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Abstract— This paper presents a Gaussian mixture prob-
ability hypothesis density (GM-PHD) smoother for tracking
multiple maneuvering targets that follow jump Markov models.
Unlike the generalization of the multiple model GM-PHD
filters, our aim is to approximate the dynamics of the linear
Gaussian jump Markov system (LGJMS) by a best-fitting
Gaussian (BFG) distribution so that the GM-PHD smoother
can be carried out with respect to an approximated linear
Gaussian system. Our approach is inspired by the recognition
that the BFG approximation provides an accurate performance
measure for the LGJMS. Furthermore, the multiple model
estimation is avoided and less computational cost is required.
The effectiveness of the proposed smoother is verified with a
numerical simulation.

I. INTRODUCTION

Tracking of multiple targets in the random finite set (RFS)

formulation has received much attention in the literature, and

multi-target tracking based on RFS have found increasing

applications such as radar tracking, sonar tracking, speaker

tracking and multi-target tracking from image observations.

Based on the finite set statistics (FISST) theory [1], the

problem of tracking an unknown and time-varying number

of targets in the presence of uncertain data association can be

formulated in a rigorous Bayesian framework by constructing

the multi-target transition density and multi-target likelihood

function. However, the optimal multi-target Bayes filter is

generally intractable due to the existence of multiple set

integrals and the combinatorial nature of the multi-target

densities. To alleviate this intractability, the probability hy-

pothesis density (PHD) filter has been proposed as a first

order moment approximation to the multi-target posterior

density [2]. It should be pointed out that the PHD filter

still requires solving multi-dimensional integrals and does

not have closed-form solutions in most practical applications.
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The sequential Monte Carlo (SMC) or particle technique

has been used to implement the PHD filter in [3] and [4].

The main drawbacks of this approach are the large number of

particles and the unreliability of the clustering techniques for

extracting state estimates. To overcome these disadvantages,

the Gaussian mixture PHD (GM-PHD) filter was developed

for linear Gaussian target dynamics and Gaussian birth model

[5], in which the weights, means and covariances are propa-

gated analytically by the Kalman filter (KF). Similar idea has

been extended to accommodate nonlinear target dynamic and

measurement models using the extended Kalman filter (EKF)

and the unscented Kalman filter (UKF). The convergence

properties of two implementations were analyzed in [6] and

[7]. In [6], the convergence results for the mean-square error

as well as weak convergence of the empirical particle mea-

sure to the true PHD measure have been obtained. Specially,

these results show how order of the mean-square error is

reduced as the number of particles increases. As shown in

[7], the GM-PHD filter can approximate the true PHD filter

to any desired degree of accuracy under the linear Gaussian

assumption of the dynamic model. The generalizations to the

jump Makov models have also been proposed for tracking

multiple maneuvering targets in [8]–[11]. As mentioned in

[8], the existing multiple model GM-PHD filters are not

interacting and how can the PHD filter be combined with the

interacting multiple model (IMM) approach [12] remains an

interesting and challenging problem in both theory and prac-

tice. The main difficulty encountered in combining the IMM

approach with the PHD filter is that the mode probabilities

in the IMM cannot be derived in the PHD filter since the

random finite sets are used in the PHD filter. Recently, the

backward smoothing PHD recursion has been derived to im-

prove the tracking performance by employing the physical-

space approach [13]. The particle implementation and the

Gaussian mixture implementation have been carried out in

[14] and [15], respectively. Furthermore, the authors in [16]

extended the particle implementation to the multiple model

PHD recursion. To our knowledge, the GM-PHD smoother

has not been developed for tracking multiple maneuvering

targets.

In this paper, we attempt to propose a fixed-lag GM-

PHD smoother to address the problem of tracking an un-

known and time-varying number of maneuvering targets

with Markovian switching dynamics. We do not adopt the

multiple model scheme since the existing multiple model

GM-PHD filters are not interacting. Instead, our objective

is to approximate the dynamics of the linear Gaussian jump

Markov system (LGJMS) by a best-fitting Gaussian (BFG)
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distribution. Based on the BFG approximation, the multiple

model estimation for LGJMS is reverted to the single model

estimation for an approximated linear Gaussian system. Then

the fixed-lag GM-PHD smoother can be carried out with

respect to the approximated linear Gaussian system. This

is inspired by the recognition that the BFG approximation

provides an accurate predictor of the IMM performance [17]

and therefore more accurate tracking performance can be

expected. In addition, much less computational expense is

needed as the multiple model estimation is avoided. Similar

ideas have also been used to develop a GM-PHD filter

for LGJMS in our previous work [18]. Simulation results

are presented to illustrate the performance of the proposed

smoother in terms of tracking accuracy and computational

cost.

The rest of this paper is organized as follows. The multi-

target tracking problem is formulated in the RFS framework

and the smoothed PHD recursion is presented in Section II.

The BFG approximation for LGJMS is reviewed in Section

III along with the Gaussian mixture implementation to the

smoothed PHD recursion. In Section IV, the performance of

the proposed smoother is evaluated by a numerical example.

Conclusion is drawn in Section V.

II. RFS FORMULATION FOR MULTI-TARGET TRACKING

An RFS X is a finite set valued random variable, which

can be described by a discrete probability distribution and a

family of joint probability densities. Moreover, the discrete

distribution characterizes the cardinality of X whereas an

appropriate density characterizes the joint distribution of the

elements in X . Note that there is a nature way to model

the collections of individual targets and measurements with

RFSs to capture the time-varying feature of the number of

targets present and the number of measurements received at

each time step. Suppose that there are nk targets with states

xk,1, · · · , xk,nk
and mk measurements zk,1, · · · , zk,mk

at

time step k, we can represent the multi-target state and multi-

target measurement as two RFSs [1]

Xk , {xk,1, · · · , xk,nk
} ⊂ X (1)

Zk , {zk,1, · · · , zk,mk
} ⊂ Z (2)

where X ⊂ R
n and Z ⊂ R

p denote the state and observation

space, respectively. Then, the multi-target tracking can be

formulated as a filtering process with state space X and

observation space Z .

The FISST theory provides a rigorous Bayesian formula-

tion to deal with multi-target tracking problems in the RFS

framework. Using the FISST approach, the optimal multi-

target Bayes recursion can be derived by propagating the

multi-target posterior density in time. However, this recursion

involves multiple integrals and the multi-target densities are

combinatorial, which makes it computationally intractable.

Inspired by the single-target tracking theory, this problem is

alleviated by approximating the multi-target posterior density

with its statistical moments and propagating the moments

instead.

The PHD recursion, which propagates the first order

moment or the intensity function of multi-target RFSs,

provides a computationally cheaper alternative to the op-

timal multi-target Bayes recursion under the assumption

that the clutter RFS and the predicted multi-target RFSs

are Poisson [5]. Specifically, given the posterior intensity

νk−1|k−1(xk−1|Z1:k−1) at time k − 1, the predicted inten-

sity νk|k−1(xk|Z1:k−1), the posterior intensity νk|k(xk|Z1:k)
and the smoothed intensity νt|k(xt|Z1:k) are calculated as

follows. For simplicity, νa|b(xa|Z1:b) is shortly denoted by

νa|b.

PHD Prediction:

νk|k−1 =

∫

[psf(xk|xk−1) + βk|k−1(xk|xk−1)]

× νk−1|k−1dxk−1 + γk(xk) (3)

where ps is the surviving probability. f(·|·) is the single-

target transition density. βk|k−1(·|·) and γk(·) denote the

intensity of the spawned target RFS and the intensity of the

spontaneously birth target RFS, respectively.

PHD Update:

νk|k = (1 − pd)νk|k−1

+
∑

z∈Zk

pdh(z|xk)νk|k−1

κk(z) +
∫

pdh(z|xk)νk|k−1dxk

(4)

where pd is the detection probability. h(·|·) is the single-

target measurement likelihood. κk(·) denotes the intensity

of the clutter RFS.

PHD Smoothing:

νt|k = νt|t

[

(1 − ps) + ps

∫

νt+1|kf(xt+1|xt)

νt+1|t
dxt+1

]

(5)

where t = k − L. L is the time lag of the smoothing

algorithm. νt|k and νt+1|k are the smoothed PHD at time

t and t + 1, respectively. νt|t is the filtered PHD at time t,
and νt+1|t is the predicted PHD at time t + 1. Note that

this recursion is initialized with the filtering results at the

present time k and stopped at time k−L, which is called as

the fixed-lag smoothing.

Although the PHD recursion given by (3)-(5) operates on

the single-target state space and avoids the explicit problem

of data association, the PHD recursion still does not admit

closed-form solutions in general due to the multi-dimensional

integrals and hence numerical integration methods are re-

quired. In the following, the Gaussian mixture implementa-

tion is used to derive the fixed-lag PHD smoother.

III. GM-PHD SMOOTHER FOR MULTIPLE MANEUVERING

TARGETS TRACKING

In this section, we first review the BFG approximation

for LGJMS and derive the recursive formulas for calculating

the mean and covariance of the Gaussian distribution. Then,

we develop the fixed-lag GM-PHD smoother by applying

the Rauch-Tung-Striebel type smoothing algorithm to the

approximated linear Gaussian model.
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A. BFG approximation for LGJMS

Assume that the dynamics of each target can be char-

acterized by one of M hypothesized models with model

set M = {1, 2, · · · ,M}. Although all the targets share a

common model set, any two targets may be in different

motion status from time to time. The target motion model

can be described by

xk+1 = Fk(rk+1)xk + wk(rk+1) (6)

where xk ∈ R
n is the target state at time k, Fk(rk+1) denotes

the transition matrix of model rk+1. wk(rk+1) is the additive

zero-mean white Gaussian noise with covariance Qk(rk+1).
rk+1 specifies the target motion model which is in effect

during the time interval [k, k +1). The event that model r is

in effect during the sampling period [k, k +1) is denoted by

Mr
k+1. The evolution of motion models follows a discrete-

time Markov chain with known transition probability πij =
Pr{rk+1 = j|rk = i} and initial motion model probabilities

p1,r = Pr{Mr
1 } for i, j, r ∈ M. For notational simplicity,

we denote Fk(r) and Qk(r) by F r
k and Qr

k for rk+1 = r,

respectively.

The objective of the BFG approximation is to express

the dynamics of the LGJMS (6) with the following linear

Gaussian model

xk+1 = Φkxk + wk (7)

where wk is a zero-mean white Gaussian random vector with

covariance matrix Σk. To be precise, we want to replace the

LGJMS (6) with a single BFG distribution (7) such that the

distribution of xk has the same mean and covariance under

both models, i.e.,

E{xk|A} = E{xk|B} (8)

Cov{xk|A} = Cov{xk|B} (9)

where “A” and “B” refer to models (6) and (7), respectively.

“E” and “Cov” denote the expectation and the covariance

operators, respectively.

Thus, the central problem is to determine the matrices Φk

and Σk. As shown in [17], they can be derived as follows

pk+1,r =
M
∑

i=1

πirpk,i (10)

Φk =
M
∑

r=1

pk+1,rF
r
k (11)

Θk+1 =
M
∑

r=1

pk+1,r

[

F r
k (Θk + εkεT

k )[F r
k ]T + Qr

k

]

− ΦkεkεT
k ΦT

k (12)

Σk = Θk+1 − ΦkΘkΦT
k (13)

εk+1 = Φkεk (14)

where pk+1,r is the probability of the event that model r is

effect during the sampling interval [k, k + 1), and

εk , E{xk|A} (15)

Θk , Cov{xk|A} (16)

It is observed that the recursive formulas have been

obtained for calculating the system matrix Φk and the

covariance matrix Σk. In the following, we aim to obtain the

GM-PHD smoother based on the linear Gaussian model (7)

instead of the LGJMS (6). It should be pointed out that this

scheme does not provide an optimal estimation for LGJMS

but provides an accurate predictor alternative of an IMM

estimator [17].

B. GM-PHD smoother based on BFG approximation

Assume that the state dynamics and measurements of each

target can be modeled as

f(xk|xk−1) = N (xk; Φk−1xk−1,Σk−1) (17)

h(zk|xk) = N (zk;Hkxk, Rk) (18)

where Φk−1 and Σk−1 are calculated by the above BFG

approximation at each time step. Hk and Rk denote the

measurement matrix and the covariance matrix of the mea-

surement noise, respectively. Note that Hk and Rk do not

evolve with time according to the switching parameter rk.

This is reasonable since the measurements from the sensors

remain the same with respect to the system states.

To derive Gaussian mixture implementations of the PHD

recursion, the intensities of the birth and spawning RFSs are

assumed to be

γk(x) =

Jγ,k
∑

j=1

wj
γ,kN (x;mj

γ,k, P j
γ,k) (19)

βk|k−1(x|ξ) =

Jβ,k
∑

l=1

wl
β,kN (x;F l

β,kξ + dl
β,k, Ql

β,k) (20)

where Jγ,k, wj
γ,k, mj

γ,k and P j
γ,k are given parameters that

determine the shape of the birth intensity. Jβ,k, wl
β,k, F l

β,k,

dl
β,k and Ql

β,k are given parameters that determine the shape

of the spawning intensity. It should be mentioned that these

intensities are not assumed to be mode-dependent as in [10]

since the LGJMS has been replaced by the linear Gaussian

model.

Under the above assumptions, the PHD smoothing recur-

sion (3)-(5) can be carried out as follows.

BFG Approximation Step: Given the mode probability pk,i,

the mean εk and the covariance Θk at time step k, determine

the matrices Φk and Σk

pk+1,r =
M
∑

i=1

πirpk,i (21)

Φk =
M
∑

r=1

pk+1,rF
r
k (22)

Θk+1 =
M
∑

r=1

pk+1,r

[

F r
k (Θk + εkεT

k )[F r
k ]T + Qr

k

]

− ΦkεkεT
k ΦT

k (23)

Σk = Θk+1 − ΦkΘkΦT
k (24)

εk+1 = Φkεk (25)
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Prediction Step: Given that the posterior intensity is a

Gaussian mixture

νk|k =

Jk
∑

j=1

wj
kN (xk;mj

k|k, P j

k|k) (26)

then the predicted intensity is also a Gaussian mixture with

the form

νk+1|k = νs,k+1|k + νβ,k+1|k + γk+1(xk+1) (27)

where γk+1(x) is given by (19), and

νs,k+1|k = ps

Jk
∑

j=1

wj
kN (xk+1;m

j

s,k+1|k, P j

s,k+1|k) (28)

νβ,k+1|k =

Jk
∑

j=1

Jβ,k+1
∑

l=1

wj
kwl

β,k+1N (xk+1;m
j,l

β,k+1|k, P j,l

β,k+1|k)

(29)

mj

s,k+1|k = Φkmj

k|k (30)

P j

s,k+1|k = ΦkP j

k|kΦT
k + Σk (31)

mj,l

β,k+1|k = F l
β,k+1m

j

k|k + dl
β,k+1 (32)

P j,l

β,k+1|k = F l
β,k+1P

j

k|k[F l
β,k+1]

T + Ql
β,k+1 (33)

Update Step: Given that the predicted intensity can be

represented as the form of

νk+1|k =

Jk+1|k
∑

i=1

wi
k+1|kN (xk+1;m

i
k+1|k, P i

k+1|k) (34)

then the posterior intensity is updated as

νk+1|k+1 = (1 − pd)νk+1|k +
∑

z∈Zk+1

νd,k+1(xk+1; z) (35)

where

νd,k+1(xk+1; z) =

Jk+1|k
∑

i=1

wi
k+1(z)

×N (xk+1;m
i
k+1|k+1(z), P i

k+1|k+1) (36)

wi
k+1(z) =

pdw
i
k+1|kqi

k+1(z)

κk+1(z) + pd

∑Jk+1|k

l=1 wl
k+1|kql

k+1(z)

(37)

qi
k+1(z) = N (z; ẑi

k+1|k,Hk+1P
i
k+1|kHT

k+1 + Rk+1)

(38)

mi
k+1|k+1(z) = mi

k+1|k + Ki
k+1(z − ẑi

k+1|k) (39)

ẑi
k+1|k = Hk+1m

i
k+1|k (40)

P i
k+1|k+1 = (I − Ki

k+1Hk+1)P
i
k+1|k (41)

Ki
k+1 = P i

k+1|kHT
k+1

× (Hk+1P
i
k+1|kHT

k+1 + Rk+1)
−1 (42)

Smoothing Step: Assume that the smoothed PHD at time

step t + 1 are Gaussian mixtures, i.e.,

νt|t =

Jt|t
∑

i=1

wi
t|tN (xt;m

i
t|t, P

i
t|t) (43)

νt+1|k+1 =

Jt+1|k+1
∑

j=1

wj

t+1|k+1N (xt+1;m
j

t+1|k+1, P
j

t+1|k+1)

(44)

Substituting (43) and (44) into the smoothed PHD recur-

sion (5) leads to

νt|k+1 = (1 − ps)

Jt|t
∑

i=1

wi
t|tN (xt;m

i
t|t, P

i
t|t)

+ ps

Jt|t
∑

i=1

Jt+1|k+1
∑

j=1

wi
t|tw

j

t+1|k+1N (xt;m
i
t|t, P

i
t|t)

×

∫ N (xt+1;m
j

t+1|k+1, P
j

t+1|k+1)

νt+1|t

×N (xt+1; Φtxt,ΦtP
i
t|tΦ

T
t + Σt)dxt+1 (45)

As discussed in [15], the second term on the right hand

side of (45) can be implemented using the Rauch-Tung-

Striebel type smoothing algorithm [19]. More precisely,

νt|k+1 = (1 − ps)

Jt|t
∑

i=1

wi
t|tN (xt;m

i
t|t, P

i
t|t)

+ ps

Jt|t
∑

i=1

Jt+1|k+1
∑

j=1

wi,j

t|k+1N (xt+1;m
i,j

t|k+1, P
i,j

t|k+1)

(46)

where

wi,j

t|k+1

=
wi

t|tw
j

t+1|k+1N (mj

t+1|k+1;m
i
t+1|t, P

i
t+1|t)

γt+1(m
j

t+1|k+1) +
∑Jt|t

l=1 N (mj

t+1|k+1;m
l
t+1|t, P

i
t+1|t)

(47)

mi
t+1|t = Φtm

i
t|t (48)

P i
t+1|t = ΦtP

i
t|tΦ

T
t + Σt (49)

mi,j

t|k+1 = mi
t|t + Di

t(m
j

t+1|k+1 − Φtm
i
t|t) (50)

P i,j

t|k+1 = P i
t|t + Di

t(P
j

t+1|k+1 − ΦtP
i
t|tΦ − Σt)[D

i
t]

T (51)

Di
t = P i

t|tΦt[ΦtP
i
t|tΦ

T
t + Σt]

−1 (52)

Remark 1: It is worth noting that the pruning scheme

is required before and after the smoothing step since the

number of Gaussian components increase without bound

as time progresses. A simple pruning procedure has been

provided by truncating components that have weak weights

to mitigate this problem. For the detail, see [5].

Remark 2: An advantage of the BFG approximation is

that it is restricted to linear dynamic models but places

no such restriction on the measurement equation. Thus

3027



it is possible to handle nonlinear measurements by using

nonlinear filters. This coincides with the requirements in the

target tracking community: the target dynamics are often

described by a linear kinematics model while measurements

are nonlinear with respect to the target states.

IV. SIMULATION RESULTS

In this section, we present a numerical example to compare

the proposed smoother with the corresponding filter in terms

of tracking accuracy and computational cost.

Tracking model: Consider a two-dimensional scenario with

an unknown and time-varying number of targets, which is

similar to the example provided in [10]. The target state is

denoted by xk = [px,k ṗx,k py,k ṗy,k]T , where (px,k py,k)
represents the Cartesian coordinates in the horizontal plane

and (ṗx,k ṗy,k) represents its velocities. The target dynamics

is described by the coordinated turn model

xk =









1 sin(ωT )
ω

0 − 1−cos(ωT )
ω

0 cos(ωT ) 0 − sin(ωT )

0 1−cos(ωT )
ω

1 sin(ωT )
ω

0 sin(ωT ) 0 cos(ωT )









xk−1 + wk−1(ω)

(53)

where ω denotes the turn rate and T = 1 is the sampling

time period. wk−1(ω) is zero-mean white Gaussian noise

with covariance matrix

Q(ω) = σ2(ω)











T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T











(54)

Three models corresponding to different turn rates are

used. Model 1 is a coordinated turn model with a turn rate of

0◦/s and σ(0) = 5. Model 2 is a coordinated turn model with

a clockwise turn rate of 4◦/s and σ(4) = 20. Model 3 is a

coordinated turn model with a counterclockwise turn rate of

4◦/s and σ(4) = 20. The switching between three models is

governed by a first order Markov chain with known transition

probability matrix

Π =





0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8



 (55)

The measurement consisting of range and bearing is given

by

zk =

[ √

(px,k − sx)2 + (py,k − sy)2

arctan[(px,k − sx)/(py,k − sy)]

]

+ vk (56)

where [sx, sy] is the location of the sensor, and the measure-

ment noise vk is assumed to be zero-mean white Gaussian

with R = diag{1002 (π/180)2}. The sensor is located at

[6, 10] km, and the average number of clutter returns per

unit volume is taken as λc = 1.04 × 10−4 (rad km)−1. In

this work, the cubature Kalman filter (CKF) [20] and the

Rauch-Tung-Striebel type cubature Kalman smoother (CKS)

are used to handle nonlinear measurements.

The number of targets is time-varying due to target ap-

pearance and disappearance in the scene at any time. The

spontaneous birth RFS is Poisson with intensity

γk(ξ) = 0.1
[

N (ξ;m1
γ , Pγ) + N (ξ;m2

γ , Pγ)
]

(57)

where m1
γ = [10, 0, 20, 0]T , m2

γ = [0, 0, 30, 0]T and

Pγ = diag{106, 104, 106, 104}.

The intensity of the Poisson RFS of spawn births is given

by

βk|k−1(x|ξ) = 0.05N (x; ξ, Qβ) (58)

where Qβ = diag{104, 400, 104, 400}.

Simulation results: In the simulations, the survival and

the detection probabilities are set to ps = 0.99 and pd =
0.98, respectively. The pruning threshold has been taken as

TTh = 0.01, the merging threshold UTh = 5, the weight

threshold wTh = 0.5 and the maximum number of Gaussian

terms Jmax = 10 (see [5] for the meanings of these parame-

ters). The criterion known as optimal subpattern assignment

(OSPA) metric is used for performance evaluation. It has

been shown in [21] that the OSPA metric joint captures the

differences in cardinality and individual elements between

two finite sets.

Target 1 starts at time k = 1 with initial position at [10, 20]
km and ends at time k = 100; Target 2 is spawned from

target 1 at time k = 30 and ends at time 70; Target 3 starts

at time k = 5 with initial position at [0, 30] km and ends

at time k = 85; Target 4 is spawned from target 3 at time

k = 40 and ends at time 80. To verify the performance of

the proposed smoother with a lag of 1 time step, 100 Monte

Carlo runs are performed.

The position estimates of the proposed smoother and the

corresponding filter for one trial shown in Fig. 1 indicate that

the smoother provides more accurate tracking performance.

We compare the performance of the proposed GM-PHD

smoother with that of the GM-PHD filters, namely, the BFG-

based GM-PHD filter [18] and the multiple model GM-PHD

filter without interacting [10]. The OSPA distance for p = 2
and c = 200 is shown in Fig. 2 (see [21] for the meanings

of these parameters). It can be seen from Fig. 2 that the

proposed smoother gives the best estimates. Specially, the

BFG-based GM-PHD filter performs better than the multiple

model GM-PHD filter without interacting. This is expected

since the former provides an accurate predictor of the IMM

estimator. Note here that we do not compare our results

with that of the particle implementation due to its high

computational expense.

To assess the computational cost of the proposed method,

we compute the averaged CPU time in MATLAB 7.1 on

a 2.80 GHz 4 CPU Pentium-based computer operating

under Windows XP (Professional). The proposed smoother

consumes approximately 3.17 s per sample run over 100

time steps, while the BFG-based GM-PHD filter and the

multiple model GM-PHD filter require 1.94 s and 11.72 s,

respectively. From the above comparisons, a modest conclu-

sion can be drawn that the proposed method achieves better

performance with less computational cost than the multiple
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model scheme without interacting. In addition, the proposed

GM-PHD smoother outperforms the corresponding filter with

a moderate increase in the computational load.
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Fig. 1: Position estimates of the PHD-BFG-CKF and the PHD-BFG-CKS.

0 10 20 30 40 50 60 70 80 90 100
100

110

120

130

140

150

160

170

180

190

200

Time (s)

O
S

P
A

 (
c
=

2
0
0
, 

p
=

2
)

 

 

PHD−BFG−CKS

PHD−BFG−CKF

PHD−MM−CKF

Fig. 2: Performance comparison with respect to OSPA metric.

V. CONCLUSION

In this paper, a novel GM-PHD smoother for tracking

an unknown and time-varying number of targets that follow

jump Markov models has been proposed. The mechanism of

the smoother differs from the previously proposed multiple

model GM-PHD filters without interacting. Instead, the BFG

distribution is used to approximate the dynamics of the

LGJMS, which has been shown to be in close agreement

with the performance of an IMM estimator. Therefore, the

proposed approach achieves better estimates than that of the

multiple model scheme without interacting. Moreover, the

requirement of multiple model estimation is avoided and a

low computational cost is consumed.

REFERENCES

[1] R. Mahler, Statistical Multisource-Multitarget Information Fusion,
Norwood, MA: Artech House, 2007.

[2] R. Mahler, Multitarget Bayes filtering via first-order multitarget mo-
ments, IEEE Transactions on Aerospace and Electronic Systems, vol.
39, no. 4, pp. 1152-1178, 2003.

[3] H. Sidenbladh, Multi-target particle filtering for the probability hy-
pothesis density, Proceedings of International Conference on Informa-
tion Fusion, Cairns, Australia, 2003, 800-806.

[4] B. N. Vo, S. Singh, and A. Doucet, Sequential Monte Carlo methods
for multi-target filtering with random finite sets, IEEE Transactions
on Aerospace and Electronic Systems, vol. 41, no. 4, pp. 1224-1245,
2005.

[5] B. N. Vo, and W. K. Ma, The Gaussian mixture probability hypothesis
density filter, IEEE Transactions on Signal Processing, vol. 54, no. 11,
pp. 4091-4104, 2006.

[6] D. E. Clark, J. Bell, Convergence results for the particle PHD filter,
IEEE Transactions on Signal Processing, vol. 54, no. 7, pp.2652-2661,
2006.

[7] D. E. Clark, B. N. Vo, Convergence analysis of the Gaussian mixture
PHD filter, IEEE Transactions on Signal Processing, vol. 55, no. 4,
pp.1204-1211, 2007.

[8] B. N. Vo, A. Pasha, and H. D. Tuan, A Gaussian mixture PHD filter
for nonlinear jump Markov models, Proceedings of the 45th IEEE
Conference on Decision and Control, San Diego, CA, USA, Dec. 13-
15, 2006, 3162-3167.

[9] K. Punithakumar, T. Kirubarajan, and A. Sinha, Multiple model
probability hypothesis density filter for tracking maneuvering targets,
IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no.
1, pp. 87-98, 2008.

[10] S. A. Pasha, B. N. Vo, H. D. Tuan, and W. K. Ma, A Gaussian mixture
PHD filter for jump Markov system models, IEEE Transactions on
Aerospace and Electronic Systems, vol. 45, no. 3, pp. 919-936, 2009.

[11] S. A. Pasha, H. D. Tuan, and P. Apkarian, The LFT based PHD
filter for nonlinear jump Markov models in multi-target tracking,
Proceedings of the 48th IEEE Conference on Decision and Control
and 28th Chinese Control Conference, Shanghai, P.R. China, Dec.
2009, 5478-5483.

[12] X. R. Li and V. P. Jilkov, Survey of maneuvering target tracking.
Part V: multiple-model methods, IEEE Transactions on Aerospace and
Electronic Systems, vol. 41, no. 4, pp. 1255-1321, 2005.

[13] O. Erdinc, P. Willett, and Y. Bar-Shalom, The bin-occupancy filter
and its connection to the PHD filters, IEEE Transactions on Signal
Processing, vol. 57, no. 11, pp. 4232-4246, 2009.

[14] N. Nandakumaran, K. Punithakumar, and T. Kirubarajan, Improved
multi-target tracking using probability hypothesis density smoothing,
Proceedings of the SPIE Conference on Signal and Processing of Small
Targets, vol. 6699, Aug. 2007.

[15] N. Nandakumaran, R. Tharmarasa, T. Lang, and T. Kirubarajan, Gaus-
sian mixture probability hypothesis density smoothing with multistatic
sonar, Proceedings of the SPIE Conference on Signal Processing,
Sensor Fusion and Target Recognition, vol. 6968, Mar. 2008.

[16] N. Nandakumaran, T. Kirubarajan, Maneuvering target tracking using
probability hypothesis density smoothing, Proceedings of the SPIE
Conference on Signal Processing, Sensor Fusion and Target Recogni-
tion, vol. 7336, Mar. 2009.

[17] M. L. Hernandez, B. Ristic, A. Farina, T. Sathyan, and T. Kirubarajan,
Performance measure for Markovian switching systems using best-
fitting Gaussian distributions, IEEE Transactions on Aerospace and
Electronic Systems, vol. 44, no. 2, pp. 724-747, 2008.

[18] W. Li, Y. Jia, Gaussian mixture PHD filter for jump Markov models
based on best-fitting Gaussian approximation, Signal Processing, vol.
91, no. 4, pp. 1036-1042, 2011.

[19] H. E. Rauch, F. Tung, and C. T. Striebel, Maximum likelihood
estimates of linear dynamic systems, AIAA Journal, vol. 3, no. 8,
pp. 1445-1450, 1965.

[20] I. Arasaratnam, and S. Haykin, Cubature Kalman filters, IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, 1254-1269, 2009.

[21] D. Schuhmacher, B. T. Vo, and B. N. Vo, A consistent metric for
performance evaluation of multi-object filters, IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447-3457, 2008.

3029


