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Abstract— In this work, we focus on a class of general
nonlinear systems and design a model predictive control (MPC)
scheme which is capable of optimizing closed-loop performance
with respect to general economic considerations taken into
account in the construction of the cost function. Specifically,
in the proposed design, the MPC optimizes a cost function
which is related directly to certain economic considerations
and is not necessarily dependent on a steady-state — unlike
the conventional MPC designs. The proposed MPC is designed
via Lyapunov-based techniques and has two different operation
modes. The first operation mode corresponds to the periods
in which the cost function should be optimized (e.g., normal
production periods); and in this operation mode, the MPC
maintains the closed-loop system state within a pre-defined
stability region and optimizes the cost function to its maximum
extent. The second operation mode corresponds to operation
in which the system is driven by the MPC to an appropriate
steady-state. In the MPC design, suitable constraints are incor-
porated to guarantee that the closed-loop system state is always
bounded in the pre-defined stability region and is ultimately
bounded in a small region containing the origin. The theoretical
results are illustrated through a chemical process example.

I. INTRODUCTION

Maximizing profit has been and will always be the primary

purpose of optimal process operations. Within process con-

trol, the economic optimization considerations of a plant are

usually addressed via a real-time optimization (RTO) system

(e.g., [1] and the references therein). In general, an RTO

system includes two different layers: the upper layer that

optimizes process operation set-points taking into account

economic considerations using steady-state system models,

and the lower layer (i.e., process control layer) whose pri-

mary objective is to design feedback control systems to force

the process to track the set-points. Model predictive control

(MPC) is widely adopted in industry in the process control

layer because of its ability to deal with large multivariable

constrained control problems and to account for optimization

considerations [2], [3]. The key idea of a standard MPC is

to choose control actions by repeatedly solving an on-line

constrained optimization problem, which aims at minimizing

a cost function that involves penalties on the state and

control action over a finite prediction horizon. Typically,

the cost function is in quadratic form including penalties

on the deviations of the system state and control inputs
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from a desired steady-state. Because of the structure of the

cost function, the control objective of a standard MPC is

to drive the state of the closed-loop system to the desired

steady-state. In MPC theory, the quadratic cost function is

also widely used as a Lyapunov function to prove closed-

loop stability (e.g., [4]). Even though in the standard MPC

formulations, certain economic optimization considerations

can be taken into account (e.g., optimal use of control action),

general economic optimization considerations are usually

not addressed. In order to account for general economic

optimization considerations, the quadratic cost function used

in standard MPC should be replaced by an economics-based

cost function. Moreover, the standard MPC should be re-

formulated in an appropriate way to guarantee closed-loop

stability.

Within process control, there have been several calls

for the integration of MPC and economic optimization of

processes (e.g., [5]) as early as two decades ago; however,

little attention has been given to the development of MPC

accounting for general economic considerations in the cost

function, except for a few recent important papers [6], [7].

In [6], general ideas of a combined steady-state optimization

and linear MPC scheme as well as a case study were reported

without rigorous stability analysis. In [7], MPC schemes

using an economics-based cost function were proposed and

the stability properties were established using a Lyapunov

function. The MPC schemes in [7] adopt a terminal con-

straint which requires that the closed-loop system state settles

to a steady-state at the end of each optimal input trajectory

calculation (i.e., end of the prediction horizon). In addition, it

is difficult to characterize, a priori, the set of initial conditions

starting from where feasibility and closed-loop stability of

the MPC schemes in [7] are guaranteed.

In this work, we focus on a class of general nonlin-

ear systems and design a Lyapunov-based economic MPC

(LEMPC) scheme which is able to take into account general

economic considerations. The design of the LEMPC is based

on uniting receding horizon control with explicit Lyapunov-

based nonlinear controller design techniques and allows for

an explicit characterization of the stability region of the

closed-loop system (following [8]). In the proposed design,

the LEMPC optimizes a cost function which is related

directly to certain economic considerations and is not nec-

essarily dependent on a steady-state — unlike the standard

MPC designs. Specifically, the proposed LEMPC framework

has two different operation modes. The first operation mode

corresponds to operation periods in which the cost function

should be optimized (e.g., normal production periods); and

in this operation mode, the LEMPC maintains the closed-
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loop system state within a pre-defined stability region and

optimizes the cost function. The second operation mode

corresponds to operation periods in which the system settles

down to an appropriate steady-state; and in this operation

mode, the LEMPC drives the state of the system to the

steady-state. In the LEMPC design, suitable constraints are

incorporated to guarantee that the closed-loop system state

is always bounded in a pre-defined stability region and is

ultimately bounded in a small region containing the origin.

The theoretical results are illustrated through a chemical

process example. In [9], the results presented in this paper

have been extended to account for bounded disturbances and

asynchronous, delayed measurements.

II. PRELIMINARIES

A. Notation and class of nonlinear systems

The operator | · | is used to denote Euclidean norm of

a vector, and a continuous function α : [0, a) → [0,∞)
is said to belong to class K if it is strictly increasing and

satisfies α(0) = 0. The symbol Ωr is used to denote the

set Ωr := {x ∈ Rnx : V (x) ≤ r} where V is a scalar

function, and the operator ‘/’ denotes set subtraction, that is,

A/B := {x ∈ Rnx : x ∈ A, x /∈ B}. The symbol diag(v)
denotes a matrix whose diagonal elements are the elements

of vector v and all the other elements are zeros. We consider

a class of nonlinear systems which can be described by the

following state-space model:

ẋ(t) = f(x, u1, . . . , um) (1)

where x(t) ∈ Rnx denotes the vector of state variables of

the system and ui(t) ∈ R, i = 1, . . . ,m, denote m control

(manipulated) inputs. The m control inputs are restricted to

be in m nonempty convex sets Ui ⊆ R, i = 1, . . . ,m, which

are defined as Ui := {ui ∈ R : |ui| ≤ umax
i } where umax

i ,

i = 1, . . . ,m, are the magnitudes of the input constraints. We

assume that f is a locally Lipschitz vector function and that

the origin is an equilibrium point of the unforced nominal

system (i.e., system of Eq. 1 with ui(t) = 0, i = 1, . . . ,m)

which implies that f(0, 0, . . . , 0) = 0. We further assume

that the system state measurements are available and sampled

at synchronous time instants tk = t0 + k∆ where t0 is the

initial time and ∆ is the sampling time.

B. Lyapunov-based controller

We assume that there exists a Lyapunov-based controller

h(x) = [h1(x) · · · hm(x)]T with ui = hi(x), i = 1, . . . ,m,

which renders the origin of the nominal closed-loop system

asymptotically stable while satisfying the input constraints

for all the states x inside a given stability region. We note that

this assumption is essentially equivalent to the assumption

that the system is stabilizable or that the pair (A,B) in

the case of linear systems is stabilizable. Using converse

Lyapunov theorems [10], [11], this assumption implies that

there exist class K functions αi(·), i = 1, 2, 3, 4 and

a continuously differentiable Lyapunov function V (x) for

the nominal closed-loop system which is continuous and

bounded in Rnx , that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V (x)

∂x
f(x, h1(x), . . . , hm(x)) ≤ −α3(|x|)

∣

∣

∣

∣

∂V (x)

∂x

∣

∣

∣

∣

≤ α4(|x|), hi(x) ∈ Ui, i = 1, . . . ,m

(2)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of

the origin. We denote the region Ωρ ⊆ D as the stability

region of the closed-loop system under the Lyapunov-based

controller h(x). Note that explicit stabilizing control laws

that provide explicitly defined regions of attraction for the

closed-loop system have been developed using Lyapunov

techniques for specific classes of nonlinear systems, partic-

ularly input-affine nonlinear systems; the reader may refer

to [12], [11], [13], [14] for results in this area including

results on the design of bounded Lyapunov-based controllers

by taking explicitly into account constraints for broad classes

of nonlinear systems.

By continuity, the local Lipschitz property assumed for the

vector field f and taking into account that the manipulated

inputs ui, i = 1, . . . ,m are bounded, there exists a positive

constant M such that

|f(x, u1, . . . , um)| ≤ M (3)

for all x ∈ Ωρ and ui ∈ Ui, i = 1, . . . ,m. In addition,
by the continuous differentiable property of the Lyapunov
function V (x) and the Lipschitz property assumed for the
vector field f , there exists a positive constant Lx such that
∣

∣

∣

∣

∂V

∂x
f(x, u1, . . . , um)−

∂V

∂x
f(x′

, u1, . . . , um)

∣

∣

∣

∣

≤ Lx

∣

∣x− x
′
∣

∣

(4)

for all x, x′ ∈ Ωρ and ui ∈ Ui, i = 1, . . . ,m.

III. LYAPUNOV-BASED ECONOMIC MPC

In the proposed design, the MPC maximizes a cost func-

tion which takes into account specific economic considera-

tions and it has two operation modes. In the first operation

mode, the MPC maintains the system state within a pre-

defined stability region and optimizes the cost function; in

the second operation mode, the MPC tries to drive the state

of the system to the desired steady-state.

We propose to design the MPC via Lyapunov-based MPC

techniques [8] to take advantage of the stability properties

of the Lyapunov-based controller h(x). Specifically, from the

initial time t0 up to a specific time t′, the LEMPC operates

at the first operation mode and the state of the system is

enforced to be in the stability region Ωρ of the Lyapunov-

based controller (i.e., x ∈ Ωρ) while maximizing the cost

function; after the time t′, the LEMPC operates at the second

operation mode and calculates the inputs in a way such that

the Lyapunov function of the system continuously decreases

to steer the state of the system to a neighborhood of the

desired steady-state. This proposed LEMPC provides more

degrees of freedom to the state of the system to obtain its

optimal trajectory in the invariant set Ωρ and eventually
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regulates the system state at the desired steady-state. For

simplicity and without loss of generality in the rest of this

paper, we assume that the specific time t′ is an integer

multiple of the sampling time of the MPC, ∆. In the sequel,

we describe these steps in details.

A. Lyapunov-based economic MPC formulation

In this subsection, we describe the design of the proposed

LEMPC. At time tk, k = 0, 1, 2, . . ., the MPC is evaluated to

obtain the future input trajectories. Specifically, the optimiza-

tion problem of LEMPC at sampling time tk is as follows:

max
u1,...,um∈S(∆)

∫ tk+N

tk

L(x(τ), u1(τ), . . . , um(τ))dτ (5a)

s.t. ˙̃x(t) = f(x̃(t), u1(t), . . . , um(t)) (5b)

ui(t) ∈ Ui, i = 1, . . . ,m (5c)

x̃(tk) = x(tk) (5d)

V (x̃(t)) ≤ ρ, ∀t ∈ [tk, tk+N ) (5e)

∂V (x(tk))

∂x
f(x(tk), u1(tk), . . . , um(tk))

≤
∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), . . . , hm(x(tk))),

if tk ≥ t′ (5f)

where S(∆) is the family of piece-wise constant func-

tions with sampling period ∆, N is the prediction horizon,

L(x(τ), u1(τ), . . . , um(τ)) is the economic measure which

defines the cost function, the state x̃ is the predicted trajec-

tory of the system with u1, . . . , um computed by the LEMPC

and x(tk) is the state measurement obtained at time tk. The

optimal solution to this optimization problem is denoted by

u∗

i (t|tk), i = 1, . . . ,m, which is defined for t ∈ [tk, tk+N ).
In the optimization problem of Eq. 5, the constraints of

Eqs. 5b-5e are active in both operation modes; the constraint

of Eq. 5f is only active in the second operation mode.

Specifically, the constraint of Eq. 5b is the system model

used in the LEMPC; the constraint of Eq. 5c defines the input

constraints on all the inputs; the constraint of Eq. 5d defines

the initial condition; the constraint of Eq. 5e ensures that

the state of the system is maintained in the stability region

Ωρ. This constraint allows the LEMPC to obtain the optimal

trajectory from an economic standpoint while guaranteeing

that the state of the system is always within the stability

region. The constraint of Eq. 5f enforces that, after time t′

(i.e., in the second operation mode), the Lyapunov function

of the system decreases at least at the rate given by the

Lyapunov-based controller h(x) implemented in a sample-

and-hold fashion.

The manipulated inputs of the proposed control design

from time tk to tk+1 (k = 0, 1, 2, . . .) are defined as follows:

ui(t) = u∗

i (t|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (6)

B. Stability analysis

As it will be proved in Theorem 1 below, the proposed

LEMPC takes advantage of the constraints of Eqs. 5e and 5f

to compute the optimal trajectories u1, . . . , um such that the

state of the system is always restricted in the stability region

Ωρ and eventually the Lyapunov function value V (x(tk)) is

a decreasing sequence with a lower bound and achieves the

closed-loop stability of the system.

Theorem 1: Consider the system of Eq. 1 in closed-loop

under the LEMPC design of Eq. 5 based on a controller h(x)
that satisfies the conditions of Eq. 2. Let ǫw > 0, ∆ > 0 and

ρ > ρs > 0 satisfy the following constraint:

−α3(α
−1
2 (ρs)) + LxM∆ ≤ −ǫw/∆. (7)

If x(t0) ∈ Ωρ and if ρ∗ ≤ ρ where ρ∗ = max{V (x(t+∆)) :
V (x(t)) ≤ ρs}, then the state x(t) of the closed-loop system

is always bounded in Ωρ and is ultimately bounded in Ωρ∗ .

Proof: The proof consists of two parts. We first prove

that the optimization problem of Eq. 5 is feasible for all states

x ∈ Ωρ. Subsequently, we prove that, under the LEMPC

design of Eq. 5, the state of the system of Eq. 1 is always

bounded in Ωρ and is ultimately bounded in a region that

contains the origin.

Part 1: When x(t) is kept in the region Ωρ (which will be

proved in the Part 2), the feasibility of the LEMPC of Eq. 5

follows because all input trajectories ui(t) such that ui(t) =
hi(x(tk+j)), ∀t ∈ [tk+j , tk+j+1) with j = 0, . . . , N − 1 are

feasible solutions to the optimization problem of the LEMPC

since all such trajectories satisfy the input constraint of

Eq. 5c and the Lyapunov-based constraints of Eqs. 5e and 5f.

This is guaranteed by the closed-loop stability property of the

Lyapunov-based controller in Ωρ.

Part 2: We first note that according to Proposition 1 in

[15], the predicted state trajectory in both operation modes

lies in the stability region of the Lyapunov-based controller

h(·) when it is applied in a sample-and-hold fashion. So,

V (x̃(τ)) ≤ ρ for both operation modes. We consider the

two different operation modes in this proof and prove that in

the first operation mode, the state of the closed-loop system

is always bounded in the region Ωρ, and that in the second

operation mode, the Lyapunov function values V (x(tk)) of

the closed-loop system is a decreasing sequence with a lower

bound.

First, we assume that the LEMPC is in the first operation

mode (i.e., tk < t′). Because of the constraint of Eq. 5e,

it ensures that the state of the system of Eq. 1 is always

bounded in Ωρ.

Second, we assume that the LEMPC is in the second

operation mode (i.e., tk ≥ t′). When x(tk) ∈ Ωρ, from

the inequalities of Eq. 2 and the inequality of Eq. 5f, the

following inequality can be written:

∂V (x(tk))

∂x
f(x(tk), u

∗

1(tk|tk), . . . , u
∗

m(tk|tk))

≤
∂V (x(tk))

∂x
(f(x(tk), h1(x(tk)), . . . , hm(x(tk)))

≤ −α3(|x(tk)|).
(8)

The time derivative of the Lyapunov function along the actual

state trajectory x(t) of the system of Eq. 1 in t ∈ [tk, tk+1)
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is given by:

V̇ (x(t)) =
∂V (x(t))

∂x
(f(x(t), u∗

1(tk|tk), . . . , u
∗

m(tk|tk)).

(9)

Adding and subtracting
∂V (x(tk))

∂x
(f(x(tk), u

∗

1(tk|tk), . . . ,

u∗

m(tk|tk)) into the right-and-side of Eq. 9 and taking Eq. 8

into account, we obtain the following inequality:

V̇ (x(t))≤−α3(|x(tk)|)

+
∂V (x(t))

∂x
(f(x(t), u∗

1(tk|tk), . . . , u
∗

m(tk|tk))

−
∂V (x(tk))

∂x
(f(x(tk), u

∗

1(tk|tk), . . . , u
∗

m(tk|tk)).

(10)

From Eq. 2, Eq. 4 and the above inequality, the following

inequality is obtained for all x(tk) ∈ Ωρ/Ωρs
:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + Lx|x(t)− x(tk)|.

Taking into account Eq. 3 and the continuity of x(t), the

following bound can be written for all t ∈ [tk, tk+1),
|x(t) − x(tk)| ≤ M∆. Using this expression, we obtain

the following bound on the time derivative of the Lyapunov

function for t ∈ [tk, tk+1), for all initial states x(tk) ∈
Ωρ/Ωρs

:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + LxM∆.

If the condition of Eq. 7 is satisfied, then there exists ǫw > 0
such that the following inequality holds for x(tk) ∈ Ωρ/Ωρs

:

V̇ (x(t)) ≤ −ǫw/∆, ∀t = [tk, tk+1).

Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V (x(tk+1)) ≤ V (x(tk))− ǫw

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1)
(11)

for all x(tk) ∈ Ωρ/Ωρs
. Using Eq. 11 recursively, it is proved

that, if x(t′) ∈ Ωρ/Ωρs
, the state converges to Ωρs

in a

finite number of sampling times without leaving the stability

region. Once the state converges to Ωρs
⊆ Ωρ∗ , it remains

inside Ωρ∗ for all times. This statement holds because of

the definition of ρ∗. This proves that the closed-loop system

under the LEMPC of Eq. 5 is always bounded in Ωρ and is

ultimately bounded in Ωρ∗ .

Remark 1: Instead of requiring that the closed-loop sys-

tem state settles to a steady-state at the end of the prediction

horizon as in [7], in the proposed design, the LEMPC

of Eq. 5 has two different operation modes. In the first

operation mode, the LEMPC optimizes the economic cost

function within the stability region Ωρ. When the proposed

LEMPC is in the second operation mode, it drives the closed-

loop system state to the steady-state quickly. The proposed

LEMPC also possesses a stability region which can be

explicitly characterized.

Remark 2: Note that in order to achieve optimal perfor-

mance, in general, the prediction horizon of the LEMPC

of Eq. 5 should be long enough to cover the period in

which the process operation should be optimized. However,

TABLE I

PARAMETER VALUES

T0 = 300 K F = 5 m3

hr

V = 1.0 m3 E = 5× 104 kJ
kmol

k0 = 8.46× 106 1

hr
∆H = −1.15× 104 kJ

kmol

Cp = 0.231 kJ
kgK

R = 8.314 kJ
kmolK

σ = 1000 kg

m3 CAs = 2 kmol
m3

Ts = 400 K CA0s = 4 kmol
m3

Qs = 0 KJ
hr

long prediction horizon may not be practical for a real-

time implementation of an MPC algorithm (especially when

nonlinear systems with a large number of manipulated inputs

are considered) because of the high computational burden.

For certain applications, we may overcome this issue by

driving part of the system states to certain economic optimal

set-points and operating the rest of the system states in a

time-varying manner to further maximize the economic cost

function. This implies that we operate part of the system in

the second operation mode and part of the system in the first

operation mode simultaneously. Please see Section IV for an

application of this approach to a chemical process example.

IV. APPLICATION TO A CHEMICAL PROCESS EXAMPLE

Consider a well-mixed, non-isothermal continuous stirred

tank reactor (CSTR) where an irreversible second-order

exothermic reaction A → B takes place [16]. A is the

reactant and B is the desired product. The feed to the

reactor consists of pure A at flow rate F , temperature T0 and

molar concentration CA0. Due to the non-isothermal nature

of the reactor, a jacket is used to remove/provide heat to the

reactor. The dynamic equations describing the behavior of

the system, obtained through material and energy balances

under standard modeling assumptions, are given below:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A (12a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

σCp

k0e
−E
RT C2

A +
Q

σCpV
(12b)

where CA denotes the concentration of the reactant A, T
denotes the temperature of the reactor, Q denotes the rate of

heat input/removal, V represents the volume of the reactor,

∆H, k0, and E denote the enthalpy, pre-exponential constant

and activation energy of the reaction, respectively and Cp and

σ denote the heat capacity and the density of the fluid in the

reactor, respectively. The values of the process parameters

used in the simulations are shown in Table I. The process

model of Eq. 12 is numerically simulated using an explicit

Euler integration method with integration step hc = 10−6 hr.

The process model has one unstable steady-state and one

stable steady-state in the operating range of interest. The

control objective is to regulate the process in a region

around the unstable steady-state (CAs, Ts) to maximize the

production rate of B. There are two manipulated inputs.

One of the inputs is the concentration of A in the inlet

to the reactor, CA0, and the other manipulated input is the
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external heat input/removal, Q. The steady-state input values

associated with the steady-state are denoted by CA0s and Qs,

respectively.

The process model of Eq. 12 belongs to the following

class of nonlinear systems:

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t)

where xT = [CA−CAs T−Ts] is the state, u1 = CA0−CA0s

and u2 = Q − Qs are the inputs, f = [f1 f2]
T and gi =

[gi1 gi2]
T (i = 1, 2) are vector functions. The inputs are

subject to constraints as follows: |u1| ≤ 3.5kmol/m3 and

|u2| ≤ 5× 105 KJ/hr.

The economic measure that we consider in this example

is as follows [16]:

L(x, u1, u2) =
1

tf

∫ tf

0

k0e
−

E
RT (τ)C2

A(τ)dτ (13)

where tf = 1 hr is the final time of the simulation. This

economic objective function is to maximize the average

production rate over process operation for tf = 1 hr. We also

consider that there is limitation on the amount of material

which can be used over the period tf . Specifically, the control

input trajectory of u1 should satisfy the following constraint:

1

tf

∫ tf

0

u1(τ)dτ = 1 kmol/m3. (14)

This constraint means that the average amount of u1 during

one period is fixed. For the sake of simplicity and without

loss of generality, we will refer to Eq. 14 as the integral

constraint.

We will design an LEMPC following Eq. 5 to manipulate

the two control inputs. We assume that the full system state

x is measured and sent to the LEMPC at synchronous time

instants tk = k∆, k = 0, 1, . . ., with ∆ = 0.01 hr = 36 sec.
The LMPC horizon is N = 10.

Since the LEMPC is evaluated at discrete-time instants

during the closed-loop simulation, the integral constraint is

enforced as follows:

M−1
∑

i=0

u1(ti) =
tf
∆

(15)

where M = 100.

To ensure that the integral constraint is satisfied through

the period tf , at every sampling time in which the LEMPC

obtains the optimal control input trajectory, it utilizes the

previously computed inputs u1 to constrain the first step

value of the control input trajectory u1 at the current

sampling time. Based on the cost function formulation, for

maximization purposes, it is expected that CA and T should

be increased which results in the fact that at the beginning

of the closed-loop simulation u1 should rise to its maximum

value and after a while it will go down to its lowest value to

satisfy the integral constraint. We assume that the decrease

of the Lyapunov function starts from the beginning of the

simulation (i.e., t′ = 0) for part of the system state (i.e.,

temperature). To maximize the production rate, we pick

a temperature set-point near the boundary of the stability

region (T = 430 K), considering the constraints on the

control input Q. Due to the fact that the first ODE (CA)

of Eq 12 is input-to-state-stable (ISS) with respect to T , and

the contractive constraint of Eq. 16g (see Eq. 16) ensures

that the temperature converges to the set-point, the stability

of the closed-loop system is guaranteed for all x(0) ∈ Ωρ. To

this end, we define VT (tk) = (T (tk)− 430)2. The LEMPC

formulation for the chemical process example in question

has the following form:

max
u1,u2∈S(∆)

1

N∆

∫ tk+N

tk

[k0e
−

E
RT (τ)C2

A(τ)]dτ (16a)

˙̃x(t) = f(x̃(t)) +
2

∑

i=1

gi(x̃(t))ui(t) (16b)

u1(t) ∈ gζ , ∀ t ∈ [tk, tk+1) (16c)

x̃(tk) = x(tk) (16d)

x̃(t) ∈ Ωρ (16e)

ui(t) ∈ Ui (16f)

dVT (tk)

dT
(f2(x(tk)) + g22(x(tk))u2(tk))

≤ −γVT (tk) (16g)

where x(tk) is the measurement of the process state at

sampling time tk, γ = 9.53 and the constraint of Eq. 16c

implies that the first step value of u1 should be chosen to

satisfy the integral constraint where the explicit expression

of gζ can be computed based on Eq.15 and the magnitude

constraint on u1. Also, the constraint of Eq. 16g enforces the

Lyapunov function, based on the temperature, to decrease

from the beginning of the simulation. The simulations were

carried out using Java programming language in a Pentium

3.20 GHz computer. The optimization problems were solved

using the open source interior point optimizer Ipopt.

The purpose of the following set of simulations is to

demonstrate that: I) the proposed LEMPC design maximizes

the economic measure L(x, u1, u2); II) the proposed LEMPC

design achieves asymptotic closed-loop stability under differ-

ent initial conditions; and III) the proposed LEMPC design

affords a higher cost function value compared to the steady-

state operation.
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Fig. 1. State trajectories of the process under the proposed LEMPC design

for initial condition (CA(0), T (0)) = (2 kmol
m3 , 400K).

In the first set of simulations, we illustrate the application

of the proposed LEMPC design starting from different initial

conditions. The initial conditions are below and above the

temperature set-point 430 K to evaluate different controller
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Fig. 2. Manipulated input trajectories under the proposed LEMPC design

for initial condition (CA(0), T (0)) = (2 kmol
m3 , 400K).
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Fig. 3. State trajectories of the process under the proposed LEMPC design

for initial condition (CA(0), T (0)) = (2 kmol
m3 , 440K).

behavior. Figs. 1-4 depict the corresponding concentration

and temperature (states) profiles, and the manipulated input

profiles, respectively. As expected, in both scenarios, u1

goes up to its allowable maximum value to increase reactant

concentration as much as possible early on (given the second-

order reaction rate) and after a while it drops to its minimum

value to satisfy the integral constraint ( 1
tf

∫ tf
0

u1(τ)dτ = 1).

On the other hand, the temperature rises as fast as possible

when the temperature initial condition is below 430 K to

maximize the reaction rate, and it decreases as slow as

possible when the initial temperature is above 430 K to

maintain the maximum possible reaction rate while satisfying

the stability constraint; in both cases, the temperature finally

settles at T = 430 K. For both initial condition sets, the

proposed control design achieves practical stability.

Also, we have carried out a set of simulations to con-

firm that the application of the LEMPC design with the

integral constraint on u1 improves the economic objective

function compared to the case that the system operates

at a steady-state satisfying the integral constraint (CAs =
1.55kmol

m3 , Ts = 430K,CA0s = 5kmol
m3 , Qs = −4.88 ∗

104KJ
hr

). This steady-state is computed by assuming that the

reactant material amount is equally distributed in the interval

[0, tf ]. To carry out this comparison, we have computed the

total cost of each scenario based on the index of the following

form:

J =
1

tM

M
∑

i=0

[k0e
−

E
RT (ti)C2

A(ti)]

where t0 = 0 hr, tM = 1 hr and M = 100. By comparing

the cost function values, we find that in the proposed LEMPC

design via time-varying operation (starting from (CA, T ) =
(2kmol

m3 , 400K)), the cost function achieves a higher value
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Fig. 4. Manipulated input trajectories under the proposed LEMPC design

for initial condition (CA(0), T (0)) = (2 kmol
m3 , 440K).

(1932.2) compared to the case of steady-state operation

(1740.2).
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[15] D. Muñoz de la Peña and P. D. Christofides, “Lyapunov-based model

predictive control of nonlinear systems subject to data losses,” IEEE

Transactions on Automatic Control, vol. 53, pp. 2076–2089, 2008.
[16] J. B. Rawlings and R. Amrit, “Optimizing process economic perfor-

mance using model predictive control,” in Nonlinear Model Predictive

Control, Lecture Notes in Control and Information Science Series,
L. Magni, D. M. Raimondo, and F. Allgöwer, Eds., vol. 384. Springer,
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