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Abstract— A sensor network comprising of RF or radar-
based sensors has a deteriorating performance in that the
effective sensor footprint shrinks as the power level decreases.
Power is typically only drawn from the sensor nodes when they
are turned on, and as a consequence, the power consumption
can be controlled by controlling the duty cycle of the sensors.
In this paper, we provide a probabilistic scheduling of the duty
cycles in a sensor network deployed in an area of interest based
on a Poisson distribution which ensures that a performance
measure, e.g., the probability of event detection, is achieved
throughout the lifetime of the network. Upper bounds on

the performance of the network are given in terms of the
decay rates, the spatial distribution intensity, and the desired
performance of the network.

I. INTRODUCTION

A sensor network consists of a large number of sensor

nodes. Each node is typically a low cost, low power de-

vice with limited sensing, processing and communication

capabilities. Despite their individual limitations, with proper

deployment, sensing and processing algorithms, these sensor

nodes can form a highly reliable, efficient and robust net-

work. Sensor networks have a wide range of real life military

and civilian applications [1]. Surveillance and reconnaissance

of large areas, disaster relief operations, and monitoring

parameters of interest in inaccessible areas or extremely large

systems are examples of such applications.

Normally, the sensor nodes are battery powered. Despite

the low power consumption, the lifetime of each sensor

is limited as it is practically impossible to replace the

batteries of a large number of sensors deployed in an

inaccessible or potentially hostile environment [5]. Hence,

power management is a critical problem and subject of

an active research effort in the wireless sensor networks

community. One obvious way to conserve power is to turn

the sensors off when they are not needed. However, this must

be done intelligently because critical events can be missed

and information can be lost while a sensor is off.

Cruz and Sarkar form an optimization problem to min-

imize the power consumption with respect to a QoS con-

straint. They solve this problem for a system comprising of

two wireless receivers and a single transmitter over static

channel using dynamic programming (DP). Using these

results as a guideline, they develop an adaptive scheme that

finds an optimal sleep duration for multiple wireless nodes
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with respect to average packet delay as the performance

constraint [6]. Similarly, Shuman and Liu optimize the sleep

duration of the sensor nodes by forming a cost function that

includes energy consumption and the cost of delay in packet

forwarding [16].

Alfieri et al. use the redundancy in the sensor deployment

to reduce power consumption by turning only a subset of

sensors on at each time, thus increasing the lifetime of the

network [2]. In [17] and [9], the authors devise distributed

protocols for extending the lifetime of the network by turning

on only a sufficient number of sensors. Each node decides

whether it should remain on based on its own observation

of the surrounding environment. Potkonjak and Slijepcevic

propose a heuristic that selects a set of sensor nodes which

are mutually exclusive such that members of each set when

turned on completely cover the area of interest [14]. Since

only one set is active at each time, power is conserved by

eliminating the redundancy.

In [8], Fekri and Subramanian obtained limits on the sleep

duty cycling for energy efficient operation of the system.

Dietrich and Dressler has shown how a number of the

sensor network performance parameters, such as coverage

and connectivity, essentially reduce to network lifetime and

thus formulate a concise definition of network lifetime [7].

Hou and Zhang found the upper bounds on the lifetime of

a sensor network that can be achieved by various switching

algorithms when α portion of the total region is covered by

the sensors [11].

Cassandras and Ning proposed a scheme in which using

the available statistical information about event times, the

sleep time of the receiver is controlled dynamically such that

it samples the channel more frequently when an event is more

likely to happen, and less frequently when it is not. Moreover

they also derived the optimality conditions for minimum

energy consumption [3]. Hsin and Liu have investigated the

relation between redundancy in sensor deployment and the

probability of an event being undetected [12].

In this paper, we extend the work of Hsin and Liu by

taking into account the decrease in the sensor footprint due

to power decay. This behavior is observed in RF type sensors

where size of the sensor footprint is proportional to the

available power to the sensor. We propose a scheduling

scheme which can provide a constant performance, namely

the event detection probability, throughout the lifetime of

the network. We also derive an expression for the lifetime

of network. Here we only consider the sensing capability of

the network; we are not concerned with the communication

among the sensors.
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In Section II, we lay out the basics of the problem under

consideration.The event detection probability for both non-

decaying and decaying networks are discussed in Section

III. Section IV contains the main results of the paper and

provides a scheduling strategy to maintain the desired perfor-

mance throughout the lifetime of the sensor network. Monte-

Carlo simulations are given in Section V that illustrates the

validity and operation of our proposed scheme. We conclude

the paper by the remarks in Section VI.

II. SYSTEM DESCRIPTION

Consider a domain D ⊂ R
2 in which sensors are randomly

deployed such that the location of each sensor is independent

of all the other sensors’ locations. For example, such a

scenario can arise when sensors are dropped in the region of

interest from air. From [10] we know that n points which are

distributed independently with uniform distribution within a

large region D ⊂ R
2 are those of a spatial Poisson point

process.

As such, this sensor deployment can be modeled as a sta-

tionary spatial Poisson point process with constant intensity

λ (expected number of sensors in unit area). Given a set in

D with area A, the probability of having n sensors in this

area is given by

Pn =
(λA)ne−λA

n!
. (1)

All the sensors are considered to have identical battery power

and sensing capabilities when deployed. The sensors are all

RF or radar based where the footprint of each sensor i is a

closed ball, Br(t)(xi), of radius r(t), centered at xi, position

of the sensor. The radius of the footprint depends on the

available power level for each sensor. We consider a Boolean

sensing model, i.e., events are detected only if they are within

the footprint of the sensor.

To conserve power, we let the sensors be on with proba-

bility q. Each sensor can switch its state from on to off or

vice versa, only at discrete time instances k∆t (or simply

at instance k),where ∆t is the sample time. The state of a

sensor at instance k is maintained throughout the interval

[k, k + 1) of length ∆t. A sensor can sense only when it is

on and for an event to be detected it should be within the

footprint of at least one on sensor.

When a sensor is on it consumes power and as a conse-

quence its footprint shrinks. Using the discrete time version

of the battery dynamics in [15], we model the power of each

sensor in the on state using the following dynamics

η(k + 1) = η(k)−∆tγη(k),

where γ is the decay constant and η(k) represents the

remaining battery power. We define a switching signal σ(k)
as

σ(k) =

{

1 if the sensor is on at time k.

0 if the sensor is off at time k.

Since the sensor is on with probability q, the expected value

of σ(k) is E{σ(k)} = σ̂(k) = q(k). We know that power is

only consumed when the sensor is on so we can modify the

power model as

η(k + 1) = η(k) −∆tγσ(k)η(k), (2)

Since σ̂(k) = q(k) and σ(i) is independent of σ(j) for all

i 6= j, the expected power level of each sensor is

η̂(k + 1) =

[

k
∏

i=0

(1−∆tγq(i))

]

η(0). (3)

Moreover, for all t ∈ [k, k+1), we assume that η(t) = η(k).1

III. PROBABILITY OF EVENT DETECTION

Consider a non-persistent event that happens at location

xe ∈ D at some arbitrary time t ∈ [k, k+1). A non-persistent

event does not leave a mark in the environment and can only

be detected when it occurs. Hence, this event is detected if

it is within the footprint of at least one sensor which is in

on state at time k. We first consider a non-decaying sensor

network, i.e. network of sensors whose footprints does not

change with time.

Lemma 3.1: [12] The probability of an event going

undetected by a non-decaying sensor network deployed

randomly with an intensity λ is given by Pu = e−λπr2q .

Proof: The probability of an event going undetected is equal

to the sum of probabilities of the event being in range of

n ∈ [0,∞] sensors and all of them being off; The proof of

this Lemma can be found in [12].

Now, consider a decaying network where the power of the

sensors is consumed when they are on, resulting in a decrease

in the area of the sensor footprints which is proportional to

the decay in power [4]. Martin et al. have shown that if

the sensor range model is based on the RF power density

function for an isotropic antenna, the sensor footprint is

proportional to the available power of the sensor node [13],

i.e.

r2(t) ∝ η(t). (4)

where r(t) is the radius of the sensor footprint at time t ∈
[k, k + 1). Hence, the area of the sensor footprint at time t

is

A(t) = πr(t)2 = αη(t). (5)

where α = ζπ is a constant with ζ being the constant of

proportionality in Equation (4).

Theorem 3.2: The probability of an event being detected

by a decaying sensor network is given by

Pd(k) = 1− e−λc[
∏k−1

i=0 (1−∆tγq(i))]q(k),

as the number of sensors goes to infinity.

1We should note that in this analysis we are not considering the potential
power consumption due to switching between the on and off states.
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Proof: From Lemma 3.1, we know that an event at xe ∈ D is

detected in a non-decaying sensor network if there is at least

one on sensor in Br(xe), where r is the radius of the sensors

footprint. For a decaying network this reasoning can not be

used directly. Although all the sensors are initially identical,

we have no reason to believe that the battery powers and

sensors footprint areas are the same throughout the network

at any time k 6= 0 due to sensor switching and power decay.

Instead, at each time k, there are a finite number of possible

footprints, N(k) ∈ [1,M ], corresponding to all possible on−
off combinations, where M is the total number of sensors

in the network. At each time k, associate Ai(k) with the ith

possible footprint, i = 1, 2, . . . ,min (M, 2k), according to

some indexing of the possible footprints.2 Considering that

the sensor deployment follows a Poisson process model, the

probability of n sensors being in a given set with area Ai(k)
is given by (1) as

P i
n(k) =

(δi(k)λAi(k))
ne−δi(k)λAi(k)

n!
,

Thus, the probability of an event going undetected by all the

sensors of footprint area Ai(k) is

P i
u(k) =

∞
∑

n=0

(1− q)n
(δi(k)λAi(k))

neδi(k)λAi(k)

n!
,

= e−δi(k)λAi(k)q,

where

δi(k) =
number of sensors with footprint area Ai(k)

total number of sensors
,

and
∑N(k)

i=1 δi(k) = 1. Hence δi(k)λ is the intensity of

sensors with footprint area Ai(k). The total probability of

an event going undetected by all the sensors in the network

is

Pu(k) =

N(k)
∏

i=1

P i
u(k) = e

−

(

∑N(k)
i=1 δi(k)Ai(k)

)

λq
. (6)

It is important to note that
∑N(k)

i=1 δi(k)Ai(k) is the weighted

average of footprint area of all the sensors in the network.

So the above expression can be written as

N(k)
∑

i=1

δi(k)Ai(k) =
1

M

M
∑

j=1

Aj(k).

From the Law of Large Numbers we know that for a

large number of sensors this mean of sensor footprints will

approach Â(k), the exprected area of the sensors’ footprints,

or formally

1

M

M
∑

j=1

Aj(k) → Â(k) as M → ∞.

Replacing this in Equation (6), we get

Pu(k) = e−λÂ(k)q. (7)

2Strictly speaking, i is really a funtion of k, but we suppress this for
notational convinience.

The expected footprint area can easily be computed by re-

placing the expected power from Equation (3) into Equation

(5) which yields

Â(k) = c

[

k−1
∏

i=0

(1 −∆kγq(i)

]

, (8)

Where c = αη(0) is a constant. Noting that Pd = 1 − Pu

and substituting the value of Â(t) in Equation (7) concludes

the proof.

Note that if the probability of sensors being on, q, is

constant then the chance of an event being detected, Pd,

clearly decreases with time.

IV. DUTY CYCLE SCHEDULING FOR CONSTANT EVENT

DETECTION PROBABILITY

In many practical applications of sensor networks it is

desired to maintain a minimum satisfactory probability of

detecting events.

Definition 4.1: As the number of sensors goes to infinity,

the desired network performance, Pdes, is the minimum

satisfactory probability of an event being detected.

Consider the case where the desired event detection proba-

bility is a given performance parameter Pdes. Hence β =
1 − Pdes, where β is the probability of the event going

undetected. Duty cycle scheduling of the sensors can help

maintain such performance in the face of the decreasing

sensor power.

Using the result of Theorem 3.2, we have
[

k−1
∏

i=0

(1−∆tγq(i))

]

q(k) =
ln( 1β )

λc
. (9)

Putting k = 0 in the above equation, we can compute the

initial value of q as

q(0) =
ln( 1β )

λc
. (10)

Theorem 4.1: As the number of sensors goes to infinity,

the maximum achievable event detection probability in a

sensor network with given spatial distribution intensity λ

is 1− e(−λc).

Proof: Consider Equation (10) which gives the initial

probability of a sensor to be in on state. This probability

should always remain in the interval [0, 1]. Since β ∈ [0, 1],
it is guaranteed that

q(0) =
ln( 1β )

λc
≥ 0,

for all given β, λ and c.

To ensure that q(0) ≤ 1, we have

q(0) =
ln( 1β )

λc
≤ 1,
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or

β ≥ e−λc.

Hence, Pdes ≤ 1− e−λc.

Our goal is to control q(k), the probability of the sensors

being on at time instant k, such that a desired performance

is achieved. In other words, we are looking to find u(k) ∈ R

such that

q(k + 1) = u(k), (11)

gives a scheduling scheme for the sensors’ duty cycle which

ensures that the overall network event detection performance

will be maintained at the desired level.

Rearranging the terms of Equation (9), we get an expres-

sion for the evolution of q(k) as

q(k + 1) =
1

1−∆tγq(k)
q(k). (12)

In other words, our proposed duty cycle control law is of the

form

u(k) =
1

1−∆tγq(k)
q(k). (13)

Solving the resulting controlled dynamical Equation (12)

with the initial condition (10) gives an expression for q(k)
as

q(k) =
−1

γk∆t+ λc
ln(β)

. (14)

Therefore, Equation (14) gives a scheduling strategy, for

the duty cycle of the sensors, which ensures a constant event

detection probability. However, this can be achieved for a

limited time, beyond which it is impossible to maintain the

desired event detection probability.

Definition 4.2: As the number of sensors goes to infinity,

the lifetime of the sensor network is the maximal time

beyond which the desired network performance cannot

be achieved.

Characterizing this lifetime is essential to the design of the

sensor network.

Theorem 4.2: As the number of sensors goes to infinity,

the lifetime of the sensor network with desired event

detection probability of 1−β is given by 1
γ (

λc
ln(1/β) − 1).

Proof: At the end of the lifetime of the sensor network

all sensors should be on and contributing, i.e., q(kf ) = 1,

where kf denotes the final time instance. Otherwise, if a

sensor is off, turning that on will increase the detection

probability by the probability of the event being in the

footprint of that sensor. This in turn increases the lifetime of

the sensor network which is contradictory to the assumption

of being at the end of lifetime of the network. Using Equation

(14) sensors are all on when γkf∆t + λc
ln(β) = −1, i.e.,

kf∆t = 1
γ (

λc
ln(1/β) − 1).
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Fig. 1. Evolution of probability of a sensor being on for a given desired
performance Pdes where λ = 10, c = 1 and r = 2 . In each case, lifetime
of the network is achieved when q = 1.

Figure (1) depicts how the duty cycle of sensors (prob-

ability of sensors being on) needed to maintain a constant

event detection probability, varies with time. For a constant

event detection probability Pdes, lifetime of the network is

achieved when all sensors are turned on, as is shown in the

proof of the Theorem 4.2. Also, it can be seen that as Pdes

increases, the lifetime of the network decreases.

Corollary 4.3: As the number of sensors goes to infinity,

given a desired lifetime of the sensor network, tf , the

maximum probability of event detection that can be main-

tained in the time interval [0, tf ] is Pd = 1− e
−λc

1+γkf∆t .

Proof: As mentioned in the proof of the Theorem 4.2,

at the end of the lifetime of the sensor network all nodes

are on and contributing to maintain the desired network

performance, i.e., q(kf ) = 1. Substituting this value in

Equation (14), we have

γkf∆t+
λc

ln(β)
= −1.

Solving the above equation for β and noting that Pd = 1−β

concludes the proof.

Figure (2) shows how the lifetime of a sensor network is

related to the desired event detection probability.

V. SIMULATIONS

To put the viability of the proposed duty cycle scheduling

strategy to the test we implemented a Monte-Carlo simula-

tion of a sensor network deployed randomly. We consider a

10 by 10 unit rectangular area with Atotal = 100. Sensors

are deployed in this field according to a spatial stationary

Poisson point process with constant intensity per unit area

of λ = 10. The initial footprint of each sensor is set to be

the closed ball of unit radius centered at the position of the

sensor. Events are generated randomly at each time instant

throughout the area of interest. To increase the accuracy of

the results, each value of Pd is averaged over 100 runs of

simulation.
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Fig. 2. Lifetime tf of network vs desired network performance Pdes. The
parameters are λ = 10, c = 1 and r(0) = 2.
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Fig. 3. Event detection probability Pd vs time t for non-decaying networks
with q = 0.1.

We begin by simulating a non-decaying network with

q(t) = 0.1. Figure (3) shows the resulting event detection

probability. The resulting detection probability Pd = 0.61
is close to that computed analytically from Lemma 3.1,

Pd = 1− Pu = 0.63.

Figure (4) depict the simulation result for a decaying

network where each sensor is on with a constant probability

of q(t) = 0.1 and power of the on sensors decay with

the rate γ = 1. We keep track of each individual sensor’s

decaying footprint (power is only drawn when sensor is

on). The expected footprint remains close to that computed

analytically from Equation (8) and the network performance,

i.e. event detection probability, as anticipated decreases with

time.

To ensure that we maintain the desired performance

throughout the lifetime of the network, we need to vary q

according to Equation (14) as is shown in figure (5).

Figure (6) illustrates the simulation results for decaying

network with scheduling scheme (solid line). We set the

desired network performance at Pdes = 0.63. In the simula-

tion, after the initial settling time (probabilities are compute

at real time), Pd ≈ 0.62 which is very close to required
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Fig. 4. Event detection probability Pd vs time t for decaying networks
with q = 0.1, γ = 1, λ = 10 and A = 1.
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Fig. 5. Probability of sensor being on q vs time t for Pdes = 0.63.

performance indicating the validity of our scheme. Moreover,

a comparison is done with the case if no scheduling scheme

is applied (dashed line). The improvement in the result due

to our proposed scheme is obvious from this plot.

VI. CONCLUSIONS

Sensor networks that are deployed in an area of interest are

usually battery powered and have a limited lifetime. Radio

Frequency based sensors typically have a shrinking footprint

whose size is proportional to the available power level. In

this work, we proposed a probabilistic duty cycle scheduling

strategy that maximizes the lifetime of decaying networks

while guaranteeing a minimum level of performance. We

used the event detection probability as a measure for the

desired performance of the network. A relationship between

the lifetime of the network and desired level of performance

of the network is also derived. Finally, we validate our ana-

lytical results using Monte-Carlo simulations of the proposed

strategies.
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(solid line) and without scheduling scheme (decaying dashed line). Here
λ = 10, A(0) = 1, γ = 1 and c = 1.
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