
A Comparison of ILC Architectures for Nanopositioners

with Applications to AFM Raster Tracking

Jeffrey A. Butterworth, Lucy Y. Pao, and Daniel Y. Abramovitch

Abstract— In previous work, we compared the raster tracking
performance of two distinct combined feedforward/feedback
control architectures while using model-inverse-based feedfor-
ward control [1], [2]. In this paper, we extend that work into the
application of parallel and serial iterative learning control (ILC)
architectures. These ILC architectures naturally relate to the
two previously studied combined feedforward/feedback control
architectures, feedforward closed-loop injection (FFCLI) and
feedforward plant injection (FFPI). Experimental learning re-
sults from an atomic force microscope (AFM) raster scanner
are provided as well as results comparing the FFPI and FFCLI
architectures with those of the learned performance for parallel
and series ILC. We show that the value of ILC over model-
inverse-based feedforward methods is increased in the presence
of model uncertainty or variation.

I. INTRODUCTION

Several research groups have investigated improving upon

the performance of feedback-only control by combining it

with a feedforward filter [1]–[11]. In particular, two dis-

tinct combined feedforward/feedback architectures have ap-

peared in the atomic force microscope (AFM) literature: the

plant-injection (FFPI) and closed-loop-injection architectures

(FFCLI) in [1], [2] and [3]. In these three references, the ob-

jective of these combined feedforward/feedback architectures

is to improve the tracking of high-speed raster patterns for

AFM imaging, and we have the same objective here.

Both the FFPI and FFCLI architectures can be described

with the block diagram shown in Fig. 1. When using the

FFCLI architecture, FP in Fig. 1 is set to zero and the

feedforward filter FCL acts on the reference signal ahead of

the closed-loop system. When using the FFPI architecture,

FP in Fig. 1 is designed to perform as the feedforward filter

while FCL is a unity-gain function with appropriate phase

properties. Specifically, [1] and [3] discuss a method for the

design of FCL in the FFPI architecture which uses a single-

parameter adaptive delay method; all FFPI experimental

results shown in this paper will utilize the FCL design

technique of [1], [3].

When given the standard FFPI (without the adaptive

delay method of [1], [3]) and FFCLI architectures, one can

This work was supported in part by Agilent Technologies, Inc., the US
National Science Foundation (NSF Grant CMMI-0700877), and a Richard
& Joy Dorf Professorship. The authors gratefully acknowledge Professor
Andrew G. Alleyne for his guidance on the application of ILC to our system.

J. A. Butterworth is a graduate student, and L. Y. Pao is a professor;
both are with the Dept. of Electrical, Computer, and Energy Engineering
at the University of Colorado at Boulder, Boulder, CO 80309 USA,
butterwo@colorado.edu, pao@colorado.edu

D. Y. Abramovitch is a senior research engineer in the Nanotechnology
Group at Agilent Laboratories, 5301 Stevens Creek Blvd., M/S: 4U-SB,
Santa Clara, CA 95051 USA, danny@agilent.com

x d xff ex

uxff

xP
ux

uxfb

F

CFCL

P

Fig. 1. A combined feedforward/feedback block diagram that can be
applied to the raster direction of a piezo-based positioning system. It consists
of a feedback compensator C, a plant-injection feedforward controller FP ,
and a closed-loop-injection feedforward controller FCL.

calculate the FCL filter of the FFCLI architecture required

to achieve theoretical equivalence to the FFPI architecture

(and vice versa). This suggests that, in theory, there is little

value in comparing the two architectures. In practice, FFCLI

is easier to implement, but we have seen its performance

degrade as the order of the filter grows. Implementation of

FFPI is slightly more difficult, but it has the advantage of re-

duced numerical sensitivity (relative to FFCLI) and it retains

an obvious connection to identified plant parameters which

can be advantageous for applying indirect adaptive methods.

Further, the single-parameter adaptive delay method of [1],

[3] continually results in better tracking performance, but it

cannot be applied to the FFCLI architecture.

Model-inverse methods are an effective way to design

feedforward filters. For example, when designing FP for the

FFPI architecture, we can set FP equal to the inverse of

the model of the plant, FP = P−1. Assuming P is exactly

proper, minimum phase, and perfectly modeled, then the

overall transfer function reduces to unity and we can expect

perfect tracking of the reference signal xd.

Linear model-inverse-based control can struggle in the

presence of uncertainty, modeling errors, and/or nonlineari-

ties. Our system has some uncertainty and variation that has

challenged the performance of the tracking of a raster pattern.

This provides substantial motivation for the investigation of a

self-calibrating algorithm such as ILC to continue to improve

upon raster tracking. This paper discusses the application

of ILC to our system, where we focus on the use of the

serial and parallel ILC architectures [12] which is a natural

extension (and comparison) to our past work comparing the

FFPI and FFCLI architectures of Fig. 1.

The arrangement for a parallel application of ILC is

given in Fig. 2. The specifics of this block diagram will be

discussed in Section III, but for now, the reader should note

that the ILC command vector uj+1 is injected into the same

location of the general feedback loop as the output of the

FP filter in the FFPI architecture. As a result, it is natural to

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2266

ux
uxfb

C P

ujej

uj+1

ex

Le

x d x

Memory Memory

Q

Fig. 2. A single-input single-output (SISO) block diagram representing an
application of parallel ILC. The dotted line encloses the ILC system that
has been added to a standard feedback control loop. Le and Q are learning
filters. This parallel ILC architecture is a cousin of the FFPI architecture of
Fig. 1. Here, ej , uj , and uj+1 are vectors.

compare the parallel ILC architecture with that of the FFPI

architecture. The same can be said for a serial application of

ILC (Fig. 3) and the FFCLI architecture.

II. MOTIVATION FOR THE APPLICATION OF ILC

Fig. 4 shows some FFCLI and FFPI experimental results

of each architecture tracking a 152.4 Hz raster pattern

when using model-inverse feedforward design. Specifically,

in Fig. 4(b), FP = 0 and FCL is the inverse of the closed-

loop system with the appropriate amount of delay added to

make the filter causal. A special case of FFPI (including

an adaptive delay filter for FCL) [1] is used to obtain the

performance shown in Fig. 4(a). In that case, FP is the

inverse of the plant model (with the appropriate amount of

delay added to make the filter causal) and FCL = z−τ where

τ is an adapted integer that can update every raster period. In

these results, the plant model P is minimum phase, strictly

proper and includes a 10-sample transport delay.

For each experiment in Fig. 4, the feedback filter C(z) is

the same 5th-order H∞ filter. It was designed following tech-

niques described in [13]. Feedback design objectives include

maximizing bandwidth, limiting saturation, and avoiding

excitation of the plant’s resonance frequency. The exact C(z)
is provided in (1). The discrete sampling frequency of all

controllers (feedback and feedforward) is 25 kHz.

C(z) =
0.74736(z + 1)(z2 − 1.816z + 0.8284)

(z + 0.7072)(z − 0.7899)(z − 1)

×

(z2 − 1.959z + 0.9864)

(z2 − 1.882z + 0.9019)
. (1)

Performance metrics (provided in each subcaption) are

discussed in Subsection II-A and can be used to compare

tracking results. That said, it is more important to note the

deficiencies of the results in Fig. 4, and how ILC might be

able to correct them. In particular, notice the repeatable peak

error in Fig. 4(a), and repeatable error over each raster period

in Fig. 4(b). Both of these repeated errors are also obscured

by noise which can challenge the ILC results. Attempts at

reducing these errors through more accurate models have

helped somewhat. However, the model can vary slightly as

we move about the range of the stage, and we will see in

Section IV that having an accurate model for one particular

operating point is not beneficial for all operating points.

uj

uj+1

Q
Memory

Le
Memory

ej

ux PC
ex

x d

x d

x

x

Fig. 3. A single-input single-output (SISO) block diagram representing
an application of serial ILC. The dotted line encloses the ILC system that
has been added to a standard feedback control loop. Le and Q are learning
filters. This series ILC architecture is a cousin of the FFCLI architecture of
Fig. 1. Here, ej , uj , and uj+1 are vectors.

This plant variation can be seen in Fig. 5 in which we

plot seventeen distinct frequency response functions (FRFs)

measured over the range of the x direction of the AFM while

using the swept-sines system-identification technique. This

figure provides a bound on plant uncertainty.

A. Performance Metrics

When discussing the performance of the tracking of a

raster scan in AFMs, it is important to recall the overall goal

of AFMs: to create a quality image in a timely manner [14].

But this goal requires a definition of a “quality image” when

referring to a x-y raster scan. Focusing on the x direction, an

ideal controller would cause the system output x(t) to track

the desired raster pattern xd(t) flawlessly. This suggests that

a mean-square-error metric might be informative in defining

the performance of a controller. However, for imaging, mean-

square error might not give us the best measurement of

tracking quality. This is because delay in the raster scan used

for AFM imaging is not nearly as critical as consistently

tracking the magnitude. Ultimately, this means that if we

know the delay well, perfectly delayed tracking is better

than imperfect timely tracking. So, to identify that delay, we

examine several periods T of the recorded raster scan after

a time tss at which all transients (from initial conditions for

example) have died out, and define the variable k∗ as

k∗ = argmin
k

∫ tss+NT

tss

(

xd(t− kTs)− x(t)
)2
dt. (2)

Here, k is a variable defined on [0, T
Ts

] where Ts = 40 µsec

is the controller sample period, and N is the number of

recorded periods after transients have died out. Specifically,

k∗ is the value in xd(t − k∗Ts) that defines the amount of

delay that minimizes the mean square error with respect to

the output x(t). k∗ can be used to define two metrics that

emphasize magnitude tracking over ten periods:

Je =
1

10

∫ tss+10T

tss

(

xd(t− k∗Ts)− x(t)
)2
dt (3)

Jm = max
t∈[tss,tss+10T)

(

xd(t− k∗Ts)− x(t)
)2

(4)

2267

0 0.005 0.01 0.015 0.02 0.025

−2

−1

0

1

2

P
o
si

tio
n
 (

µ
m

)

Time (sec)

k* = 21.0141

0 0.005 0.01 0.015 0.02 0.025

−200

−100

0

100

200

T
ra

ck
in

g
 E

rr
o
r

 (
n
m

)

xd(t) xd(t− k∗Ts) x(t)

(a) FFPI: Je=2.29×10−5 & Jm=3.77×10−2

0 0.005 0.01 0.015 0.02 0.025

−2

−1

0

1

2

P
o
si

tio
n
 (

µ
m

)

Time (sec)

k* = 17.1980

0 0.005 0.01 0.015 0.02 0.025

−200

−100

0

100

200

T
ra

ck
in

g
 E

rr
o
r

 (
n
m

)

xd(t) xd(t− k∗Ts) x(t)

(b) FFCLI: Je = 3.87× 10−5 & Jm = 5.25× 10−2

Fig. 4. Experimental results for (a) model-inverse adaptive-delay FFPI and (b) model-inverse FFCLI control when given a 152.4 Hz raster pattern
with a ±2 µm amplitude. Three curves appear in each figure: xd(t), xd(t − k∗Ts), and x(t). The metric values for each experiment are provided
in the corresponding sub-captions (closer to zero is superior), and the value for k∗ is provided in the lower left of each sub-figure. The tracking error,
xd(t−k∗Ts)−x(t) is provided on a secondary axis in green; it has an RMS of 0.0597 and 0.0767 for FFPI and FFCLI, respectively.

10
2

10
3

−30

−20

−10

0

10

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

−600

−400

−200

0

Frequency (Hz)

P
h
a
s
e
 (

d
e
g
re

e
s
)

Fig. 5. Seventeen distinct FRFs measured over the range of the x direction
of a nPoint NPXY100A x-y piezoscanner stage while using the swept-
sines system identification method. Each FRF was generated while injecting
±5 µm amplitude sinusoids; they each differ by their offset value within
the range of the stage. The thin black line represents the “centered” FRF
measured at 0 µm on the ±50 µm range.

In general, Je can be considered to be the mean-square error

averaged over ten raster periods while Jm is the max error

over those ten periods. When comparing metrics from two

different experiments, smaller values of Je and Jm indicate

superior performance.

For further clarification, Fig. 4 shows experimental results

provided in in which the actual 152.4 Hz raster scan input

xd(t) is solid black, and the shifted 152.4 Hz input xd(t −
k∗Ts) is dashed black. The system output x(t) is shown in

either solid red or blue. On a green secondary axis, we also

provide the tracking error xd(t−k∗Ts)−x(t).

III. THE ILC DESIGN

Both serial and parallel ILC architectures [12] are also

investigated for use on our AFM nanopositioner. We chose

to implement a 1st-order ILC law [12],

uj+1 = Q(uj + Leej), (5)

as it is a natural extension to our previous work in that Le

can be designed as the inverse of our plant or closed-loop

system as appropriate. In (5), j is the learning iteration index

and Q and Le are learning filters designed by the user. ej
is the error vector of the j-th iteration while uj is the j-th

iteration ILC command vector. Generally, Q is a low-pass

filter, and Le is the inverse of the system to be learned.

Learning is done over a repeated trajectory (in this case

a few periods of the raster pattern), and (5) is calculated

between each learning iteration in order to determine the next

iteration’s ILC command vector, uj+1. In short, each new

ILC command uj+1 is calculated in a batch process. Despite

the fundamental architectural differences, the basis of the

ILC algorithm is the same regardless of the serial or parallel

application. Fundamental differences arise in the design of

Le, and the point of injection of the ILC command signal.

We next discuss the parallel ILC and FFPI architectures.

A. Parallel ILC and FFPI

When using a 1st-order ILC law as in (5), a good first

design choice for Le is the plant inverse, P−1(z) [12].

However, this results in a noncausal Le when P (z) is not

exactly proper. As with the FFPI FP design, additional delay

must be added in order to make Le causal. Unfortunately,

when using such a Le filter, the learning procedure failed to

converge. We found success using noncausal learning with

14 samples of “preactuation”. Recall that noncausal learning

is possible as the calculation of (5) is a batch process in

which the full data vectors ej and uj are available.

In the process of tuning the learning algorithm, the filter

Q was eventually chosen to be a 4th-order Butterworth low-

pass filter with a cut-off frequency of 3.25 kHz. A summary

of the learning results are provided in Figs. 6(a) and 7. The

algorithm took 21 iterations to converge and learn the 5-

period 152.4 Hz raster pattern.

With respect to implementation, there is some inconsis-

tency with the length of this reference signal to be learned.

In particular, most AFM image scans will require on the

2268

0 0.005 0.01 0.015 0.02 0.025 0.03
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

P
o
s
it
io

n
 (

µ
m

)

Time (sec)

(a) Parallel ILC

0 0.005 0.01 0.015 0.02 0.025 0.03

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

P
o
s
it
io

n
 (

µ
m

)

Time (sec)

(b) Serial ILC

Fig. 6. A summary of the experimental ILC learning for the parallel and serial arrangement. Here, the 154.2 Hz reference signal xd(k) is black, and
xf (k), the final output after 30 and 10 (respectively) iterations of learning is brown and green, respectively. Learning was done over 5 periods. The shaded
yellow areas indicate the raster periods to be averaged to create a final learned ILC feedforward command.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Iteration

N
o

rm
a

liz
e

d
 |
|e

||
2

Fig. 7. A plot of the normalized error ||e||2 as a function of learning
iteration for the ILC learning in the parallel (brown) and serial (green)
arrangement. The error was normalized to the error at the first iteration
(when using only the feedback controller).

order of 100 or more raster periods to obtain an image, but

here, we are only learning over 5 periods. This is because

learning over 100 raster periods would exhaust the available

memory of the system and take too long to converge. This

problem can be circumvented if we take advantage of the

periodicity of the reference and assume that there will not

be any further disturbances interacting with the raster over

the course of multiple periods.

This can be done by ignoring the first and last periods of

the learned command input, collating the remaining periods

and averaging them. Chopping off the first and last periods

of the learned command input help avoid any issues with

transients and zero-padding from the noncausal learning.

In this particular case, the raster periods to be averaged

are shaded in yellow in Fig. 6. The result is a vector

describing the average learned command input over the

course of one period that can be accessed in a look-up-table

by a microprocessor for as many times as the learned raster

pattern is required. This process is described by Fig. 8(a).

The inclusion of averaging has the added advantage of

averaging out some variation and noise. Noise, in particular

is difficult for ILC to address as it is not repeatable. Clearly,

learning more than five raster periods would improve the

effectiveness of averaging out noise and variation, but there

is a balance to consider. First, more raster periods in the

learning signal require more memory and computation time.

Second, longer learning signals require more learning itera-

tions. Third, it appears that when using ILC, the more we

“push” the performance of the nanopositioner with respect to

frequency, the shorter the learning signal it is able to learn.

The result of injecting the average learned command input

of Fig. 8(a) can be seen in Fig. 9(a), and should be compared

with the FFPI results of Fig. 4(a). With respect to our

performance metrics, the standard FFPI architecture beats

the learned ILC results. Further, the tracking error is not

reduced.

While, the “fixed” feedforward control of the FFPI archi-

tecture outperforms the ILC results, the FFPI architecture

is functioning under circumstances that show it in the best

light. In particular, it is functioning in the operating region of

the identified plant model. We expect ILC to perform better

outside of this range. In the next Subsection, we discuss the

series ILC and FFCLI architectures.

B. Serial ILC and FFCLI

As in the parallel case, a 1st-order ILC law was used

for learning in the series architecture, where Le is designed

to be an approximate inverse of the closed-loop system

rather than of the plant. Since C(z), the feedback filter

is minimum phase, stable, and exactly proper, we were

able to use a noncausal ILC algorithm with the same 14

samples of “preactuation”. Q was again tuned as a 4th-

order Butterworth low-pass filter with a cut-off frequency

of 4.25 kHz. A summary of the learning results are provided

in Figs. 6(b) and 7.

The dynamics of learning in the serial ILC architecture

in Fig. 7 are different from parallel ILC of the previous

section. Compared to the parallel architecture, the series

architecture converged faster, but the learning resulted in

poorer tracking of the raster pattern (Fig. 9(b)). In general,

Fig. 7 indicates the difference in learning in the parallel and

serial architectures. Specifically, we note that the learning

dynamics of the parallel architecture is more complicated

because it is searching for balance with C(z). In contrast,

the learning dynamics of the serial architecture is similar to

applying ILC to a stable open-loop system.

2269

20 40 60 80 100 120 140 160

−10

−5

0

5

10

P
o
s
it
io

n
 (

µ
m

)

Sample Index

(a) Parallel ILC

20 40 60 80 100 120 140 160

−10

−5

0

5

10

P
o
s
it
io

n
 (

µ
m

)

Sample Index

(b) Serial ILC

Fig. 8. A plot showing uj:ave(k), the average learned command input (bold brown and green, respectively) of the parallel and serial ILC architectures
over one raster period. Averages were calculated from the learned ILC command input with the first and last raster periods removed; the shaded yellow
areas in Fig. 6 indicate this area. The colored curves behind the average are the signals prior to averaging. Note the variation in these unaveraged signals.
For comparison, these plots have been plotted on the same scale and xd(k) is provided in black.

0 0.005 0.01 0.015 0.02 0.025

−2

−1

0

1

2

P
o
si

tio
n
 (

µ
m

)

Time (sec)

k* = 5.1250

0 0.005 0.01 0.015 0.02 0.025

−200

−100

0

100

200

T
ra

ck
in

g
 E

rr
o
r

 (
n
m

)

xd(t) xd(t− k∗Ts) x(t)

(a) Parallel ILC: Je = 4.70× 10−5 & Jm = 4.51× 10−2

0 0.005 0.01 0.015 0.02 0.025

−2

−1

0

1

2

P
o
si

tio
n
 (

µ
m

)

Time (sec)

k* = 4.0750

0 0.005 0.01 0.015 0.02 0.025

−200

−100

0

100

200

T
ra

ck
in

g
 E

rr
o
r

 (
n
m

)

xd(t) xd(t− k∗Ts) x(t)

(b) Serial ILC: Je = 1.92× 10−4 & Jm = 1.10× 10−1

Fig. 9. Experimental results for injecting the average learned parallel and serial feedforward command input for a 152.4 Hz raster pattern with a ±2 µm
amplitude. Similar to Fig. 4, three curves appear in the figure: xd(t), xd(t− k∗Ts), and x(t). The tracking error, xd(t−k∗Ts)−x(t) is provided on a
secondary axis in green (parallel) and purple (serial); it has an RMS of 0.0843 and 0.1705 for parallel and serial, respectively.

As with the parallel architecture, we averaged the learned

ILC command input (Fig. 8(b)). This step revealed signal

variation issues of the series architecture. As a result, it is

difficult to say that the average signal in Fig. 8(b) is a good

representative of the signal the system actually requires. The

variation of the signals of Fig. 8(b) also indicates a chance

of numerical sensitivity issues that we have seen before with

our system under architectures of this style.

The standard fixed FFCLI architecture performs better

than the learned ILC results. This is not surprising based on

the struggles of the serial ILC learning. It is interesting to

note that the overshoot in Figs. 6(b) and 9(b) looks similar

to the overshoot that has been seen when using the FFPI

architecture without the adaptive-delay algorithm described

in [1] and used here with the FFPI results.

IV. IN THE PRESENCE OF MODEL UNCERTAINTY

From the results, it is clear that ILC struggles to beat

the model-inverse-based FFCLI and FFPI methods when

the nanopostitioner is operating in the range at which the

plant model was identified. However, Fig. 5 suggests that

the results will deteriorate if we offset the raster away from

the 0 µm centerline. Here, we leave behind the FFCLI and

series methods and focus on FFPI and parallel methods, we

shift the raster pattern by 20 µm in Fig. 10 and note the

increase in Je, Jm, and tracking error relative to Fig. 4(a).

Fig. 5 describes the variation in the system FRF due

to changes such as these, and our system model is no

longer accurate enough to be used for model-inverse-based

feedforward control. ILC is not affected by such variations

and the results in Fig. 11 show the parallel ILC architecture

accommodating the shift and beating the performance of the

shifted FFPI results in Fig. 10. As the “centered” results of

Figs. 4(b) and 9(b) suggest, both the serial ILC and FFCLI

architectures struggle at +20 µm.

V. CONCLUSIONS AND FUTURE WORK

We investigated the use of the serial and parallel ILC

architectures on an AFM nanopositioner. This investigation is

a natural extension and comparison to previous work using

model-inverse based feedforward control in the FFPI and

FFCLI architectures. In general, the parallel ILC architecture

always outperformed the serial ILC architecture, although it

did take longer to converge.

2270

0 0.005 0.01 0.015 0.02 0.025

18

19

20

21

22
P

o
si

tio
n
 (

µ
m

)

Time (sec)

k* = 22.5300

0 0.005 0.01 0.015 0.02 0.025

−200

−100

0

100

200

T
ra

ck
in

g
 E

rr
o
r

 (
n
m

)

xd(t) xd(t− k∗Ts) x(t)

(a) +20µm FFPI: Je=4.09×10−5 & Jm=7.02×10−2

Fig. 10. Experimental results for the adaptive-delay algorithm tracking of a
152.4 Hz raster pattern offset by 20 µm. The tracking error, xd(t−k∗Ts)−
x(t) has an RMS of 0.0780. We note the degradation in performance when
compared to Fig. 4(a) that can be attributed to known system variations
associated with offset changes such as those shown in Fig. 5.

0 0.005 0.01 0.015 0.02 0.025

18

19

20

21

22

P
o
si

tio
n
 (

µ
m

)

Time (sec)

k* = 5.8805

0 0.005 0.01 0.015 0.02 0.025

−200

−100

0

100

200

T
ra

ck
in

g
 E

rr
o
r

 (
n
m

)

xd(t) xd(t− k∗Ts) x(t)

(a) +20µm Parallel ILC: Je=3.09×10−5 & Jm=4.39×10−2

Fig. 11. Experimental results for injecting the average learned parallel
feedforward command input for a 152.4 Hz raster pattern offset by 20 µm.
The tracking error, xd(t−k∗Ts)−x(t) has an RMS of 0.0680. We note that
in the presence of model uncertainty, ILC can beat the pure model-inverse-
based feedforward controller results of Fig. 10.

Results comparing the serial ILC architecture with FFCLI

and the parallel ILC architecture with FFPI indicates the

superiority of the nonlearning methods when implemented in

a region which reflects the same range at which a model for

the plant was identified. However, given the plant variation

described by Fig. 5, the ILC approach outperforms the

model-inverse methods when operating in regions where the

identified plant model used is not fully accurate.

As with the FFPI and FFCLI architectures, there is the-

oretical equivalence between the parallel and serial ILC

architectures once learning is complete. For example, the

learned command signal uj+1 for the serial architecture

can be filtered such that it can be applied in the parallel

architecture (just after the feedback controller). In practice

this will likely not provide the same performance as this

equivalence does not capture the learning dynamics, nor does

it reflect the amount of noise in the learned command signal

in Fig. 8. If Q for parallel and serial ILC is the same (which

is not the case in the work here), the expressions describing

equivalence are simplified considerably. In future work, we

will explore a design for the feedback controller that may be

more appropriate for each ILC architecture.

Another item to note when comparing Fig. 9(a) and

Fig. 4(a) is the difference in delay of the output x(k) with

respect to the input xd(k). As discussed in Subsection II-A,

delay is not a concern as long as the magnitude of the signal

is tracked well. That said, we investigated the use of a time

shift in the parallel ILC signals such that learning can be

done in such a way that ILC’s tendency to correct for time

delay is not required. The performance gain was negligible,

but the result did emphasize the use of the feedback filter

more. This may be beneficial in some applications, but does

not appear to be in this one.

REFERENCES

[1] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “Adaptive-
delay combined feedforward/feedback control for raster tracking with
applications to AFMs,” in Proc. Amer. Ctrl. Conf., June 2010, pp.
5738–5744.

[2] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “A comparison
of control architectures for atomic force microscopes,” Asian J. Ctrl.,
vol. 11, no. 2, pp. 175–181, Mar. 2009.

[3] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “A
single-parameter combined feedforward/feedback adaptive-delay al-
gorithm with applications to piezo-based raster tracking,” submit-

ted to: IEEE Trans. Ctrl. Sys. Tech., 2010, preprint available

at: http://gemini.colorado.edu/∼butterwo/.
[4] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “Analysis

and comparison of three discrete-time feedforward model-inverse
control techniques for nonminimum-phase systems,” to be submit-

ted to: Mechatronics, A Journal of IFAC, 2011, preprint available

at: http://gemini.colorado.edu/∼butterwo/.
[5] D. Croft and S. Devasia, “Vibration compensation for high speed

scanning tunneling microscopy,” Rev. Sci. Instr., vol. 70(12), pp. 4600–
4605, 1999.

[6] D. Croft, G. Shedd, and S. Devasia, “Creep, hysteresis, and vibration
compensation for piezoactuators: Atomic force microscopy applica-
tion,” ASME J. Dyn. Sys., Meas., & Ctrl., vol. 123, pp. 35–43, 2001.

[7] G. Schitter, R. W. Stark, and A. Stemmer, “Fast contact-mode atomic
force microscopy on biological specimen by model-based control,”
Ultramicroscopy, vol. 100, pp. 253–257, 2004.

[8] G. Schitter and A. Stemmer, “Identification and open-loop tracking
control of a piezoelectric tube scanner for high-speed scanning-probe
microscopy,” IEEE Trans. Ctrl. Sys. Tech., vol. 12, pp. 449–454, 2004.

[9] Q. Zou and S. Devasia, “Preview-based optimal inversion for output
tracking: Application to scanning tunneling microscopy,” IEEE Trans.

Ctrl. Sys. Tech., vol. 12, no. 3, pp. 375–386, May 2004.
[10] B. P. Rigney, L. Y. Pao, and D. A. Lawrence, “Nonminimum phase

dynamic inversion for settle time applications,” IEEE Trans. Ctrl. Sys.

Tech., vol. 17, no. 5, pp. 989–1005, Sept. 2009.
[11] B. P. Rigney, L. Y. Pao, and D. A. Lawrence, “Nonminimum phase

adaptive inverse control for settle performance applications,” Mecha-

tronics, vol. 20, pp. 35–44, 2010.
[12] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative

learning control,” IEEE Ctrl. Sys. Mag., pp. 96–114, June 2006.
[13] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:

Analysis and Design, 2nd ed. John Wiley and Sons, Ltd., 2005.
[14] D. Y. Abramovitch, S. B. Andersson, L. Y. Pao, and G. Schitter, “A

tutorial on the mechanisms, dynamics, and control of atomic force
microscopes,” in Proc. Amer. Ctrl. Conf., July 2007, pp. 3488–3502.

2271

