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Abstract— This paper deals with the solution of the opti-
mization problem resulting from the moving horizon estima-
tion technique. A method is presented for the most crucial
and computational costly part, namely the first and second-
order derivative calculation. It fully utilizes the properties
of the sequential single shooting based problem formulation
by exploiting the structure in the derivatives as well as in
the associated first-order sensitivities. This results in a highly
efficient method suitable for parallelization. Furthermore, the
generalized problem formulation offers the possibility to con-
sider computational delays and allows the application of the
method to both continuous-time and discrete-time systems.
Simulation results confirm the effectiveness of the proposed
method.

I. INTRODUCTION

Knowledge of all state variables of dynamical systems

is often needed in theory as well as in practice, while

only some of them can be directly measured. Using the

available measurements to compute all state variables is

referred to as state estimation. For linear systems, well-

understood techniques such as the Kalman filter exist [3].

However, for nonlinear systems state estimation is still an

active area of research. Most methods are extensions of

linear state estimators, such as the extended Kalman filter. An

efficient nonlinear technique is the moving horizon estimator

(MHE) which seeks to minimize an estimation cost function

defined on a sliding window involving a finite number

of past samples. Several MH observers were developed

for continuous-time measurements [14], [1] as well as for

discrete-time measurements [8], [9]. The main advantages

of MHE are their capability of incorporating constraints

on the estimated states, their robustness and their stability

properties [11]. Moreover, MHE has been proven to be

superior over traditional estimation approaches such as the

aforementioned extended Kalman filter [4]. Since MHE is

an optimization-based state estimation method, it strongly

depends on the underlying numerical optimization schemes.

The efficient solution of these nonlinear programs (NLPs)

has been recently addressed in [13], [5], [2].

Two basic approaches can be distinguished regarding the

treatment of the system equation constraint in the NLPs:

the sequential approach and the simultaneous approach. In

the former case, in each optimization iteration the two

steps, system simulation and optimization are performed

sequentially, which leads to a strongly reduced variable space

at the expense of costly derivatives of the cost function. In the
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latter case, optimization and simulation are performed simul-

taneously. The main two algorithmic concepts for actually

solving these NLPs are the sequential quadratic programming

(SQP) method and the interior-point (IP) method. It is well

known, that in all Newton-type optimization routines the

two crucial and computationally most expensive steps are

the derivative computation and the solution of the quadratic

subproblems [2].

In this article, a structure exploiting method is presented

for computing the first and second-order derivatives for the

sequential approach. The contribution of this article is three-

fold: first, it is shown how different discretization schemes

and possible computational delays can be incorporated into

one general NLP; second, it is shown how the first derivative

of the Lagrange function of this NLP can be computed based

on first-order sensitivities leading to a new algorithm suitable

for parallelization. It should be pointed out here that the

number of ODEs to be solved is independent of the number

of optimization variables on the sliding time window. Third,

it is shown how these sensitivities can be used to compute

the second derivative of the Lagrange function.

The remainder of this paper is organized as follows: In

section II, the state estimation problem is formulated as an

NLP. Before applying the SQP as well as the IP method to

this NLP in section III, the sequential and the simultaneous

approach are contrasted. The key goal of this paper, namely

the computation of the first and second-order derivatives

is outlined in Section IV. Subsequently, in Section V a

numerical example is given to demonstrate the efficiency of

the proposed method before the paper is concluded in Section

VI with a summary.

II. PROBLEM FORMULATION

Consider the nonlinear dynamic system described by the

continuous-time equations

ẋ(t) = f(x(t), u(t)) + w(t) (1a)

y(t) = h(x(t)) + v(t), (1b)

where x ∈ R
n is the state vector (the initial state x0 is

unknown) and u ∈ R
m is the control vector. The vector

w ∈ R
n is an additive disturbance affecting the system

dynamics. The state vector is observed through the measure-

ment equation (1b), where y ∈ R
p is the observation vector

and v ∈ R
p is a measurement noise vector. The functions

f : Rn × R
m 7→ R

n and h : Rn 7→ R
p are assumed twice

differentiable.

The sampled-data representation, obtained by measuring

the observation vector at times tk for k = 0, 1, . . ., is derived
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by integrating (1a) over the interval [tk, tk+1]

xk+1 = xk +

∫ tk+1

tk

f(x(t), u(t)) dt+ wk (2a)

yk = h(xk) + vk. (2b)

Note that this general continuous-time formulation includes

several special cases arising from discretization, like e. g.

the zero-order hold (ZoH) discretization or step-invariant

transformation, where u(t) is assumed to be a constant

vector uk over the time interval [tk, tk+1] (see the “ZoH

discretization case” in Fig. 1). However, this assumption

implies instantaneous feedback at each sampling time, i. e.

no computational delays τk between the arrival of yk and

the computation of xk and uk, e. g. due to the solution of

an optimization problem. This scenario leads to a delayed

applied uk and can be seen in Fig. 1 as the “computational

delay case”. Moreover, the formulation (2a) also allows

other discretization schemes, with or without incorporating

possible time delays or even a completely continuous control

vector (see the “continuous case” in Fig. 1).

u(t)

tk−3 tk−2 tk−1 tk

τk−3 τk−2 τk−1

Fig. 1. Cases for u(t): Solid blue line: ZoH discretization case. Dashed

red line: computational delay case. Dotted green line: continuous case.

The objective in the MHE framework is to derive for any

k = N,N + 1, . . . estimates1 of the stacked state vector

x̂k = [x̂T
k−N , . . . , x̂T

k ]
T ∈ R

(N+1)n and the stacked state

disturbance vector ŵk = [ŵT
k−N , . . . , ŵT

k−1]
T ∈ R

Nn on

the basis of the information vector

ηk = [ [yTk−N , . . . , yTk ]
︸ ︷︷ ︸

, u(t)T
︸ ︷︷ ︸

]T , t ∈ [tk−N , tk]

= [ yT
k , uT

k ]T ∈ R
(N+1)p+m, (3)

where N+1 measurements and the input vector are collected

within a “moving horizon” interval [k−N, k]. More specif-

ically, the estimator addresses for any k = N,N +1, . . . the

minimization of the following cost function2

Jk(ηk)=‖x̂k−N−x̄k−N‖2Pk
+

k∑

i=k−N

‖v̂i‖2Rk
+

k−1∑

i=k−N

‖ŵi‖2Qk
,(4)

where the matrices Pk, Rk and Qk are assumed to be positive

definite. The first term, known as the arrival cost, penalizes

the distance from the estimate x̂k−N of the state at the

beginning of the moving horizon to some prediction x̄k−N .

This prediction x̄k−N of the initial state is obtained by

incorporating past information y0, . . . , yk−N−1 and u(t) in

1Estimated values are denoted with aˆ to distinguish them from the true
values

2Given a symmetric positive definite matrix M and a vector z, ‖z‖M
denotes the weighted norm of z, ‖z‖M := (zTMz)1/2

the interval t ∈ [t0, tk−N [, which is not explicitly accounted

for in the objective function. The second term is a penal-

ization of the measurement noise whereas the third term is

a penalization of the state disturbance. In addition to the

weighted Euclidian norm, sometimes other penalty functions

like e. g. the l1 penalty or other formulations of the arrival

costs are used. For this reason, a generalized formulation of

the objective function Jk is considered in this paper

Jk(ηk) = Γ(x̂k−N ) +

k∑

i=k−N

Υi(v̂i) +

k−1∑

i=k−N

Ψi(ŵi). (5)

Consequently, the NLP problem of the MHE can be

derived by eliminating v̂i in (5) using the measurement

equation (2b)

min
x̂k,ŵk

Γ(x̂k−N ) +

k
∑

i=k−N

Υi(yi, x̂i) +

k−1
∑

i=k−N

Ψi(ŵi) (6a)

s. t. x̂i+1−x̂i−

∫ ti+1

ti

f(x̂(t), u(t)) dt− ŵi = 0, ∀i ∈ K (6b)

ci(x̂i, ŵi) ≥ 0, ∀i ∈ K (6c)

ck(x̂k) ≥ 0, (6d)

where K = {k − N, . . . , k − 1} is the set of indices

corresponding to the current moving horizon and ci are the

inequality constraints3. The functions ci : R
n × R

n 7→
R

n, ∀i ∈ K and ck : Rn 7→ R
n are assumed to be twice

differentiable. From the solution x̂k, ŵk of this problem, the

current state x̂k can be extracted, or in the presence of non-

negligible computational delays, the propagation x̂(tk + τk)
calculated.

III. NEWTON TYPE OPTIMIZATION

A. Sequential vs. simultaneous approach

When solving the NLP stated above in (6), it has to be

decided first, how to treat the equality constraint (6b). This

constraint uniquely determines the vector x̂k if the vectors

x̂k−N , ŵk and uk are fixed. Thus, an implicit function

x̃k(x̂k−N , ŵk,uk) can be defined that satisfies (6b) for all

x̂k−N , ŵk and uk by a system simulation. Consequently, the

constraint (6b) can be replaced in the optimization problem

by substituting the function x̃k(x̂k−N , ŵk,uk) with x̂k.

Hence, the NLP can be reduced to

min
x̂k−N

ŵk

Γ(x̂k−N )+

k∑

i=k−N

Υi(yi, x̃i(x̂k−N , ŵk,uk))+

k−1∑

i=k−N

Ψi(ŵi)

(7a)

s. t. ci(x̃i(x̂k−N , ŵk,uk), ŵi) ≥ 0, ∀i ∈ K (7b)

ck(x̃k(x̂k−N , ŵk,uk)) ≥ 0. (7c)

This leads to the so called “sequential” approach, where in

each optimization iteration the two steps, system simulation

and optimization are performed sequentially, one after the

other. The advantage of this method is the strongly reduced

variable space compared to the original problem. The compu-

tation of the derivatives is more costly, but there is a certain

structure in the problem which will be fully exploited in

Section IV.

3≥ denotes componentwise inequality
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In contrast, the so called “simultaneous” approach ad-

dresses the full NLP (6) directly, i. e. optimization and

simulation are performed simultaneously. The full NLP (6)

has larger but structured linear subproblems than the sequen-

tial approach. Thus, band structure exploiting methods or

“condensing” must be used to exploit this fact [2].

B. Sequential quadratic programming and interior-point

method

Now the main two algorithmic concepts are applied to the

NLP (7). To this end, an overall optimization variable

p = [x̂T
k−N , ŵT

k−N , . . . , ŵT
k−1]

T ∈ R
(N+1)n (8)

is defined. Then the Lagrange function associated to the NLP

(7) can be expressed as

L(p,λ) = Γ(x̂k−N ) +

k∑

i=k−N

Υi(yi, x̃i(p,uk)) +

k−1∑

i=k−N

Ψi(ŵi)

−
k−1∑

i=k−N

λT
i ci(x̃i(p,uk), ŵi)− λT

k ck(x̃k(p,uk)), (9)

where λ = [λT
k−N , . . . , λT

k ]
T ∈ R

(N+1)n is a vector of

Lagrange multipliers. To simplify the analysis, the arguments

of all functions are in the following suppressed from the

notation when the meaning is otherwise clear.

Any solution of the NLP (7) should satisfy the famous

Karush-Kuhn-Tucker (KKT) conditions

∂L
∂p

= 0 (10a)

0 ≤ ci ⊥ λi ≥ 0, i = k −N, . . . , k, (10b)

where the symbol ⊥ between the two vector valid inequalities

states that also the complementary condition

ci,j λi,j = 0, i = k −N, . . . , k, j = 1, . . . , n (10c)

shall hold and where ci,j and λi,j denotes the j-th element

of ci and λi respectively.

A first variant to iteratively solve this KKT system is to

linearize all nonlinear functions appearing in (10). It turns

out that the resulting linear complementary system can be

interpreted as the KKT conditions of the following quadratic

program (QP)

min
∆p

∂L
∂p

T

∆p+
1

2
∆pT ∂2L

∂p2
∆p (11a)

s. t. ci +
∂ci
∂p

∆p ≥ 0, i = k −N, . . . , k. (11b)

This general approach to address the nonlinear optimization

problem is called SQP.

An alternative way to solve the KKT system iteratively

is the IP method which introduces slack vectors si ∈ R
n

and transforms the KKT conditions into the following form

(primal-dual formulation)

∂L
∂p

= 0 (12a)

ci − si = 0, i = k −N, . . . , k (12b)

si,j λi,j = µ, i = k −N, . . . , k, j = 1, . . . , n, (12c)

where si,j denotes the j-th element of si and µ is a positive

parameter. The inequalities si,j ≥ 0 and λi,j ≥ 0 are required

in all iterations. Note that if µ = 0, the transformed KKT

conditions (12) coincide with the KKT conditions (10).

The system (12) is then solved with Newton’s method

which involves the same first and second-order derivatives

of L as the SQP approach. The obtained solution is not a

solution to the original problem, but to the problem

min
p,s

Jk − µ
k∑

i=k−N

n∑

j=1

ln(si,j) (13a)

s. t. ci − si = 0, i = k −N, . . . , k. (13b)

It is important to note that the performance of the SQP as

well as the IP method mainly depends on the accurate and

fast computation of the derivatives ∂L/∂p and ∂2L/∂p2.

IV. DERIVATIVE COMPUTATION

A. First-order derivative of the Lagrange function L
A common method to compute the gradient of L is by

finite differences. For instance, the elements of ∂L/∂p can

be approximated by the central-difference formula

∂L

∂pi
≈

L(p+ ǫ ei)− L(p− ǫ ei)

2ǫ
, i = 1, . . . , (N + 1)n (14)

where ǫ is a small positive scalar and ei is the i-th unit

vector. However, it is strongly advised not to use this method

here due to the high numerical complexity and the poor

achieved accuracy. The evaluation of (14) is as costly as

solving 2(N+1)n2 ODEs over the complete moving horizon

interval [tk−N , tk].
The exact derivatives of (9) can be calculated by applying

the chain rule whereby the dependence of x̃i on p has to be

considered. This leads to the exact gradient

∂L

∂p
=

∂Γ

∂p
+

k
∑

i=k−N

∂x̃i

∂p

T ∂Υi

∂x̃i
+

k−1
∑

i=k−N

∂Ψi

∂p
−

k
∑

i=k−N

∂x̃i

∂p

T ∂ci

∂x̃i

T

λi

(15)

where

∂x̃i

∂p
=

[

∂x̃i

∂x̂k−N
,

∂x̃i

∂ŵk−N
, . . . ,

∂x̃i

∂ŵk−1

]

(16)

are for i = k − N, . . . , k the first-order sensitivities of x̃i

with respect to p evaluated at the corresponding sampling

times on the moving horizon interval.

In the following, a new approach for computing these

sensitivities is proposed. To this end, the notations below

are introduced.

Notation 1: The abbreviation X(t) and j
Z(t) denotes the

first-order sensitivity ∂x̃(t)/∂x̂k−N and ∂x̃(t)/∂ŵj , respec-

tively, where j = k −N, . . . k − 1.

Lemma 1: The first-order sensitivity X(t) ∈ R
n×n sat-

isfies the following first-order sensitivity matrix differential

equation on the moving horizon interval t ∈ [tk−N , tk]

Ẋ(t) =
∂f

∂x̂
(t)X(t) (17a)

with the initial value

X(tk−N ) = I. (17b)

4265



The unique solution is

X(t) = Φ(t, tk−N )X(tk−N ), (17c)

where Φ(·) ∈ R
n×n denotes the time-varying transition

matrix.

Proof: The proof is sketched as follows: Equation

(17a) results from substituting x(t) with x̂(t) in (1a) and a

subsequent differentiation with respect to x̂k−N . Equation

(17b) results from differentiating the initial value on the

moving horizon. The solution approach for linear time-

varying systems (see [7]) applied to (17a) combined with

(17b) leads to (17c).

Note that the transition matrix in (17c) is identical to the

transition matrix of a linear time-varying system with the

dynamic matrix ∂f/∂x̂. For later use, some properties of

this transition matrix Φ(·) are stated from [7] in Lemma 2.

Lemma 2: The time-varying transition matrix satisfies:

(1) transition property Φ(t2, t0) = Φ(t2, t1) Φ(t1, t0)
(2) inversion property Φ(t1, t0)

−1 = Φ(t0, t1)
(3) identity property Φ(t0, t0) = I

For the first-order sensitivities j
Z(t) one has to infer from

ŵj to ŵ(t) which cannot be done exactly in the continuous-

time case without any knowledge of the characteristics of

ŵ(t). For the discrete-time case, the underlying discretization

scheme yields the desired relation, e. g. in the ZoH case:

ŵ(t) = ŵj/(tj+1 − tj), t ∈]tj , tj+1]. More generally, such

a relation can be formulated for both cases by the function

θj(t, ŵj) : Tj × R
n 7→ R

n where Tj = {t ∈ R|tj <
t ≤ tj+1}. The derivative of θj(t, ŵj) with respect to ŵj is

denoted by θ′j(t, ŵj).

Lemma 3: The first-order sensitivity j
Z(t) ∈ R

n×n sat-

isfies the following first-order sensitivity matrix differential

equation on the moving horizon interval t ∈ [tk−N , tk]

j
Ż(t) =

∂f

∂x̂
(t) j

Z(t) +







0, t ≤ tj

θ′j(t, ŵj), tj < t ≤ tj+1

0, t > tj+1 (18a)

with the initial value

j
Z(tk−N ) = 0. (18b)

The unique solution is

j
Z(t) =







0, t ≤ tj
∫ t

tj
Φ(t, τ) θ′j(τ, ŵj) dτ, tj < t ≤ tj+1

∫ tj+1

tj
Φ(t, τ) θ′j(τ, ŵj) dτ, t > tj+1 (18c)

where Φ(·) ∈ R
n×n denotes the time-varying transition

matrix.

Proof: The proof is straightforward and uses the same

techniques as the proof of Lemma 1 and is thus omitted due

to space limitations.

Evaluating the non-zero elements in the first-order sensi-

tivities is as costly as solving (N2 + 3
2 )n

2 + n ODEs over

the complete moving horizon interval [tk−N , tk]. To further

reduce this complexity, the idea now is to break down the

problem of determining the sensitivities X(ti) and j
Z(ti)

on the complete interval [tk−N , tk] to independent problems

on the intervals [ti, ti+1], i ∈ K. Afterwards, the solutions

to these subproblems are assembled in a suitable manner

to yield the wanted sensitivities. The advantage of this

procedure is that several of these subproblems are identical

due to the common underlying structure and thus need to be

solved only once. To this end, the following notations are

introduced.

Notation 2: The abbreviation Xa
b and j

Z
a
b denotes the

solution of Ẋ(t) = ∂f
∂x̂

(t)X(t) and
j
Ż(t) = ∂f

∂x̂
(t) j

Z(t) +
θ′j(t, ŵj) at the time tb with the initial value X(ta) = I and
j
Z(ta) = 0, respectively.

Theorem 1: The first-order sensitivities defined in (16) are

X(ti) = Xi−1
i Xi−2

i−1 . . . X
k−N+1
k−N+2X

k−N
k−N+1 (19a)

j
Z(ti) =

{

0, i < j + 1

Xi−1
i Xi−2

i−1 . . . X
j+1
j+2

j
Z

j
j+1, i ≥ j + 1

(19b)

for i = k −N, . . . , k and j = k −N, . . . , k − 1.

Proof: Based on Lemma 1, the solution X(ti) is

transformed by using Lemma 2 in the following way

X(ti) = Φ(ti, tk−N )X(tk−N )

= Φ(ti, ti−1) Φ(ti−1, ti−2) . . .Φ(tk−N+1, tk−N )I

= Φ(ti, ti−1)I
︸ ︷︷ ︸

Xi−1
i

Φ(ti−1, ti−2)I
︸ ︷︷ ︸

Xi−2
i−1

. . .Φ(tk−N+1, tk−N )I
︸ ︷︷ ︸

Xk−N
k−N+1

= Xi−1
i Xi−2

i−1 . . . X
k−N+1
k−N+2X

k−N
k−N+1

The solution j
Z(ti) = 0 for i < j + 1, i. e. ti ≤ tj , directly

results from Lemma 3. For the case i > j+1, i. e. ti > tj+1,

the solution j
Z(ti) is transformed by using Lemma 2 to yield

j
Z(ti) =

∫ tj+1

tj

Φ(ti, τ) θ
′

j(τ, ŵj) dτ

= Φ(ti, tj+1)
j
Z

j
j+1

= Φ(ti, ti−1) Φ(ti−1, ti−2) . . .Φ(tj+2, tj+1)
j
Z

j
j+1

= Φ(ti, ti−1)I
︸ ︷︷ ︸

Xi−1
i

Φ(ti−1, ti−2)I
︸ ︷︷ ︸

Xi−2
i−1

. . .

. . .Φ(tj+2, tj+1)I
︸ ︷︷ ︸

Xj+1
j+2

j
Z

j
j+1

= Xi−1
i Xi−2

i−1 . . . X
j+1
j+2

j
Z

j
j+1

This result is also valid for the case i = j+1, i. e. ti = tj+1,

because according to Lemma 2 the following equation holds
j
Z(tj+1) = Xj+1

j+1
j
Z

j
j+1 = Φ(tj , tj)I

j
Z

j
j+1 = j

Z
j
j+1

The advantage of this theorem over the finite difference

method and the approach described in lemma 1 and 3 is

two-fold. First, the number of ODEs that have to be solved

over the complete interval t ∈ [tk−N , tk] is independent

of N , namely 2n2 + n. In other words, the complexity of

determining the first-order sensitivities is independent of the

number of unknowns ŵi and independent of the number of

first-order sensitivities j
Z itself. Second, each subproblem

can be solved independently and thus in parallel.
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B. Second-order derivative of the Lagrange function L
The finite differences method can once again be applied to

approximate the Hessian of L. However, the computational

complexity is even higher than in the former case. An

alternative and more commonly used method is to estimate

the Hessian by applying a quasi-Newton approximation

which measures only the changes in the gradients [10]. The

drawback of this approximation method is that it does not

explicitly consider the true structure of the Hessian which

may result in significant deviations from the real one. As

a consequence, the quality of the iterations can be poor,

and many costly steps are required to converge to a local

optimum. For this reason, the following approach is proposed

to improve the convergence speed by exploiting the structure

of the Hessian.

Applying the chain rule to (15) yields the Hessian of L
∂2L

∂p2
=

∂2Γ

∂p2
+

k
∑

i=k−N

∂x̃i

∂p

T ∂2Υi

∂x̃2
i

∂x̃i

∂p
+

k
∑

i=k−N

n
∑

j=1

∂Υi

∂x̃i,j

∂2x̃i,j

∂p2

+

k−1
∑

i=k−N

∂2Ψi

∂p2
−

k
∑

i=k−N

n
∑

j=1

λi,j
∂x̃i

∂p

T ∂2ci,j

∂x̃2
i

∂x̃i

∂p

−

k
∑

i=k−N

n
∑

j=1

(

λ
T
i

∂ci

∂x̃i,j

)

∂2x̃i,j

∂p2
(20)

where ∂2x̃i,j/∂p
2 are the second-order sensitivities of the

j-th element of x̃i. Based on this structure, the Hessian will

be partitioned as follows:

∂2L
∂p2

= H1 +H2, (21a)

where H1 contains the second derivatives of the objective

function and the terms involving the first-order sensitivities:

H1 =
∂2Γ

∂p2
+

k∑

i=k−N

∂x̃i

∂p

T ∂2Υi

∂x̃2
i

∂x̃i

∂p
+

k−1∑

i=k−N

∂2Ψi

∂p2

−
k∑

i=k−N

n∑

j=1

λi,j

∂x̃i

∂p

T ∂2ci,j
∂x̃2

i

∂x̃i

∂p
(21b)

and H2 contains the terms involving the second-order sensi-

tivities:

H2 =

k∑

i=k−N

n∑

j=1

(
∂Υi

∂x̃i,j

−
(

λT
i

∂ci
∂x̃i,j

))
∂2x̃i,j

∂p2
. (21c)

H1 can be easily calculated due to the already available first-

order sensitivities that were necessary for the computation of

∂L/∂p.

Three cases can be differentiated for H2 depending on the

characteristic of the dynamic of the system: 1) If ∂2f/∂x̂2 =
0 holds, like e. g. for linear systems, then H2 = 0, because

the second-order sensitivities are exactly zero. This fact

directly results from investigating the second-order matrix

differential equations and is omitted here due to space limi-

tations. 2) If the system has only “weak nonlinearities”, then

H2 ≈ 0. Note that this approach shows strong similarities

to the Gauss-Newton approach for solving nonlinear least-

squares problems. 3) In the general case, neglecting H2 may

result in a poor performance of the optimization algorithm

which motivates the inclusion of H2. Ideally, the exact

second-order sensitivities should be calculated. However, this

is only reasonable for small-sized systems due to the high

complexity involved for solving the (n+N)n2 ODEs for the

second-order sensitivity matrix differential equations. Instead

of that approach, a feasible way is to approximate H2 based

on successive evaluations of the gradient. More precisely,

applying the BFGS update yields

Hi+1
2 = Hi

2 −
Hi

2 z
i zi,T Hi

2

zi,T Hi
2 z

i
+

gi gi,T

gi,T zi
, (22)

where the upper index denotes the iteration step, zi =
pi+1 − pi, and gi = (∂L/∂p)i+1 − (∂L/∂p)i − Hi+1

1 zi.
Modifications, like e. g. damped BFGS or limited-memory

BFGS, or other update schemes, like e. g. SR1 updating, can

be used when deemed appropriate.

Remark 1: An alternative way for computing ∂L/∂p is

the adjoint-based (or sometimes called “backward”) method.

The numerical complexity is comparable to the proposed

method, as the number of ODEs that have to be solved in

both cases is 2n2 + n. However, the adjoint-based approach

computes the gradient directly without producing intermedi-

ate information useable for the computation of the Hessian

∂2L/∂p2. Therefore, the adjoint-based method is inferior to

the proposed reduced sensitivity-based method.

Remark 2: The proposed concept can be easily extended

to the case, where unknown parameters a of the system have

to be estimated. It is straightforward to derive the first-order

sensitivity matrix differential equation for the sensitivities

∂x̃i/∂a and to integrate them in the proposed concept.

Remark 3: If the cost function (4) is used, ∂2f/∂x̂2 = 0
holds and the inequalities are linear, then the SQP method

yields the optimal solution after one iteration as soon as the

active set is identified.

V. NUMERICAL CASE STUDY

In this section, the aforementioned improvements con-

cerning the derivative computations are applied to an MH

estimator for a nonlinear continuously stirred tank reactor

(CSTR) [6], [12]:

ẋ1(t) = p1(xa − x1(t))− p2x1(t) exp

(

− EA

Rx2(t)

)

+ w1(t)

ẋ2(t) = p1(xb − x2(t)) + p3x1(t) exp

(

− EA

Rx2(t)

)

+ p4(u(t)− x2(t)) + w2(t).

The system involves two states x = [x1, x2]
T , corresponding

to the concentration and the temperature, respectively, one

control u corresponding to the cooling water temperature

and two process noise sequences w = [w1, w2]
T . The initial

condition is x0 = [0.005, 445]T and the model parameters

are EA = 11250, R = 1.986, xa = 0.02, xb = 340,

p1 = 1, p2 = 106, p3 = 4.25 × 109 and p4 = 2.

The temperature is used as the output (y = x2) and

measured every 0.5s. These measurements are generated
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from a simulated closed-loop feedback control scenario with

Gaussian process noise sequences with standard deviations

σw1
= 0.002 and σw2

=
√
250. Afterwards, the resulting

temperatures are corrupted with different levels of Gaussian

noise with standard deviation σy = 1 to simulate mea-

surement noise. The cost function defined in (4) is used

for the MHE with P = diag(10, 0.1), R = 1/σ2
y and

Q = diag(1/σ2
w1

, 1/σ2
w2

). Furthermore, the states should

satisfy the inequality [0, 300]T ≤ x̂i ≤ [0.03, 500]T .

In Fig. 2, the performance of the MH estimator which

uses an IP method to solve the NLPs is presented where

an observation window of N = 6 is used. The optimization

variable is initialized with [0.018, 350, 0, . . . , 0]T . Note that

the initial estimates are erroneous and yet the MH estimator

quickly recovers the true state. The first-order sensitivities

are computed according to Theorem 1 and H2 is neglected.
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Fig. 2. Comparison between the true and the estimated states.

In Fig. 3, the complexity for computing ∂L/∂p accord-

ing to the sensitivity-based methods 1 (Theorem 1) and 2

(Lemma 1 & 3) compared to the central-difference formula

(CDF) (14) is illustrated. The number of measurements N+1
is increased in the constant time interval [0, 100] and the time

for calculating ∂L/∂p is measured. The first and the last

measurement are taken at 0s and 100s, respectively, while

all other measurements are equally spaced in between. The

time needed for the case N = 1 where method 1 and 2 are

identical corresponds to the complexity 1. The complexity

for method 2 and CDF grows linearly with N whereas the

slight increase in complexity for method 1 is due to the

increasing number of matrix multiplications for forming the

overall sensitivities in (19).
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Fig. 3. Comparison of the numerical complexity between different methods
for computing ∂L/∂p. (ODE solver used in all methods: classical 4-step
Runge-Kutta)

The solver progress indicated by the cost function value

for N = 30 can be seen in Table I for two cases of

calculating the Hessian. In the first case, the Hessian is

approximated by a conventional full BFGS method. In the

second case, only the second part of the Hessian H2 is

approximated by the BFGS method (22) and H1 is calculated

by the already available first-order sensitivities (21b). As can

be seen, the proposed approach results in less iterations and

a faster convergence, especially close to the solution.

TABLE I

COST FUNCTION VALUES FOR THE FIRST 6 ITERATIONS

iteration 1 2 3 4 5 6
full BFGS 112208 38438 2351 557 543 508

only BFGS H2 112208 9486 727 526 498 [-]

VI. CONCLUSIONS

In this paper, an efficient method for calculating the first

and second-order derivatives is presented for the solution of

the optimization problem for moving horizon estimation. It

is shown, that their computation based on reduced first-order

sensitivities is more advantageous than their computation by

finite differences, adjoint-based or full quasi-Newton meth-

ods. The simulation results substantiate this approach. Future

work is directed towards implementing the proposed method

in an estimator concept for moving horizon estimation in

networked control systems.
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