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Abstract— The paper addresses the problem of characterizing
and computing an estimation of the basin of attraction for
saturated hybrid systems. Hybrid systems presenting saturation
on signals involved in both the continuous-time and the discrete-
time dynamics are considered. A geometrical characterization
of local convergence is provided and employed to extend results
proper of continuous-time and discrete-time saturated systems
to the hybrid ones. A computation oriented condition of local
convergence is given in form of convex constraints.

I. INTRODUCTION

Hybrid systems are dynamical systems in which both

continuous-time and discrete-time dynamics are present. The

growing importance of hybrid systems is mainly due to

the increasing application of digital devices for the control

of real systems, as chemical processes, communication and

automotive systems, among others. The main issue is that the

classical control theories, concerning continuous-time and

discrete-time systems, do not apply to many of the problems

raised in this context. Proper analysis and control techniques

have to be investigated and developed, see for instance [4],

[5], [8], [11], [16], and [13], [18] concerning reset systems.

In this paper we consider the problem of computing

ellipsoidal estimations of the basin of attraction for saturated

hybrid systems. Ellipsoidal estimates, although on one hand

entail a certain degree of conservativeness (with respect to

polytopes for instance), permits to pose the problem in an

efficiently solvable way. Notice that the problem is tightly

linked to Lyapunov theory for quadratic functions, and can

be posed as a convex optimization one, in certain cases. The

issue of computation of ellipsoidal estimations of the basin

of attraction for linear saturated systems, both in continuous-

time and discrete-time, has been dealt with in [2], [6], [9],

[10]. Also polytopic estimations, for linear saturated systems

and similar, have been considered, see [1], [3].

A first contribution of our paper is the geometrical char-

acterization of contractiveness of ellipsoids using convexity

related properties. First we prove that the value of a linear

saturated function is contained in a set determined by a

finite number of vertices, easily computable. Such result

permits to characterize the Lyapunov condition for quadratic

functions by means of convex constraints. The condition is

useful from computational point but it also provides a deeper
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theoretical insight to the problem of local convergence of

saturated systems. Some of the results present in literature

for continuous-time and discrete-time linear saturated sys-

tems are improved or recovered as particular cases of our

approach. The extension of such results to obtain a condition

for local convergence also for saturated hybrid systems is

another contribution of the paper. Finally, a computation

oriented condition for a function to be a local quadratic

Lyapunov function is stated and applied to reset systems.

The paper is organized as follows: Section II presents

the problem statement. Section III provides the geometrical

characterization of local convergence for saturated hybrid

systems. In Section IV some computation oriented consider-

ations are given and in Section V the presented method is

applied to the model of a reset system. The paper ends with

a section of conclusions.

Notation

Given n ∈ N, define Nn = {x ∈ N : 1 ≤ x ≤ n}. Given

A ∈ R
n×m, Ai with i ∈ Nn denotes its i-th row, A( j) with

j ∈ Nm its j-th column. For two symmetric matrices, A and

B, A > B means that A−B is positive definite. The identity

matrix of order n is denoted In, the null m × n matrix is

denoted 0m×n. Operators ≤,≥,< and > are intended to apply

element-wise to vectors a, b ∈ R
n. Given the symmetric

positive definite matrix P∈R
n×n, define the ellipsoid E (P)=

{x ∈ R
n : xT Px ≤ 1}. Given the set D and α ≥ 0, denote

αD = {αx : x ∈ D} and co{D} is its convex hull. Given the

finite set J ⊆ Nm, we denote J̄ = Nm − J, with m ∈ N.

II. PROBLEM STATEMENT

Consider the following plant:
{

ẋp(t) = Apxp(t)+ Bpup(t),
yp(t) = Cpxp(t),

(1)

where xp ∈ R
np is the state vector, yp ∈ R

p is the measured

output of the plant and up ∈ R
m is the input of the plant.

Associated to system (1), we consider a reset controller

whose state is xc ∈R
nc . By using the hybrid framework intro-

duced in [5], two regions F and J are defined and referred

to as the flow and jump sets, respectively. Possible forms

of F and J are presented in the following section. The

reset controller is described by continuous-time dynamics if

the states belong to region F ⊆ R
np+nc or the time variable

τ ∈ R is smaller than or equal to the parameter ρ ∈ R, and

it has a discrete-time behavior otherwise. That is






ẋc(t, j) = Acxc(t, j)+ Bcuc(t),
yc(t, j) = Ccxc(t, j)+ Dcuc(t),
τ̇(t, j) = 1,

(2)
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if (xp,xc) ∈ F or τ ≤ ρ , and

{

xc(t, j + 1) = Adxc(t, j)+ Bdud(t),
τ(t, j + 1) = 0,

(3)

if (xp,xc) ∈ J and τ ≥ ρ , where xc(t, j) ∈ R
nc is the state

of the controller at time t with j occurred resets before time

t, xc(t, j) is the state value before a jump, xc(t, j+1) after a

jump and yc ∈ R
m is the controller output. Variables uc(t) ∈

R
p and ud(t)∈R

nc are the inputs to the continuous-time and

the discrete-time dynamics of the controller, respectively.

The variable τ corresponds to the so-called ”temporal

regularization”, that permits to impose the condition that

successive jumps are not allowed before a certain time

interval of length ρ > 0. The objective of the temporal

regularization is to avoid an infinite number of jumps in a

finite interval of time, i.e. to avoid Zeno solutions [5].

We suppose that magnitude limitations on the input of

the plant are present. Also a bound on the amplitude of the

discrete-time dynamics variation is assumed. That is, we pose

up = ϕ(yc), ud = ϕ(xc), (4)

where ϕ : R
a → R

a, with a ∈ N, is the saturation function

ϕi(y) = sgn(yi)min{|yi|, 1}, (5)

for every i ∈ Na, for all y ∈ R
a. The controller input is the

plant output, that is uc = yp.

Remark 1: It is worth recalling that posing the bounds

on the saturated signals yi to 1 in spite of through a

positive vector ȳ ∈ R
m, as used in some cases in literature,

does not induce any loss of generality. Notice in fact that

sgn(yi)min{|yi|, ȳi} = ȳi sgn(yi)min{|yi/ȳi|, 1} for all i ∈
Nm. Then, for instance, by properly scaling matrices Bp, Cc

and Dc, saturations on up can be expressed as in (5).

The continuous-time controller (2) is supposed to stabilize

system (1), in absence of the saturation on up, i.e. if up = yc.

Remark 2: The case under analysis is more general than

the classical reset systems framework, in which no saturation

is taken into account and the discrete-time dynamics consists

essentially in setting the state of the controller to the value

of 0. Such case is easily recovered by posing Ad = 0nc×nc ,

Bd = 0nc×md
and removing the saturation constraints.

The objective of the paper is summarized below.

Problem 1: Given the flow and jump sets, F and J ,

determine the greatest ellipsoid Ω = E (P), with P = PT > 0

such that, for any x(0) ∈ Ω and τ(0) = 0, the asymptotic

stability of the system (1) in closed-loop with the controller

(2) and (3) is guaranteed, with saturations as in (4).

Then, the aim is to optimize the size of the ellipsoidal

estimation of the basin of attraction for the closed-loop

system (1), (2) and (3) with saturations as in (4). As the

framework taken into account is more general than the

classical reset systems, the solution would apply to many

cases of saturated hybrid systems.

III. CONTRACTIVENESS CONDITION FOR HYBRID

SYSTEMS

The closed-loop saturated hybrid system, obtained from

(1), (2) and (3), has continuous-time dynamics given by






















ẋp(t) = Apxp(t)+ Bpϕ(Ccxc(t, j)+ DcCpxp(t)),
ẋc(t, j) = Acxc(t, j)+ BcCpxp(t),
τ̇(t, j) = 1,
yp(t) = Cpxp(t),
yc(t, j) = Ccxc(t, j)+ DcCpxp(t),

(6)

which is valid in the flowing mode, that is when (xp, xc)∈F
or τ ≤ ρ , and a discrete-time behavior, given by

{

xc(t, j + 1) = Adxc(t, j)+ Bdϕ(xc(t, j)),
τ(t, j + 1) = 0,

when the jump conditions (xp, xc) ∈ J and τ ≥ ρ are veri-

fied. Denoting the augmented state vector as x =
[

xT
p , xT

c

]T
,

with x ∈ R
n where n = np + nc, the system is then given by

{

ẋ = ĝ(x) = Âx + B̂ϕ(K̂x), if x ∈ F or τ ≤ ρ ,
x+ = g̃(x) = Ãx + B̃ϕ(K̃x), if x ∈ J and τ ≥ ρ ,

(7)

where we used ẋ for ẋ(t) and x+ for x(t, j + 1), and with

Â =

[

Ap 0np×nc

BcCp Ac

]

, B̂ =

[

Bp

0nc×m

]

,

Ã =

[

Inp 0np×nc

0nc×np Ad

]

, B̃ =

[

0np×nc

Bd

]

,

K̂ =
[

DcCp Cc

]

, K̃ =
[

0nc×np Inc

]

.

(8)

The dynamics of τ has not been taken into account in the

model, for simplicity.

Remark 3: The presence of a further saturation, on the

plant output yp, could be considered. This would entail the

presence of nested saturations in the first equation of (6).

The feeling of the authors is that such generalization can be

addressed as in [17], and then the results of the paper can

be extended to a wider class of hybrid systems.

The flow and jump sets are assumed to be defined as

F = {x ∈ R
n : xT Mx ≥ 0},

J = {x ∈ R
n : xT Mx ≤ 0},

(9)

where M = MT ∈R
n×n, as in [8]. Different kinds of flow and

jump regions can be defined by (9). Consider for instance

the classical reset rule (see [18], [12]). For reset systems,

the output of the plant and the output of the controller

are assumed one-dimensional, i.e. p = m = 1, and the jump

depends on the sign of their product. Then, in this case, F
and J are given by (9) with M = CT TC where

T =

[

0 −1

−1 0

]

∈ R
2×2, C =

[

Cp 01×nc

DcCp Cc

]

∈ R
2×n.

Please notice that from closure of F and J , their inter-

section is non-empty. Considerations on this fact and its

relations with non-uniqueness of solutions and robustness

can be found in [5], [18]. Furthermore, the formulation (9)

permits to define ellipsoidal jump region with the flow one

that is its complementary on R
n (or vice versa). It is sufficient

to choose symmetric positive (or negative) definite matrix M.
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A. Inclusion condition for saturated functions

In this section we show, first, that the image of the state

x ∈ R
n through a saturated function g(x) is contained in a

set explicitly obtainable. This result, which represents one

of the contribution of the paper, permits to characterize geo-

metrically the condition of contractiveness of a set. Besides

of its practical importance, the presented approach provides

a novel geometrical insight and a deeper comprehension to

the problem of convergence for saturated hybrid systems, as

well as for continuous-time and discrete-time systems.

We introduce the support function of a set, a useful tool for

dealing with convex closed sets and set inclusion relations.

Definition 1: Given a set D ⊆ R
n, the support function of

D evaluated at η ∈ R
n is

φD(η) = sup
x∈D

ηT x.

The support function of a set D evaluated at η can

be seen as the signed ”distance” of the point of D (or

its closure) further from the origin, along the direction η .

Set inclusion conditions can be given in terms of linear

inequalities involving the support functions as recalled here

(see [14], [15] for properties of support functions).

Property 1: Given two closed, convex sets D ⊆ R
n and

E ⊆ R
n, then x ∈ D if and only if

ηT x ≤ φD(η), ∀η ∈ R
n,

and E ⊆ D if and only if

φE(η) ≤ φD(η), ∀η ∈ R
n.

The following theorem is enunciated for general linear

functions with saturation, that is, for g(x) = Ax + Bϕ(Kx),
with adequate matrices A, B and K. The theorem will

be employed to prove results for both the continuous-time

and the discrete-time dynamics, and then applied to hybrid

systems. Recall that, given J ⊆ Nm, we denote J̄ = Nm − J.

Theorem 1: Given a function g(x) = Ax + Bϕ(Kx) and

the ellipsoid Ω = E (P), with P ∈ R
n×n symmetric positive

definite, and H(i,J) ∈ R
1×n such that |H(i,J)x| ≤ 1 for all

x ∈ Ω, for every J ⊆ Nm and every i ∈ J, then

g(x) ∈ G(x), (10)

where G(x) = co{N(J)x ∈ R
n : J ⊆ Nm} and

N(J) = A +∑
i∈J̄

B(i)Ki +∑
i∈J

B(i)H(i,J), (11)

for all J ⊆ Nm.

Proof: Consider x ∈ Ω. First notice that, given J ⊆ Nm

and i ∈ J, we have that |H(i,J)x| ≤ 1 implies that ϕi(x) ∈
co{Kix, H(i,J)x}. In fact, supposing that Kix ≥ 0, (case

Kix < 0 is analogous), if Kix≤ 1 then, trivially, ϕi(Kx) = Kix.

If Kix > 1 then H(i,J)x ≤ 1 = ϕi(Kx) < Kix and the inclusion

is satisfied. This implies, for every η ∈ R
n, that

ηTB(i)ϕi(Kx) ∈ co{ηTB(i)Kix, ηTB(i)H(i,J)x} ⊆ R,

holds for every J ⊆Nm and every i ∈ J. This means that, for

every η ∈ R
n, either we have that

ηTB(i)Kix ≤ ηTB(i)ϕi(Kx) ≤ ηTB(i)H(i,J)x,

or

ηTB(i)H(i,J)x ≤ ηTB(i)ϕi(Kx) ≤ ηTB(i)Kix,

is satisfied. Hence for any η ∈ R
n, every J ⊆ Nm and every

i ∈ J and accurate choice between the values ηT B(i)H(i,J)x
and ηT B(i)Kix provides an upper bound of ηT B(i)ϕi(Kx).
Thus, given η ∈ R

n and x ∈ Ω, there exists J(x,η) ⊆ Nm

such that the condition

ηTAx + ηTBϕ(Kx) = ηTAx + ∑
i∈Nm

ηTB(i)ϕi(Kx) ≤

≤ ηTAx + ∑
i∈J̄(x,η)

ηTB(i)Kix + ∑
i∈J(x,η)

ηTB(i)H(i,J(x,η))x,

(12)

holds. Then, for any η ∈ R
n, there exists J(x,η) ⊆ Nm such

that the support function of N(J(x,η))x ∈ G(x) is greater

than or equal to the support function of g(x) and hence

ηT g(x) ≤ φG(x)(η).

From Property 1, the result (10) follows.

Thus, for every state x ∈ R
n and every saturated function

g(x), the image g(x) is bounded by the convex set G(x),
whose vertices are known.

B. Continuous-time contractiveness

The application of the result provided in Theorem 1 to

the case of continuous-time systems leads to a condition for

an ellipsoid to be an estimation of the basin of attraction of

the saturated system. It is worth noticing that the obtained

result is the same as the one provided in [2], which, in turn,

generalizes the condition presented in [9].

Proposition 1: Consider the continuous-time dynamics

ĝ(x) = Âx + B̂ϕ(K̂x) in (7). Given the ellipsoid Ω = E (P),
with P ∈ R

n×n symmetric positive definite, the symmetric

positive definite matrix Q ∈ R
n×n and Ĥ(i,J) ∈ R

1×n such

that |Ĥ(i,J)x| ≤ 1 for all x ∈ Ω, for every J ⊆ Nm and every

i ∈ J, if

N̂(J)T P+ PN̂(J) ≤−Q, (13)

for all J ⊆ Nm, with

N̂(J) = Â+∑
i∈J̄

B̂(i)Ki +∑
i∈J

B̂(i)Ĥ(i,J), (14)

then Ω is an ellipsoidal estimation of the basin of attraction

and function V (x) = xT Px is a local Lyapunov function

defined in Ω for the continuous-time system in (7).

Proof: Since V (x) is a positive definite function and

V̇ (x) = ĝ(x)T Px+xT Pĝ(x), we have to prove that satisfaction

of (13) for all J ⊆ Nm, with N̂(J) in (14), implies

ĝ(x)T Px + xT Pĝ(x) ≤−xT Qx, (15)

for every x ∈ Ω. From Theorem 1 we have that ĝ(x) ∈
Ĝ(x), with Ĝ(x) = co{N̂(J)x ∈ R

n : J ⊆ Nm}, which implies

the existence of J(x,η) ⊆ Nm, for any η ∈ R
n, such that

ηT ĝ(x)≤ ηT N̂(J(x,η))x, as proved for Theorem 1, see (12).

Posing ηT = xT P and from (13), condition (15) follows and

the result is proved.

Standard matrices manipulations can be used to pose the

condition provided in Proposition 1 in LMI terms, as in [2].
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C. Discrete-time contractiveness

As for the case of continuous-time saturated systems,

Theorem 1 yields to a condition for local convergence in

the context of discrete-time systems. In this case, the results

presented in literature, see [10], are a particular case, more

conservative, of the result presented here.

Proposition 2: Consider the discrete-time dynamics

g̃(x) = Ãx + B̃ϕ(K̃x) in (7). Given the ellipsoid Ω = E (P),
with P ∈ R

n×n symmetric positive definite, the symmetric

positive definite matrix Q ∈ R
n and H̃(i,J) ∈ R

1×n such that

|H̃(i,J)x| ≤ 1 for all x ∈ Ω, for every J ⊆ Nnc and every

i ∈ J, if

Ñ(J)T PÑ(J)−P ≤−Q, (16)

for all J ⊆ Nnc , with

Ñ(J) = Ã+∑
i∈J̄

B̃(i)K̃i +∑
i∈J

B̃(i)H̃(i,J), (17)

then Ω is an ellipsoidal estimation of the basin of attraction

and function V (x) = xT Px is a local Lyapunov function

defined in Ω for the discrete-time system in (7).

Proof: The positive definite function V (x) is such that

V (x+) − V (x) = g̃(x)T Pg̃(x) − xT Px for the discrete-time

system in (7). Proving that fulfillment of (16) for every

J ⊆ Nnc implies

g̃(x)T Pg̃(x)− xT Px ≤−xT Qx, (18)

for every x ∈ Ω, leads to the result stated in the proposition.

From Theorem 1 we have that g̃(x) ∈ G̃(x), with G̃(x) =
co{Ñ(J)x ∈ R

n : J ⊆ Nnc}. The quadratic function V (x) =
xT Px, is convex and bounded over R

n. Since the supremum

of a convex function relative to a convex, compact set C is

attained at some extreme of C (if attained at all), see [14],

then there exists an extreme of set G̃(x) where the maximum

of V (x) is achieved. Thus, there exists J(x) ⊆ Nnc such that

g̃(x)T Pg̃(x) ≤ xT Ñ(J(x))T PÑ(J(x))x = sup
y∈G̃(x)

V (y). (19)

From this and (16), inequality (18) follows.

Also in this case, an LMI formulation of the condition

provided in Proposition 2 can be obtained.

D. Hybrid systems contractiveness

The results presented in Propositions 1 and 2, deriving

from Theorem 1, are employed to state the desired condition

for local convergence for saturated hybrid systems. Given

an ellipsoid Ω = E (P), we impose that every set αΩ with

α ∈ [0, 1], is contractive for the continuous-time dynamics,

for all x contained in the flow and in the jump set. This

is necessary since there is not certainty, in general, that the

state after a jump is contained in the flow region. Moreover,

we pose conditions which ensure that the variation of the

candidate local Lyapunov function V (x) = xT Px during a

jump plus the variation during a flowing interval of ρ , is

negative. This, with the temporal regularization, would imply

that the value of V (x) must be decreasing between two

successive jumps. Such condition is less conservative than

imposing the condition, more intuitive, of decreasing of V (x)

during the jump. In fact, the increasing of V (x) during a jump

is allowed provided that during the successive time interval

of length ρ , V (x) would decrease more.

Theorem 2: Consider the hybrid system in (7). Given the

ellipsoid Ω = E (P), with P ∈ R
n×n symmetric positive defi-

nite, Ĥ(i, I) ∈R
1×n and H̃( j,J) ∈R

1×n such that |Ĥ(i, I)x| ≤
1 and |H̃( j,J)x| ≤ 1, for all x∈Ω, for every I ⊆Nm and i∈ I,

every J ⊆ Nnc and j ∈ J, λ > 0 and σ ≥ 0, if

N̂(I)T P+ PN̂(I) ≤−2λ P, (20)

for all I ⊆ Nm, with N̂(I) as in (14), and

Ñ(J)T e−λ ρInPe−λ ρInÑ(J)−σM ≤ P, (21)

for all J ⊆Nnc , with Ñ(J) as in (17), then Ω is an ellipsoidal

estimation of the basin of attraction and a local Lyapunov

function defined in Ω for the hybrid system in (7) can be

determined.

Proof: First, notice that, from temporal regularization, the

system can be flowing also in the jump region. Condition

(20) implies that the function V (x) decreases along the

continuous-time trajectories, within the whole set Ω, from

Proposition 1. In particular, V (x) ≥ 0 for all x ∈ R
n and

V̇ (x) =
∂V (x)

∂x
ẋ = xT Pẋ+ ẋT Px ≤−xT λ Px− xT Pλ x,

from Proposition 1, with ẋ = ĝ(x) as defined in (7), see (15)

with Q = 2λ P. Consider the system ˙̄x = −λ x̄, whose trajec-

tories are given by x̄(t) = e−λ tIn x̄(0). The time-derivative of

function V (x) along its trajectories is given by

˙̄V (x̄) =
∂V (x̄)

∂ x̄
˙̄x = x̄T P ˙̄x + ˙̄xT Px̄ = −x̄T λ Px̄− x̄T Pλ x̄,

for every x̄ ∈ R
n. Then, for every x = x̄ ∈ Ω, the time-

derivatives along the trajectories of systems (7) and ˙̄x =−λ x̄

are such that V̇ (x)− ˙̄V (x) ≤ 0. Since the integral of a non-

positive function is smaller than or equal to 0 we have

V (x(τ))−V (x(0)) =
τ
∫

0

V̇ (x(t))dt ≤
τ
∫

0

˙̄V (x̄)dt =

=
τ
∫

0

˙̄xT Px̄dt +
τ
∫

0

x̄T P ˙̄xdt = x̄(τ)T Px̄(τ)− x̄(0)T Px̄(0),

and then, for x(0) = x̄(0), we have that

V (x(τ)) ≤ x̄(τ)T Px̄(τ) = x(0)T e−λ τInPe−λ τInx(0). (22)

This means that the trajectories of systems (7) and ˙̄x = −λ x̄

starting at the same point x(0) and after time τ are such

that V (x(τ)) ≤ V (x̄(τ)), for every τ ≥ 0. Now we prove

that conditions (20) and (21) imply that the value of V (x)
decreases between two jumping instant. From the temporal

regularization, it is sufficient to prove that the variation

(possibly positive) of function V (x) during a jump plus the

variation of V (x) after ρ of flowing is non-positive. Such

condition must be verified when the state is in the jump

set J . Consider a jump at time 0 (no loss of generality

is induced) followed by a flowing interval of duration ρ .
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Denote with x−0 the state before the jump and x+
0 the state

after the jump. Then, for every x−0 ∈J , the condition reads

V (x+
0 )−V(x−0 )+

ρ
∫

0+

V̇ (x)dt ≤ 0,

and thus, being V (x−0 ) = (x−0 )T Px−0 , we have

x(ρ)T Px(ρ) ≤ (x−0 )T Px−0 . (23)

Condition (23) means that V (x) before the jump is greater

than (or equal to) the value after time ρ , when a successive

jump could occur. From (22), with x(0) = x+
0 , we have that

(x+
0 )T e−λ ρInPe−λ ρInx+

0 ≤ (x−0 )T Px−0 and also

g̃(x−0 )T Pg̃(x−0 ) = (x+
0 )T Px+

0 ≤ (x−0 )T eλ ρInPeλ ρInx−0 , (24)

are equivalent to condition (23). Finally, since, as shown in

the proof of Property 2, we have

g̃(x)T Pg̃(x) ≤ xT Ñ(J(x))T PÑ(J(x))x,

for every x ∈ Ω and for a proper J(x) ⊆Nnc , (see (19)), then

condition (21) implies (24) for every x ∈ Ω∩I and τ ≤ ρ .

In fact, posing x = x−0 and applying the S-procedure, we have

g̃(x)T Pg̃(x) ≤ xT Ñ(J(x))T PÑ(J(x))x ≤

≤ xT eλ ρIn(P+ σM)eλ ρInx,

that leads to satisfaction of condition (24), and hence (23),

for every x ∈ Ω such that x ∈J = {x ∈ R
n : xT Mx ≤ 0}.

Remark 4: Function V (x) in Theorem 2 is not necessarily

decreasing along the trajectories of system (7), due to jumps,

but a decreasing Lyapunov function can be constructed.

IV. COMPUTATIONAL ISSUES

Some computation oriented considerations on how to

obtain an ellipsoidal estimation of the basin of attraction

for saturated hybrid systems (7) follow. We propose an LMI

formulation of the condition provided by Theorem 2.

Proposition 3: Consider the hybrid system in (7). Suppose

that there exist W ∈R
n×n symmetric positive definite, λ > 0,

Ẑ(i,J) ∈R
1×n and Z̃( j,J) ∈R

1×n for every I ⊆Nm and i ∈ I,

every J ⊆ Nnc and j ∈ J, such that conditions
(

ÂW + ∑
i∈Ī

B̂(i)K̂iW + ∑
i∈I

B̂(i)Ẑ(i, I)+ λW
)

+
(

WÂT +

+ ∑
i∈Ī

WK̂T
i B̂T

(i) + ∑
i∈I

Ẑ(i, I)T B̂T
(i) + λW

)

≤ 0,

(25)
[

W
(

WÃT + ∑
j∈J̄

W K̃T
j B̃T

( j) + ∑
j∈J

Z̃( j,J)T B̃T
( j)

)

E

∗ W

]

≥ 0,

(26)
[

1 Ẑ(i, I)
∗ W

]

≥ 0, ∀i ∈ I,

[

1 Z̃( j,J)
∗ W

]

≥ 0, ∀ j ∈ J,

(27)

are satisfied for every I ⊆ Nm and J ⊆ Nnc , where E =
e−λ ρIn . Then set Ω = E (P), with P = W−1, is an ellipsoidal

estimation of the basin of attraction and a local Lyapunov

function defined in Ω for the hybrid system in (7) can be

determined.

Proof: The proposition stems from Theorem 2. In fact, it

can be proved, using standard matrix inequalities manipula-

tion techniques, that (25)-(27) imply the conditions of the

theorem, with W = P−1, Ẑ(i, I) = Ĥ(i, I)W and Z̃( j,J) =
H̃( j,J)W , for every I ⊆ Nm and i ∈ I, every J ⊆ Nnc and

j ∈ J. The only main difference is that condition (21), which

ensures that V (x) is non-increasing between two jumps in

Ω∩J , is relaxed in (26) imposing the condition over the

whole set Ω. Condition (27) assures that |Ĥ(i, I)x| ≤ 1 and

|H̃( j,J)x| ≤ 1, for all I ⊆ Nm, i ∈ I, J ⊆ Nnc and j ∈ J.

Remark 5: Notice that, as stated in the proof of Proposi-

tion 3, the condition on the variation of the value of V (x)
during the jump has been imposed over the whole set Ω,

although it could have been restricted to the set J . In fact,

the term σM in (21), with which we impose the satisfaction

of the condition in J , is not present in (26). This, if on one

hand could introduce some conservativeness, on the other

permits to formulate the problem in LMI form, fixing λ .

The LMI condition provided in Proposition 3 can be used

to pose Problem 1 as an optimization problem. It is left to

define the measure of the ellipsoid to be maximized.

Remark 6: We propose here, as an evaluation criterion,

to maximize the value of β such that the polytope β L =
co{β v(k) ∈ R

n : k ∈ NV } is contained in the estimate Ω =
E (P), where v(k) ∈ R

n with k ∈ NV are a set of given points

in the state space. The optimization problem results:

max
β ,λ , Z̃,Ẑ,W

β

s.t. (25),(26),(27), ∀I ⊆ Nm, ∀J ⊆ Nnc ,
[

1 β v(k)T

∗ W

]

≥ 0, ∀k ∈ NV ,

(28)

where, for sake of notational compactness, we denoted with

Z̃ and Ẑ the matrices Z̃(i, I) and Ẑ( j,J) for every I ⊆Nm and

i ∈ I, every J ⊆ Nnc and j ∈ J. The first set of constraints in

(28) ensures that E (W−1) is an estimation of the domain of

attraction for system (7), and the second one imposes that

β v(k) ∈ E (W−1), for every k ∈ NV .

Finally notice that, although the constraints (25) and (26)

are not linear in the optimization variables, they are LMI

for fixed value of λ . Then, in practice, the problem can be

solved for different values of λ > 0, to obtain an estimation

of the maximal value of β , and then the maximal estimation

of the domain of attraction.

V. NUMERICAL EXAMPLE: RESET SYSTEM

We consider the system proposed in [7] characterized by

the linear open-loop one-dimensional unstable system:
{

ẋp(t) = 0.1xp(t)+ ϕ(yc(t, j)),
yp(t) = xp(t),

with p = np = m = 1, and the stabilizing PI controller
{

ẋc(t, j) = −0.2yp(t),
yc(t, j) = xc(t, j)−2yp(t),

with nc = 1, and discrete-time dynamics characterizing the

reset behavior with saturation is

xc(t, j + 1) = xc(t, j)+ ϕ(−xc(t, j)).
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The temporal regularization parameter is ρ = 2.
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Fig. 1. Set Ω and trajectories of the reset system.

We solve the optimization problem (28) where points v(k),
with k ∈ N4, are the vertices of the square set L = {x ∈ R

2 :

‖x‖∞ ≤ 1}, and for different values of λ . We found that

the value of λ = 0.02 provides the best value (among those

tested) of β , that is β = 3.2689 with

P =

[

0.0409 −0.0101

∗ 0.03241

]

.

The ellipsoid Ω = E (P) is an estimation of the domain

of attraction of the reset system, regardless on the region of

jump. This can be noticed in Figure 1, where the ellipsoid is

depicted with some trajectories of the reset system assuming

that the jump can occur at any point of Ω. In particular,

the trajectory marked in bold line with initial condition

x(0)= x−0 = [5.1188, 1.0376]T is interesting. Notice that with

the first jump at time 0 the trajectory leaves the ellipsoid,

then the value of V (x) increases, i.e. V (x+
0 ) > 1. At the time

of the second jump the state is contained in the ellipsoid,

which means that V (x(ρ)) < 1. Then V (x) decreases between

the two jumps, as ensured by Proposition 3. The value of

V (x) along the trajectory starting at x = [5.1188, 1.0376]T

is shown Figure 2, in thick continuous line. Function V (x)
passes at time t = 0 from the value of 1 to 1.0686, but at the

time of the second jump, t = 2, its value is smaller than 1, in

particular V (x(2)) = 0.9196. The dashed thin line in Figure

2 is the evolution of V (x) of the trajectory of the saturated

system starting in x = [5.1188, 1.0376]T , in absence of the

discrete-time dynamics, that is with J = /0. It can be noticed

that, although at first the reset behavior leads to higher values

of V (x), the effect of the reset is beneficial accelerating the

convergence of V (x) to zero.

VI. CONCLUSIONS

In this paper we dealt with the problem of characterizing

and computing an ellipsoidal estimation of the basin of

attraction for saturated hybrid systems. The results presented

are based on a geometrical approach to the analysis of satu-

rated functions. The proposed approach permits to recover or

extend some results present in literature for continuous-time

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6
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1

1.2

t

V
(x

)

Fig. 2. Function V (x) along trajectory starting at x = [5.1188 1.0376]T .

and discrete-time saturated systems, as well as to characterize

local convergence for saturated hybrid systems.
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