having expansion-contraction of the 

circle twice on the sphere is indicated by Tφ . Note that since 

from the perspective of the angle, 2π and 0 are the same, this 

re-initialization does not affect the rotation matrices. The 

information on the best point found is present in the rotation 

matrix. 

E. Layer 5: Reducing the radius of the sphere 

It is assumed that the feasible global minimum lies within 

the initial sphere (centered at the initial inputs 

(u1(0),u2(0),u3(0)) with the radius of Δ(0)). This radius is 

monotonically reduced to zero i.e., 

0
(0) 0

s
k



        .          (26)                                                         

ks > 0 is a parameter that determines the rate at which   is 

reduced to ε. On the other hand, the adaptation laws of the 

center of the sphere are so chosen to keep umi at the same 

point. To do this, the derivative of the coordinates of the 

global optimum found at each iteration (equation 18) must 

be set at zero i.e.,  

0mi i rmi

 

  u u Μ u .                      (27)                                                                     

In the time scale of the adaptation of the centre, m i


, 
m i




 

and 0m i



M . So, the rate of change in the coordinates of the 

center of the sphere is calculated as follows, 

cos( )

sin( ) cos( )

sin( ) sin( )

i

i rm i i i m i

i m i



 

 
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 

 
    

 

  

u Μ u Μ .       (28)

   
It is important to note that there are three different time 

scales in this problem, i.e. (i) the time-scale of azimuth 

evolution, determined by kθ, (ii) the time-scale of the 

evolution of elevation angle, determined by kφ and (iii) the 

time-scale for the shrinking of the sphere, determined by ks. 

It can be easily computed that the period corresponding to 

each of these time scales are given by, 
2

1 2
ln

d
T

k k





 


 

 

 
   

 


                

(29) 

     

  

2

1 2
ln

d
T

k k





 


 

 

 
   

 
                 (30) 

0

01
lns

s s

d
T

k k






  
   

  


                 

(31)             

For the algorithm to work well, pseudo-steady state 

assumptions have to be done at each stage, which in turn 

means that it is important that these three time-scales are 

well separated, i.e., Tθ << Tφ << Ts. If an enough time scale 

separation between the dynamics of the angles θ and φ is 

considered, the set of expanding and contracting rotating 

circles would cover the entire surface of the sphere. 

IV. ILLUSTRATIVE EXAMPLES 

A. Test Problems 

Three test problems were selected for evaluation of the 

developed algorithm in three variables case. These test 

problems have been widely used in global optimization 

literature. The analytical results are presented in details.  

Example 1.  Rosenbrock  function [13],   

   
1

2 22

1

1

( ) 100 1

. . 5 10

, (1,1, ...,1) 0

n

i i i

i

i

n

global

M in f u u u u

s t u

u R f f







 
   

 
 

  

  



   (32)                                 

This function has several local minima. 

Example 2. Sphere function, 
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2

1

( )

. . 5.12 5.12

, (0, 0, ..., 0) 0

n

i

i

i

n

global

M in f u u

s t u

u R f f





  

  



        (33) 

Example 3. Hartman function H3 [2],

4 3

2

1 1

( ) exp ( )

. . 0 1

0, , ,

(0 .114614,  0 .555649,  0 .852547) 3.86278

k ki i ki

k i

i

n

k ki ki

global

M in f u C A u P

s t u

C u A P R

f f

 

 
    

 
 

 

 
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 

   
(34)  

This function has four local minima. The coefficients ck, aki, 

pki are as follows, 
0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

kiP

 

 

 
 

 
 

, 
3 10 30

0.1 10 35

3 10 30

0.1 10 35

kiA

 

 

 
 

 
 

   

                          1 1.2 1 3.2
T

kC                             (35) 

B. Application of global multi-unit optimization method 

For example 1 (Rosenbrock function), the initial settings 

(u10, u20, u30) = (3,-0.3,-3), and 0 = 5 were considered such 

that the global minimum among the other local ones lies in 

the sphere composed by the centre of (u10, u20, u30) and the 

radius of 0. The key condition to satisfy is the inequality 

(u1
**- u10)

2+ (u2
**- u20)

2+ (u3
**- u30)

2 0
2 which is in fact 

verified by choosing 0 big enough. The other parameters 

used for all examples were ks = 0.001, kφ = 0.01, kθ = 0.1,  = 

0.01. Applying the global optimization algorithm using 

multi-units makes the system inputs to converge to the 

global minimum. The time evolution of the inputs and  are 

shown in figure 3. 

 
Fig. 3.  Evolution of the inputs and Δ for example 1 

 

For example 2, the initial inputs were (u10, u20, u30) = (0.5, 

0.5, 0.5) and 0 = 1.The contraction of the sphere is depicted 

in figure 4. Since the space of rotations is continuous, the 

centre of the sphere is expected to converge to the global 

optimum of the nonlinear map when Δ reaches to zero. It is 

clear from this figure that the continuously shrinking spheres 

never come out of the prior one.  

 

 
 

Fig. 4.  Contraction of the sphere to the global optimum for example 2 

 

In example 2, figure 5 illustrates a part of repetitive 

expansion of the rotating circles latched on the global 

optimum found on their circumference iteratively (umi). 

 

 
Fig. 5.  Illustration of repetitive expansion of the rotating circles on the 

sphere toward the global optimum (umi) 

 

In example 3 (Hartman function), the initial conditions are 

chosen to be (u10, u20, u30) = (0.9, 0.1, 0.3) and 0 = 1. Other 

tuning parameters remain the same. Applying the global 

optimization algorithm using multi-units makes the system 

input to converge to the global minimum at (u1
**,u2

**, u3
**)= 

(0.2143, 0.5533 , 0.8519), depicted in figure 6 (red line). 
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Fig. 6.  Evolution of the centre of sphere with Ts/Tθ=66 (red line) and 

Ts/Tθ=10 (blue line) for example 3 

 

If the condition ks  kφ kθ is not satisfied i.e. if the 

fraction kθ / kφ or kφ / ks are not large enough, the shrinking 

of the circle (or sphere) become too fast and the global 

optimum could be missed. In this example, the period of 

each iteration on the circumference of the rotating circle, the 

period of a complete extraction-contraction of this circle on 

the sphere and finally the total time of integration were 

Tθ=60.443 (s), Tφ=600.443 (s) and Ts=4000.6052 (s) 

respectively. It is clear that after Tφ/Tθ =10 iterations the 

rotating “expanding-contracting” circles complete a whole 

coverage of the surface of the shrinking sphere from zero to 

2π. The number of total iterations (rotations on the sphere) 

was Ts/ Tθ =66. However, for instance if this ratio is reduced 

to 10 (with ks = 0.01, kφ = 0.05, kθ = 0.1), the multi-unit 

optimization would converge to the local optimum at 

(0.8775, 0.4061, 1.0285) rather than the global one. This is 

depicted in figure 6 using the blue line. 

V. CONCLUSIONS 

A deterministic unconstrained global optimization method 

using multi-unit extremum seeking control for three-input 

systems is proposed. This technique converges to the global 

optimum of any nonlinear, continuous and static objective 

function with three variables, provided the global optimum 

is present in the initial spherical search space. Development 

of the proposed algorithm to multi-input systems and to 

constrained optimization problems are the next steps 

considered in this research framework. A more complex 

rotation scheme needs to be devised for higher dimensions. 
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