
A Multi-Team Extension of the Consensus-Based Bundle Algorithm

Matthew Argyle, David W. Casbeer, and Randy Beard

Abstract— The Consensus-Based Bundle Algorithm (CBBA)
is incorporated into a hierarchical concept of operation. In the
Team CBBA each team of unmanned vehicles plans for all
agents in the team to service a set of tasks. This team planning
is carried out separately using the traditional CBBA. An
”outer-loop” Team CBBA strategy is presented that coordinates
planning between teams of agents. The hierarchical structure
of the Team CBBA gives an manageable architecture for
large numbers of unmanned agents through human centered
operations. This is because each (small) team would be managed
by a human operator with the Team CBBA coordinating
between teams.

I. INTRODUCTION

Over the last several years, there has been significant focus
in cooperative control of multi-agent systems, including task
assignment problems. In a task assignment problem, a group
of agents service a finite number of tasks. Solutions to
task assignment problems fall under two broad categories:
centralized or decentralized. Centralized methods involve all
the agents sending all relevant data to one agent/ground
station which then computes and returns a plan for all agents.
Centralized methods typically yield better solutions than
decentralized methods with less computational burden on
the (non-central) agents; however, there is a single point
of failure and the solution depends on successful and full
communication.

From an operational standpoint, centralized methods fit
easily into the human centered model, where an operator
manages the team of agents. Since the operator knows the
location of each agent in the team, it is logical to have
planning take place centrally. One could naively extend this
concept of operation to large numbers of unmanned agents,
by giving multiple human operators independent control over
separate teams. However, mission performance would be
improved through coordination between the teams.

This paper presents a decentralized algorithm based on the
Consensus-Based Bundle Algorithm (CBBA) [1], [2], [3],
[4]. Inspired by the human centered model, in this paper
we extend the CBBA to a hierarchical team structure by
incorporating an ”outer-loop” Team CBBA. In this hierar-
chical model, teams of unmanned agents are managed by
a human operator. Planning is accomplished on each team
using the traditional CBBA [1] and coordination between

M. Argyle is an AFRL Summer Researcher and a PhD student with the
Department of Electrical Eng., Brigham Young University, Provo, Utah,
84602 matt.argyle@gmail.com

D. Casbeer is with the Control Science Center of Excellence,
Air Force Res. Lab., Wright-Patterson AFB, OH 45433
david.casbeer@wpafb.af.mil

R. Beard is with the Department of Electrical Eng., Brigham Young
University, Provo, Utah, 84602 beard@byu.edu

teams is carried out by a Team CBBA. Section II lays
out the specific problem we solve. Section III discuss the
multi-team extension to the CBBA, which is followed by
analysis in Section IV. We then present simulations results
and conclusions in Sections V and VI.

II. TASK ASSIGNMENT PROBLEM

Consider the multi-agent multi-task assignment problem
where a group of Na agents attempt to service Nt tasks
while trying to maximize a reward. This can be stated as:

maximize
Na∑
j=1

Nt∑
k=1

cjk(xj ,pj)xjk

subject to
Na∑
j=1

xjk ≤ 1 ∀k ∈ {1, . . . , Nt}

Nt∑
k=1

xjk ≤ Lm ∀j ∈ {1, . . . , Na},

(1)

where xjk ∈ {0, 1} is one if agent j services task k and zero
otherwise, xj ∈ {0, 1}Nt is a vector whose kth element is
xjk, pj is the path for agent j and indicates the order agent
j will service its assigned tasks, cjk(·) is the non-negative
reward, and Lm is the maximum number of tasks per agent.

Due to the curse of dimensionality, an exact solution to the
multi-agent multi-task problem becomes impractical for large
numbers of agents [5]. To overcome this problem, current
operations have multiple operators controlling either one
UAV or possibly a group of UAVs. Each group of operators
would service tasks independently. In the setup we propose,
a human remains responsible for his or her team of agents.
The teams interact, with other teams, through higher level
coordination. Here the Nt tasks and Na agents are divided
between No operators. Each team i ∈ {1, . . . , No} attempts
to service all of its assigned tasks Nti ⊂ {1, . . . , Nt} with its
assigned agents Nui ⊂ {1, . . . , Na}. The team assignment
problem can be stated as:

maximize
∑
j∈Nui

∑
k∈Nti

cjk(xj ,pj)xjk

subject to
∑
j∈Nui

xjk ≤ 1 ∀k ∈ Nti∑
j∈Nti

xjk ≤ Lm ∀j ∈ Nui

(2)

A problem occurs when a team is unable to perform
all of its assigned tasks due to time constraints, resource
constraints, or agent capabilities. We present a hierarchical

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 5376

task assignment method, that allows neighboring teams to
request and provide help when this situation occurs.

III. MULTI-TEAM TASK ASSIGNMENT

The Team Consensus-Based Bundle Algorithm (TCBBA)
consists of two main stages: local task assignment and
task sharing. In the first stage, each team implements the
traditional CBBA to create an initial task assignment. If
there are tasks that were unable to be assigned, the teams
attempt to correct this by implementing the CBBA between
the teams.

A. Local Task Assignment

To create the initial task assignment, each team runs the
CBBA introduced in [1]. This description of the CBBA fol-
lows the explanation given in [2]. The CBBA is a decentral-
ized task assignment algorithm which consists of iterations
between two phases: a bundle building phase where each
agent generates an ordered bundle of tasks and a consensus
phase where conflicting assignments are resolved through
communication with nearby agents.

1) Phase 1 (Build Bundle): The first phase of the CBBA
is bundle construction, during which each agent adds tasks
to its bundle until it is unable to add any more tasks.
Each agent j in team i maintains four data vectors: a
bundle bij ∈ (Nti ∪ {∅})Lm , the corresponding path
pij ∈ (Nti ∪ {∅})Lm , a winning bid list yij ∈ <Nti

+ ,
and a winning agent list zij ∈ UNti . Tasks in the bundle
are ordered by decreasing marginal scores, while those in the
path are ordered based on the order they will be performed.
The marginal score of a task is defined as follows: Let
Sij(pij) be defined as the total reward for agent j in team
i performing the tasks within pij . If a task k is added
to the bundle bij , it has the marginal score improvement
cijk(bij) = maxn≤|pij | Sij(pij ⊕n {k}) − Sij(pij) where
| · | is the cardinality of the list and ⊕n is the operation
that inserts the second list after the n-th element of the first
list. The bundle is updated by bij = bij ⊕|bij | {Kij} with
Kij = argmaxk (cijk(bij)×

∏
(cijk > yijk)× hijk) where∏

(·) is one if the argument is true and zero otherwise and
hijk is one if agent j can perform task k and zero otherwise.
The path is updated by pij = pij ⊕nijKij

{Kij} where

nijKij
= argmaxn

(
S
pij⊕n{Kij}
ij

)
.

2) Phase 2 (Conflict Resolution): In the conflict resolution
phase, three data vectors are transmitted to neighboring
agents. Two were used in the bundle construction phase:
the winning bid list yij and the winning agent list zij . The
third data vector sij ∈ <Nai represents the time stamp
of the last communication from each of the other agents
within the same team. When agent j receives a message
from agent m, it uses zij , sij , zim, and sim to determine
which agent’s information is the most up to date for each
task. There are three possible actions agent j can perform
on task k: (1) update: yijk = yimk, zijk = zimk; (2) reset:
yijk = 0, zijk = ∅; and (3) leave: yijk = yijk, zijk = zijk.

B. Task Sharing

After the initial plan has been created, the teams com-
municate with each other to determine if other teams can
perform some of their tasks. This phase of the TCBBA has
two variations. In the first version, the initial plan developed
by the CBBA is fixed and each team attempts to insert the
unassigned tasks into the initial plan. In the second version,
the initial plan is only used to determine which tasks were
able to be assigned. The plan itself is ignored. In both
versions each team is required to maintain the same data
vectors. Furthermore, both versions of the TCBBA have three
stages: initialization, creating the bundle, and communication
and conflict resolution. The initialization stage is the only
stage that is different between the two variations of the
TCBBA.

1) Version 1: Insert in Path Initialization: This version of
the TCBBA keeps the initial plan that was developed by the
CBBA. Algorithm 1 describes how all of the data structures
are initialized to accomplish this. After the initial plan has
been created, each team identifies which of its allocated tasks
were assigned to one of its agents, Ñti, and which of its
tasks were unassigned, N̂ti = Nti \ Ñti. Each team shares
its list of unassigned tasks to come up with the complete
list of unassigned tasks T u =

(
N̂t1 ∪ N̂t2 ∪ . . . ∪ N̂tNo

)
(A1 : 1) 1. The team bundle Bi ∈ (T u ∪ {0})Lm , winning
bid list Yi ∈ <|T

u|
+ , and winner ID list Zi ∈ U |T u|

are initialized to empty values because they only include
information on tasks in T u (A1 : 3-5). The team time-
stamp vector, Si, is initialized to zeros. In addition, all of the
agents’ data vectors are enlarged while maintaining the same
information to account for the unassigned tasks (A1 : 6-13).

After the initialization is done, it iterates between the
bundle construction stage, described in Algorithm 3, and
the communication and conflict resolution stage, described
in Algorithms 4 and 5, until consensus has been achieved
(A1 : 14-17).

Keeping the initial plan ensures that the final plan is
relatively close to the original one. During the build bundle
phase (Algorithm 3), the CBBA will attempt to insert the
unassigned tasks into the plan without disrupting the current
plan. The task will only be inserted if all of the tasks later
on in the path can still be completed. This guarantees that
any task that was assigned during the initial assignment will
still be assigned in the final plan.

2) Version 2: Create New Plan Initialization: Modifying
Algorithm 1 to ignore the initial plan is very straightforward.
The data vectors pij ,bij ,yij and zij are initialized to empty
or zero (A2 : 2-5) instead of the initial plan (A1 : 8-9,12-13).

This version of the TCBBA does not guarantee that all the
tasks that were previously assigned in the initial assignment
will be completed. Instead, this version will assign tasks
that will maximize its score, even if it has to not perform
some previously assigned tasks. The score can be improved
further by running Algorithm 2 multiple times recomputing

1We refer to line 1 of Algorithm 1 as (A1 : 1). This notation will be used
throughout the rest of the paper.

5377

Algorithm 1: TCBBA version 1 initialization for team i

input : b̂i, p̂i, ŷi, ẑi,Nti
output: Bi,Yi,Zi,bi,pi,yi, zi

1: T u = unassignedTasks(bi,Nti)
2: Ti = Nti \ T u
3: Bi = {}
4: Yi = zeros(|T u|)
5: Zi = zeros(|T u|)

6: foreach j ∈ Nui do
7: bij = b̂ij
8: pij = p̂ij
9: yij = zeros(|Ti ∪ T u|)

10: zij = zeros(|Ti ∪ T u|)
11: yijk = ŷijk ∀k ∈ Ti
12: zijk = ẑijk ∀k ∈ Ti
13: end

14: while no consensus do
15: [Bi,Yi,Zi,bi,pi,yi, zi] =

buildBundle(Bi,Yi,Zi, T u,bi,pi,yi, zi, Ti)
16: [Bi,Yi,Zi,bi,pi,yi, zi] =

communicate(Bi,Yi,Zi,bi,pi,yi, zi)
17: end

Algorithm 2: Changes to Algorithm 1 for TCBBA
version 2 initialization

1: foreach j ∈ Nui do
2: bij = {}
3: pij = {}
4: yij = zeros(|Ti ∪ T u|)
5: zij = zeros(|Ti ∪ T u|)
6: end

the unassigned tasks each time. This allows the teams to
trade tasks to improve the overall score in exchange for more
computation time and communication steps.

C. Phase 1: Build Bundle

First the bids for the unassigned tasks and plans for each
agent must be computed. This is done by running a CBBA
between all of the agents within the team (A3 : 1). After
the agent bundles have been built, the information must
be extracted from the agents and put into the team data
structures. To do this it goes through each agent’s bundle
looking for tasks {k} ∈ T u and putting them in the team’s
bundle Bi in order of decreasing bid (A3 : 6-12). Sorting
the bundle is necessary to satisfy the diminishing marginal
gain requirement mentioned in [1]. The winning bid list is
set to the agent winning bid and the winner ID list is set to
i (A3 : 13-14).

D. Phase 2: Communication

The communication phase consists of three steps: sending
and receiving data, resolving conflicts in the team’s bundle,

Algorithm 3: TCBBA build bundle for team i

input : Bi,Yi,Zi, T u, b̂i, p̂i, ŷi, ẑi, Ti
output: Bi,Yi,Zi,bi,pi,yi, zi

1: [bi,pi,yi, zi] = CBBA(b̂i, p̂i, ŷi, ẑi, Ti ∪ T u)

2: foreach j ∈ Nui do
3: for k = 1 to |bij | do
4: if bijk ∈ T u then
5: n = |Bi|
6: for m = |Bi| to 1 do
7: if YiBim

< yijbijk
then

8: n = m− 1
9: end

10: Bi = Bi ⊕n bijk
11: end
12: Zibijk

= i
13: Yibijk

= yijbijk

14: end
15: end
16: end

and resolving conflicts in the agents’ bundles. For team i, the
team sends Yi,Zi, and Si and receives Yh,Zh, and Sh from
team h. It iterates through each task and determines what
action to take. The possible actions are the same used in the
CBBA and are repeated in Table I. There are three possible
outcomes from the decision table (A4 : 6): update, reset, or
leave. An update for team i means team i’s information is
changed to what team h knows (A4 : 8). A reset re-initializes
the bid and winner ID to zero (A4 : 10), and the task is
removed from the bundle (A4 : 15-16). A leave makes no
change to any of the data vectors. If an update or a reset
occurred on task k then the reward values for the tasks that
appear in the bundle after task k are no longer valid and all
of the following tasks in the bundle need to be reset (A4 : 15-
16). The time stamp vector is then updated using the current
time and Sj (A4 : 21-27).

After the team information Bi,Yi, and Zi has been up-
dated, the individual agent’s information needs to be updated
(A4 : 26-28). Each agent j ∈ Nui goes through its entire
bundle bij looking for any tasks that were removed from
the team’s bundle (A5 : 1-2). If it finds one then, for that
task and each task that follows it in the bundle, the bid and
the winner ID are reset to zero (A5 : 3) and the tasks are
removed from the bundle and the path (A5 : 4-5).

IV. CONVERGENCE TIME ANALYSIS

It is informative to determine the maximum number of
communication steps required for all teams to arrive at a
conflict free solution in a static communication network
and worst case scenario. We cannot perform this analysis
on Algorithm 2 requires knowledge of the number of tasks
assigned by each team during each iteration.

In the worst case situation, the diameter of the commu-
nication network equals the number of agents. Let Di be

5378

Algorithm 4: Conflict resolution for team i receiving
from team j at time τ

input : Bi,Yi,Zi, T u
output: Bi,Yi,Zi

1: SEND: Yi,Zi,Si to team j
2: RECEIVE: Yj ,Zj ,Sj from team j

3: foreach k ∈ T u do
4: Ŷi = Yik, Ẑi = Zik
5: Ŷj = Yjk, Ẑj = Zjk

6: Find action (Table I) ⇒ UPDATE, RESET, or
LEAVE (Ŷi, Ŷj , Ẑi, Ẑj ,Si,Sj)

7: if UPDATE then
8: Yik = Ŷj , Zik = Ẑj
9: else if RESET then

10: Yik = 0, Zik = 0
11: end

12: if UPDATE or RESET then
13: for m = 1 to |Bi| do
14: if Bim = k then
15: Yi,Bin

= 0, Zi,Bin
= 0,

Bin = ∅ ∀m ≤ n ≤ Lm
16: end
17: end
18: end
19: end

20: for k = 1 to No do
21: if k = j then
22: Sik = τ
23: else
24: Sik = max (Sik,Sjk)
25: end
26: end

27: foreach j ∈ Nui do
28: UpdateAgentList(j,Bi,Yi,Zi)
29: end

the diameter of the communication network of the agents
in team i, Ni be the number of tasks assigned to team i,
DT be the diameter of the team communication network,
Nu be the total number of unassigned tasks after the local
task assignment phase, N be the total number of tasks, and
D be the diameter of the communication network of all the
agents.

From [1] we know that the maximum number of commu-
nication steps needed for the CBBA to converge to a conflict
free solution is ND. Applying this result to the TCBBA, the
number of communications steps needed in the worst case
for the initial task assignment is maxi(NiDi). The second
stage will have at most NuDT iterations and each iteration
will have maxiNuDi communication steps between agents
as well as one communication step between teams. The total

TABLE I
ACTION RULE FOR AGENT i RECEIVING FROM AGENT j [1]

Sender’s ẑj Receiver’s ẑi Condition(s) Action (Default: LEAVE)

j
i if ŷj > ŷi UPDATE

j or 0 UPDATE
η /∈ {i, j} if Sjη > Siη or ŷj > ŷi UPDATE

i
i or 0 LEAVE
j RESET

η /∈ {i, j} if Sjη > Siη RESET

µ /∈ {i, j}

i Sjµ > Si,µ and ŷj > ŷi UPDATE

j
if Sjµ > Siµ UPDATE
else RESET

µ or 0 if Sjµ > Siµ UPDATE

η /∈ {i, j, µ}
if Sjµ > Siµ and Sjη > Siη UPDATE
if Sjµ > Siµ and ŷj > ŷi UPDATE
if Sjη > Siη and Siµ > Sjµ RESET

0
i or 0 LEAVE
j UPDATE

η /∈ {i, j} if Sjη > Siη UPDATE

Algorithm 5: Conflict resolution for team i agent j
input : Bi, T u,bij ,pij ,yij , zij
output: bij ,pij ,yij , zij

1: for k = 1 to |bi,j | do
2: if bijk ∈ T u and bijk 6∈ Bi then
3: yi,j,bijm

= 0, zi,j,bijm
= 0 ∀k ≤ m ≤ |bij |

4: bijm = ∅ ∀k ≤ m ≤ |bij |

5: Update pij : For each task that was removed
from bij remove it from pij

6: end
7: end

number of communication steps is

Nc = max
i

(NiDi) +DTNu

(
max
i

(NuDi) + 1
)

. (3)

In the worst case, maxi(NuDi)� 1 so

Nc ≈ max
i

(NiDi) +DTN
2
u max

i
(Di). (4)

If we assume that the agents and tasks are divided up equally
among the No teams then

Ni =
N

No
and Di =

D

No
.

and (4) becomes

Nc =
ND

N2
o

+
DTN

2
uD

No
. (5)

If we assume worst case communication between the
teams then No = DT and (5) becomes

ND

N2
o

+N2
uD =

(
N

N2
o

+N2
u

)
D. (6)

Comparing (6) to the worst case convergence bound for the
full CBBA assignment ND we find(

N

N2
o

+N2
u

)
D ≤ ND. (7)

Solving (7) for Nu we obtain

Nu ≤

√
1− 1

N2
o

√
N . (8)

5379

Fig. 1. Maximum number of unassigned tasks for TCBBA to converge
quicker than CBBA in worst case as the number of teams changes (Nt =
150, D = 12).

Notice as the number of teams increases, the number of
allowed unassigned tasks, Nu approaches

√
N .

If we assume that there is full communication between the
teams instead of worst case then DT = 1 and (5) becomes

ND

N2
o

+
N2
uD

No
=

(
N

N2
o

+
N2
u

No

)
D. (9)

Comparing (9) to the worst case convergence bound for the
full CBBA assignment ND we find(

N

N2
o

+
N2
u

No

)
D ≤ ND. (10)

Solving (10) for Nu we obtain

Nu ≤
√
No −

1

No

√
N . (11)

Figure 1 shows how the maximum number of unassigned
tasks changes as the number of teams increase while the
number of tasks and agents stay the same. Notice in the
worst case team communication case, the maximum number
of unassigned tasks quickly approaches the maximum value
of
√
Nt. In the full team communication case, the number

of unassigned tasks quickly exceeds
√
Nt.

Figure 2 shows how the maximum number of unassigned
tasks changes as the number of tasks increase while the
number of teams and agents stay the same. Notice that
both the worst case team communication and full team
communication increase proportionally to

√
Nt.

V. SIMULATION RESULTS

We created four scenarios in order to compare the TCBBA
to the CBBA. In each scenario there are three teams of four
agents within a 1200x400 meter world. Each team is assigned
Nu tasks which take 25 seconds to complete. There are four
types of tasks {A, B, C, D} and four types of agents
{a, b, c, d}. Each agent type is only able to service its
corresponding task type, moves at 40m/s, and has no turning
constraints. We used a time-discounted reward for the tasks:

Spi

i =
∑

λ
τj
i (pi)
j cj (12)

Fig. 2. Maximum number of unassigned tasks for TCBBA to converge
quicker than CBBA in worst case as the number of tasks changes (No =
4, D = 12).

where Spi

i is the total score of agent i with path pi,
λj = 0.001 is the discounting factor for task j, τ ji (pi)
is the estimated time that agent i will service task j when
following path pi, and cj = 100 is the value of the task. The
objective is the maximize the total score over 500 seconds.

The four scenarios are created by changing two param-
eters. The first parameter is if the teams have their own
region of the map or if they share the entire world. If the
teams are not overlapping, then they each have their own
400x400 meter region with team two located in the center. If
the teams are overlapping then the teams’ agents and tasks
are randomly distributed throughout the entire world. The
second parameter is if there are 50 or 100 tasks per team.

To force the teams to cooperate, teams one and three are
not given a complete set of agents. Team one has two type a
agents and two type b agents, team two has one of each type
of agent, and team three has two type c agents and two type
d agents. Each team is assigned an equal number of each
task type which are randomly distributed within the team’s
assigned region. Providing an incomplete set of agents to
teams one and three guarantees there will be unassigned tasks
after the initial CBBA. It also guarantees that the proportion
of unassigned tasks to total tasks will be higher than the
threshold developed in the previous section implying that
the TCBBA will take more communication steps than the
CBBA.

Five hundred Monte-Carlo simulations are run for each
scenario. In each simulation, we assign the tasks five different
ways: running Algorithm 1 once, running Algorithm 2 once,
running Algorithm 2 until the change in score is less than
2.5%, running Algorithm 2 until either all the tasks have
been assigned or the unassigned tasks list stops changing, and
merging all the tasks and agents into one team and running
the CBBA. Figure 3 shows the mean percent difference in
total score between the four TCBBA versions and the CBBA
assignment. Figure 4 shows the mean percent difference
in communication steps needed to arrive at a conflict free
solution between the TCBBA and the CBBA. Figure 5 shows
the mean percent difference in computation time between the

5380

Fig. 3. Mean percent difference in overall score between TCBBA and
CBBA

Fig. 4. Mean percent difference in communication steps between TCBBA
and CBBA

TCBBA and CBBA.
The results show several interesting things about the

TCBBA. First, as seen in Figure 3, all the variations of
the TCBBA consistently have a lower overall score than the
CBBA. This difference varies based on the which TCBBA
variation is used but is typically within 3%. What is not
shown is that occasionally the TCBBA can do as well as
the CBBA but in all five hundred runs, it never beat it.
Second, the TCBBA always required more communication
steps than the CBBA as shown in Figure 4. This result was
expected because of the large number of unassigned tasks.
Third, repeating the second variation of TCBBA until the
unassigned task list is empty or unchanging is not worth
the computation. Finally, the amount of computation time
required is proportional to the number of communication
steps as seen in Figure 5. It is interesting to note that the
TCBBA can take less time to arrive at a solution than the
CBBA when implemented in a centralized manner.

VI. CONCLUSION AND FUTURE WORK

This paper presents a modification of the Consensus-Based
Bundle Algorithm that handles the multi-team, multi-task
problem using a combination of auctions and consensus to

Fig. 5. Mean percent difference in computation time between TCBBA and
CBBA

achieve feasible, conflict free solutions. While these solutions
are less optimal than running the CBBA, typically within 3%,
the TCBBA allows the agents or region to be divided into
separate teams to handle a wider variety of situations.

In the future, we want to modify Algorithm 2 so that it
no longer ignores the initial plan. Instead it will use the
approach taken by the Extended Consensus-Based Bundle
Algorithm and will attempt to insert the unassigned tasks
into the initial plan while still allowing the initial plan to be
modified as described in [6]. Furthermore, we want to allow
teams to be able to ask for help from neighboring teams
instead of from all teams. These changes should drastically
reduce the number of communication steps required to
achieve consensus while decreasing the final score by a small
amount.

VII. ACKNOWLEDGMENTS

We would like to thank Jonathan How and Sameera Ponda
for allowing us to use their CBBA Matlab code.

REFERENCES

[1] Han-Lim Choi, Lue Brunet, and Jonathan P How. Consensus-Based
Decentralized Auctions for Robust Task Allocation. Robotics, IEEE
Transactions on, 25(4):912 – 926, 2009.

[2] Han-Lim Choi, Andrew K Whitten, and Jonathan P How. Decen-
tralized Task Allocation for Heterogeneous Teams with Cooperation
Constraints. In American Control Conference, pages 3057–3062, 2010.

[3] Sameera Ponda, Josh Redding, Han-lim Choi, Jonathan P How, Matt
Vavrina, and John Vian. Decentralized Planning for Complex Missions
with Dynamic Communication Constraints. In American Conrol Con-
ference, pages 3998–4003, 2010.

[4] Sameera Ponda, Han-lim Choi, and Jonathan P How. Predictive
planning for heterogeneous teams with human agents. In AIAA
Infotech@Aerospace, 2010.

[5] Richard Ernest Bellman. Dynamic Programming. Rand Corporation,
1957.

[6] Travis Mercker, David W Casbeer, P Travis Millet, and Maruthi R
Akella. An Extension of Consensus-Based Auction Algorithms for
Decentralized , Time-Constrained Task Assignment. In American
Control Conference, 2010.

5381

