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Abstract— Consider a set of multivariable input/output pro-
cess data. Given a new observation we ask the following
questions: is the new observation normal or abnormal? is one of
the inputs or outputs abnormal (faulty) and which? Assuming
a linear regression model of the process, the problem is solved
through Bayesian hypothesis testing. The proposed formulation
differs from existing multivariable statistical process control
methods by taking uncertainty (variance) of the empirical
regression model into account. The derived solution matches the
established methods for anomaly detection and fault isolation
in case there is no model uncertainty. Taking the model
uncertainty into account, the proposed solution yields significant
accuracy improvement compared to existing approaches. This
is because ill-conditioned multivariable regression models can
have large uncertainty even for large training data sets. The
paper also demonstrates that isolating faults to a small ambi-
guity group works significantly better than the exact isolation.

I. INTRODUCTION

This section starts from describing the problem informally.
A rigorous formulation is presented in the next sections.

A. Problem

Consider data generated by a multivariable statistical pro-
cess (plant)

DN = {x(t), y(t)}Nt=1, (1)

where x(t) ∈ <n are the independent variables (plant inputs),
y(t) ∈ <m are dependent variables (plant outputs, quality
variables), and t is the observation number. There are N
observations at all in DN . We assume that DN is generated
by a random process (nominal process). The process is
stationary and observations {x(t), y(t)}, {x(s), y(s)} are
independent for s 6= t. Given a new observation {x, y} and
the training set DN we ask the following questions: is the
new observation normal or abnormal? is one of the inputs
xj or outputs yk abnormal (faulty) and which?

This paper considers an easy generalization of the above
questions. We assume that the input and output faults have
signatures defined by the two sets

F = {f1, ..., fn}, (2)
G = {g1, ..., gm} (3)

A fault in input channel j is described by fj = ej , where
ej ∈ <n is a unit vector. A fault in output channel k is
described by gk = ek, where ek ∈ <m is a unit vector.
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The following statistical hypotheses are evaluated to an-
swer the question.

HN : Null hypothesis. Observation {x, y} is generated by
the nominal process.

HA: Anomaly. Observation {x, y} is abnormal, deviates
from the nominal process. This can be modeled as observing
y + h instead of y, where h is a nuisance vector.

HI,j : Input channel fault. An anomaly where {x, y} is
generated by the nominal process and x + zfj is observed
instead of x, where z is a scalar nuisance parameter.

HO,k: Output channel fault. An anomaly where y is
generated along with x by the nominal process and y+ zgk
is observed instead of y; z is a scalar nuisance parameter.

We consider the following anomaly detection and fault
isolation problems:

1. Determine which hypothesis holds: HN nominal or
HA anomaly.

2. If HA holds, find a list of all likely HI,j and HO,k

hypotheses (the ambiguity group).
3. Find the most likely hypothesis out of all the above

listed hypotheses.

B. Baseline approach

A standard approach to solving the stated monitoring
problem is to fit a linear regression model to the training
data (1) and then use this model for statistical testing of the
hypotheses. We recite it in this section and later use as a
baseline for presentation of the proposed approach.

The regression model assumes that process inputs x(t)
are deterministic and the outputs y(t) are i.i.d. (independent
identically distributed) random variables such that

y = Bx+ v, v ∼ N(0, S), (4)

where matrices B and S define the regression model. Linear
regression models are commonly used for process moni-
toring. Using regressors x that are nonlinear functions of
the original independent variables allows modeling nonlinear
maps in the form (4).

Training data (1) can be formed into two data matrices

X = [x(1), ..., x(N)] ∈ <n,N , (5)
Y = [y(1), ..., y(N)] ∈ <m,N (6)

Maximum Likelihood Estimates (MLE) of the parameters
of regression model (4) are well known to be

BN = Y XT
(
XXT

)−1
, (7)

SN = (Y −BNX)(Y −BNX)T /N (8)
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These estimates are biased (because of division by N rather
than by N−1 in (8)), but asymptotically accurate. We assume
that matrices XXT and V V T , where V = Y − BNX , are
invertible. Non-invertible matrices XXT and V V T , in (7),
(8) can be handled by introducing shrinkage / regularization
/ priors and inverting XXT + aI and V V T + bI instead,
where I denotes identity matrix of appropriate size. Scalar
regularization parameters a and b are determined by numer-
ical accuracy requirements.

Assuming that the estimates (7), (8) provide true parame-
ters of the model leads to the following indexes for process
monitoring

M1(x, y) = ‖y −BNx‖2S−1
N

, (9)

M2(x, y;h) = min
z
‖y −BNx− zh‖2S−1

N

, (10)

z = (y −BNx)
TS−1

N h/‖h‖2
S−1
N

, (11)

where the h is the assumed fault signature; notation
‖h‖2

S−1
N

= hTS−1
N h is used. Anomaly is monitored through

M1. Fault isolation is performed using M2. The optimal fault
amplitude estimate z in (10) is given by (11). For the input
fault in channel j, the assumed signature is h = BNfj ; for
the output fault k, the signature is h = gk. Usually, the fault
hypothesis providing the smallest index M2 is assumed to
hold.

C. Prior work

The formulated problems are in the well established area
of the statistical process monitoring known as Multivariable
Statistical Process Control (MSPC). The monitoring deci-
sions are based on past nominal data only. This is a desirable
feature, since in practice, faulty operation data are hard to
come by.

The prior MSPC work on fault isolation is based on
geometrical argument of subspace projections, distances, and
angles for the monitored data. A historical perspective on
such work can be found in [1], [5], [7], [11]. The recent
paper [1] argues that the “reconstruction-based contribution”
index, essentially the same as (10), (11), provides the best
results.

The main novelty of this work is that the indexes (9),
(10), are extended to explicitly include model uncertainty.
The model uncertainty (variance) is proportional to the
condition number of XXT and inverse in the training data
set size N . MSPC data often has ill-conditioned design
matrix X . For such data, the model uncertainty can be large
even with all the statistical averaging provided by a large
number N of samples in the training set. In [9], confidence
intervals, which are related to the model uncertainty, are
used to test significance of linear combinations of regression
coefficients. Though motivated by a different problem, and
derived differently, mathematically the results of [9] are
related to intermediate steps of the proposed solution.

The special case of anomaly detection for n = 0 (no
independent parameters x) is well known. In that case, as-
suming perfect model (7), (8) yields χ2

m statistics for (9). The
Bayesian formulation including the uncertainty (variance) of

the model yields Hotelling T 2 statistics for (9) that is broadly
used in MSPC.

The described setup is related to the Partial Least Squares
(PLS) formulations in MSPC that separate the process data
into independent variables x and dependent variables (qual-
ity parameters) y. The PLS handles the model uncertainty
implicitly and suboptimally by truncating smaller singular
values of the input covariance. We keep the small singular
values of the covariance, and deal with uncertainty explicitly
as a part of the optimal Bayesian formulation of anomaly
detection and fault isolation with independent variables x.
In a sense, the motivation of our approach is related to
the original underlying idea of the Hotelling T 2 monitoring
approach.

Estimation problems with random model uncertainty have
been considered earlier in a different context. Optimal
Bayesian estimation taking into account gaussian uncertainty
of linear models has been recently considered in [8], [13].
These nonconvex problems require sufficiently complex al-
gorithms. The problems in this paper are much easier to
solve because just a single scalar fault intensity is estimated
for each fault hypothesis.

The proposed approach differs from other MSPC work in
explicitly pursuing a set of suspect faults (ambiguity group)
rather that trying to isolate a single root cause fault. This
appears to be new for MSPC. Though in related earlier work,
e.g., see [6], several candidate faults are evaluated to find the
root cause fault, this is done in implicit and interactive way.
To the author’s best knowledge, the earlier MSPC work does
not explicitly pursue the ambiguity group as the end result
of the fault isolation. Fault ambiguity groups are commonly
considered in the literature on circuit testing and discrete
fault diagnostics from discrete data.

D. Contributions

The contributions of this paper are as follows.
• We propose a Bayesian approach to statistical process

monitoring taking into account the uncertainty (vari-
ation) of the model estimated from the past process
data. The proposed method matches known MSPC
approaches if there is no model uncertainty.

• The proposed Bayesian formulation of fault isolation
problem can be solved efficiently.

• The paper demonstrates that computing a small set of
likely faults (ambiguity group) provides a critical im-
provement of fault isolation performance. The isolation
accuracy can be made uniformly high for all single
channel faults despite the model uncertainty.

• The paper provides simulation results demonstrating
that the proposed approach can improve fault isolation
accuracy where the known approach fails.

The paper outline is as follows. Section II introduces the
optimal Bayesian log-posteriors needed for the hypothesis
testing. Section III describes the proposed hypothesis testing
approach to fault diagnostics. Finally, Section IV presents
a numerical example illustrating the performance of the
proposed method.
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II. BAYESIAN FORMULATION

The hypotheses introduced in Section I can be tested by
computing their likelihoods. The hypotheses assume that
the new data {x, y} are modified by applying the fault
signatures (2), (3). Subsection II-A derives the expression
for posterior likelihood for {x, y}. In Subsection II-B the
posterior expression is modified for each hypothesis.

A. Log-likelihood index
The probability density for y ∼ N(Bx, S) in (4) yields

the single-point likelihood index

L(y, x,B, S) = − log p(y, x,B, S)− c

=
1

2
(y −Bx)S−1(y −Bx) + 1

2
det(S), (12)

where c = m
2 log(2π). MLE estimation of B and S from

i.i.d. data DN (1) is given by

LN = min
B,S

N∑
t=1

L(y(t), x(t), B, S) (13)

Solution of (13) is textbook material. Optimal B, S are
given by (7), (8); the optimal index (13) is

LN =
N

2
det

(
1

N
Y
[
I −XT (XXT )−1X

]
Y T

)
(14)

It is known that

LN (BN , SN ) =
N

2
det(SN ) (15)

Substituting SN from (8) and BN from (7) into (15) yields
(14).

A possible approach would be to compute the uncertainty
(distributions) of the matrices BN , SN estimated from the
training data DN . The uncertainty then can be used in the
Bayesian formulation for the new observations {x, y}. It
is much more convenient, however, to consider the joint
Bayesian formulation for all observations. By considering
the new observation {x, y} to be a part of the training set
(1), we get the extended log-posterior index

L+ = min
B,S

(
L(y, x,B, S) +

N∑
t=1

L(y(t), x(t), B, S)

)
(16)

The solution to (16) can be expressed through the solution
(15) to old problem (13) by expressing matrix S+ in the
extended problem (16) through the old matrix SN (8). The
extended matrix S+ is described by (8), (7) with X (5) and
Y (6), augmented by the new data {x, y}.

Using rank-1 update expressions for Y Y T , Y XT , XXT ,
and (XXT )−1 and then applying Matrix Determinant
Lemma yields

det(S+) = [1 +N−1(u− y)TS−1
N (u− y)/(1 + rx)]

·det(SN ) · [N/(N + 1)]m, (17)

where u = BNx. Substituting (17) into the expression L+ =
((N + 1)/2) · det(S+) leads to

L+(x, y) = CNN + CNM+(x, y), (18)

M+(x, y) = ‖y −BNx‖2S−1
N

·
[
1 + xTQ−1

N x
]−1

,(19)

where BN (7), SN (8), LN (14), along with CN and QN ,
are computed through training data (5), (6),

CN = N−1LN [N/(N − 1)]m−1,

QN = XXT , BN = Y XTQ−1
N . (20)

Note, that the second multiplier in (19) attenuates the
first least-squares term. This is a manifestation of regression
dilution effect, also known as “attenuation”. The effect is
well discussed in connection to errors-in-variables statistical
models. In the errors-in-variable framework predictor vari-
able x could be considered normally distributed and QN its
empirical covariance.

B. Hypothesis likelihoods

The posterior likelihoods for the hypotheses introduced in
Section I for fault signatures (2), (3) can be expressed using
(18)–(20).

We assume that the hypotheses have prior likelihoods

P (HN) = pN , P (HA) = pA,

P (HI,j) = pI , P (HO,k) = pO, (21)

where HA and HN are complementary, hence, pN + pA =
1. The posterior log-likelihood of each hypothesis can be
computed as

L(H) = − log P (H|x, y) = L+(x, y)− log pH , (22)

where H is one of hypotheses in (21) and pH = P (H) is
its prior probability. We used the Bayes rule: P (H|x, y) =
P (x, y|H)P (H)const, and ignored the const.
HN : Null hypothesis: The observation {x, y} is generated

by the nominal process. Hence the derivation of Subsec-
tion II-A holds without any modifications. From (18), (19),
(21), and (22) we get

L(HN) = CNN + CNM+(x, y)− log pN (23)

HA: Anomaly: The anomaly hypothesis assumes that y+h
is observed instead of y, where h is a nuisance vector. From
(18), (21), and (22) we get

L(HA) = min
h

(CNN + CNM+(x, y + h)− log pA) ,

= CNN − log pA, (24)

where in accordance with (19) minhM+(x, y + h) = 0 is
achieved for h = −y +BNx.
HI,j: Input channel fault: The hypothesis of input fault j

assumes that for the process data {x, y} the observed input is
x+fjz instead of x. The fault intensity (nuisance parameter)
z is unknown, and f = fj ∈ F is a known input fault
signature.

From (18), (21), and (22) we get

L(HI,j) = CNN + CNM+(x+ fjz∗, y)− log pI , (25)

where z∗ is the most likely value of the nuisance parameter
z. In accordance with (19),

z∗ = argmin
z
M+[z], (26)
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M+[z] =
(y −BNx−BNfjz)

TS−1
N (y −BNx−BNfjz)

1 + (x− fjz)TQ−1
N (x− fjz)

The function minimized in (26) has the form M+[z] =
(az2 + bz + c)/(dz2 + ez + f). The derivative dM+[z]/dz
has numerator that is quadratic in z. The minimum can be
found by checking the two roots of this numerator.

HO,k: Output channel fault: The hypothesis of output
fault k assumes that for the process data {x, y}, the observed
output is y + gkz instead of y. The fault intensity (nuisance
parameter) z is unknown, and g = fj ∈ G is a known output
fault signature.

From (18), (21), and (22), we get

L(HO,k) = CNN + CNM+(x, y + gkz∗)− log pA, (27)

where z∗ is the most likely value of the nuisance parameter
z. Differentiating to find minimum of (19) in z yields

z∗ = argmin
z
M+(x, y + gkz∗)

= (y −BNx)
TS−1

N gk/‖gk‖2S−1
N

. (28)

III. ANOMALY DETECTION AND FAULT ISOLATION

The problems formulated in Section I are solved by
comparing the log-posteriors (23), (24), (25), and (27).

A. Monitoring for anomalies and the faults

We will consider three monitors for the process. Each
monitor is a computational function that inputs a data point
{x, y} and produces discrete output: the accepted hypothesis
or a list of several hypotheses.

Monitor 1 (ANO): Anomaly detection. To determine
whether HN nominal or HA anomaly holds, L(HN) is
compared to L(HA). If L(HN) > L(HA), the anomaly
hypothesis HA is accepted, otherwise the null hypothesis if
HN is accepted.

Monitor 2 (ISO): Fault isolation. Assume that anomaly
hypothesis HA holds and L(HN) > L(HA). We then find
a set J of all input channel fault hypothesis HI,j such
that L(HA) > L(HI,j) and a set K of output channel
fault hypothesis HO,k such that L(HA) > L(HO,k). The
combined set J, K (the ambiguity group) is the output of the
fault isolation monitor. An empty ambiguity group means the
fault is unknown.

Monitor 3 (MAP): Most likely hypothesis. Find the
most likely hypothesis as the hypothesis that has the smallest
likelihood. Note that if L(HN) is the smallest (HN is the
most likely), then Monitor 1 (ANO) would point at the null
hypothesis. If L(HA) is the smallest, then Monitor 1 (ANO)
would accept the anomaly hypothesis and Monitor 2 (ISO)
would output an empty ambiguity group (the “unknown
fault” case). If the smallest MAP likelihood is achieved for
one of the input or output faults, then Monitor 1 (ANO)
would accept the anomaly hypothesis and the ambiguity set
of Monitor 2 (ISO) contains this fault.

Monitors 1–3 are based on computation of the likelihoods
discussed in Section II-B and use the following parameters
in the computations.

• Scalars and matrices BN (7), SN (8), LN (14), and CN ,
QN (20) computed from training data (5), (6).

• Known input fault signatures fj in (2) and output fault
signatures gk in (3).

• Prior probabilities pA, pI , pO in (21) that are the tuning
parameters of the algorithm and are discussed below.

The claim of this paper is that Monitor 2 (ISO) for
the Bayesian (robust) formulation provides superior perfor-
mance. Other monitors including the baseline (non-robust)
versions are discussed mainly for comparison purposes.

B. Anomaly detection

Consider the anomaly detection using Monitor 1 (ANO)
first. Substituting (19), (23), and (24) into the decision
condition L(HN) > L(HA) yields

‖y −BNx‖2S−1
N

> [1 + xTQ−1
N x] · C−1

N log(pN/pA) (29)

Note that the first term in r.h.s of (29) gives the model
uncertainty contribution and increases the anomaly detection
threshold. The increase can be substantial if x is in the
small singular value subspace of XXT , i.e., is outside of
the subspace covered by the training data DN .

Assume that there is no model uncertainty, Q−1
N � 1 and

xTQ−1
N x� 1, or there are no input parameters x, i.e., n = 0.

Recall that pN = 1 − pA. The anomaly detection condition
(29) of Monitor 1 then becomes

‖y −BNx‖2S−1
N

> R, R =
1

CN
log

1− pA
pA

(30)

This has the same form as the standard MSPC anomaly
detection condition based on Hotelling T 2 statistics.

C. Baseline fault isolation

Monitors 2 (ISO) and 3 (MAP) both require fault hy-
potheses to have likelihoods higher (negative log-likelihoods
lower) than the likelihood of anomaly (unknown fault). This
condition can be better understood in the baseline case.
Assume there is no model uncertainty, Q−1

N � 1. Then, the
likelihood indexes (25) and (27) for faults can be obtained
by setting xTQ−1

N x = 0 in (19). The likelihood indexes for
the faults can be written in the common form that is an affine
transformation of (10), (11)

L(HF) = CNN + CN‖r − rh‖2S−1
N

− log pF , (31)

where r = y − BNx is the prediction residual and rh =
rTS−1

N h/‖h‖2
S−1
N

is the projection of r on the fault signature
line h in the residual space. This projection is orthogonal in
the metrics based on the matrix S−1

N . For an input fault, we
have HF = HI,j, pF = pI , and h = BNfk. For an output
fault, hypothesis HF = HO,k, pF = pO, and h = gk.

Monitor 2 (ISO) includes fault in the ambiguity group
if L(HA) > L(HF). From (24) and (31) we get the fault
inclusion condition as

‖r − rh‖2S−1
N

< W, W = C−1
N log(pF /pA) (32)

This condition is related to one discussed in [1].
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D. Tuning rules

The tuning rules described below are based on the above
analysis in the absence of uncertainty. We propose using the
same tuning rules in case the uncertainty is present. This
worked well in our numerical experiments.

The tuning is based on two parameters R in (30) and W
in (32) that define prior probabilities (21) as

pA = 1/(eCNR + 1),

pO = pI = pAe
CNW , pN = 1− pA (33)

Selecting R is based on the acceptable false positive
(false alarm) rate α in Monitor 1 (ANO) anomaly detection.
Select R based on (30) such the complementary cumulative
distribution function for T 2 gives the P-value α. This is the
probability that the m-dof standard normal vector S−1/2

N (y−
BNx) is outside of the ball of radius R. (For a large data
set size N , T 2 becomes the same as χ2

m). In the example of
Section IV we have m = 4 and N = 200. P-value of 0.02
for T 2(m,N − 1) is achieved for R = 9.5.

Selecting W = R ensures that the false negative rate
(the true fault is not included into the ambiguity group) is
less than α. To prove this statement in the absence of model
uncertainty consider a fault with signature h such that r =
y−Bx = z∗h+v, where v N(0, S). If there is no uncertainty,
BN = B, SN = S. and the fault isolation monitor (32).

The P-value for the true fault not detected by Monitor 3
(MAP) satisfies the chain of inequalities

P (‖r − zh‖2
S−1
N

> W ∩ ‖r‖2
S−1
N

> R)

< P (‖r − rh‖2S−1
N

> W ∩ ‖r‖2
S−1
N

> R)

< P (‖r − rh‖2S−1
N

> W ) < P (‖r‖2
S−1
N

> W )

The first inequality holds because rh is an orthogonal pro-
jection of r on h and ‖r − zh‖2

S−1
N

≥ ‖r − rh‖2S−1
N

. The
second inequality is a basic probability property. The third
is a projection property. Since ‖r‖2

S−1
N

∼ T 2 and W = R

this proves that the P-value is less than α.
We followed the proposed simple tuning rules in the

numerical example presented below. More accurate tuning of
R and W could take into account magnitudes of the faults
encountered with respect to the covariance S of the noise v
(signal to noise ratio). This can be done by introducing prior
distributions for the nuisance parameter into the formulations
of the fault hypotheses. A possible practical disadvantage
is that much more engineering effort would be required
compared to the proposed simple tuning rules.

E. Computational Performance

The monitors described in Subsection III-A have excellent
computational performance and can be scaled to very large
numbers of points in N and large dimensions of x and y. The
monitors are suitable for on-line real time implementation in
process monitoring applications.

In on-line monitoring, the arriving data are processed by a
monitor and then added to the historical data set DN (1). As
more data arrives, the data set size N could grow very large.

The on-line monitoring computations could be split into two
steps described below.

Step 1 is to compute the matrices BN (7), SN (8),
QN (20), and Q−1

N from data (5), (6). The scalars LN

(14) and CN (20) are computed through these matrices.
The computations can be carried iteratively as N grows by
propagating rank-1 updates of the matrices. There is no need
to store the entire data set DN (1). The matrix Q−1

N can be
updated using the Sherman-Morrison formula without the
need to do actual matrix inversion (x = xn+1)

Q−1
N+1 = Q−1

N −Q
−1
N xxTQ−1

N ·
[
1 + xTQ−1

N x
]−1

.

Computational complexity of these updates is quadratic in
the data vector sizes m, n; the most computationally expen-
sive part is matrix-vector multiplication. The complexity and
required memory do not depend on N . Step 1 updates are
the same as in the well known MSPC and Recursive Least
Squares algorithms; they are not specific to the proposed
approach.

Step 2 is calculation and update of the hypothesis likeli-
hoods using the results of Step 1 and the new data point
{x, y}. Step 2 calculations are specific for the proposed
method. The monitors of Subsection III-A compare the the
log-posteriors (23), (24), (25), (27). For each of the three
monitors, computation of the log-posteriors has quadratic
complexity in sizes n of x and m of y; the most expensive
part is again matrix-vector multiplication.

IV. AIRCRAFT PERFORMANCE MONITORING EXAMPLE

As an example, we consider a simple linear model for
monitoring of aircraft flight performance. A higher-fidelity
simulation and problem motivation are discussed in [2]. A
linearized model for Boeing 747 level flight at 40000 ft at
Mach 0.8 (774 ft/s) and constant thrust from [4] is

v̇x
v̇z
α̇
ṙ

 = Aa


vx − wx

vz − wz

α
r

+Bau, (34)

where vx, vz are longitudinal and normal aircraft speeds,
wx, wz are respective wind gust speeds, α is angle of attack
(AOA), r is the pitch rate; matrices Aa, Ba are

Aa Ba

−0.003 0.039 0 −0.322 0.01
−0.065 −0.319 7.74 0 −0.18
0.020 −0.101 −0.429 0 −1.16
0 0 1 0 0

Model (34) was integrated by Euler method with time step
of 0.1. The wind gust disturbances wx, wz were simulated
as independent white gaussian noises with unit covariances.
It was assumed that autopilot computes u = 0.1α+ 0.1r to
stabilize the flight regime.

Input vector x ∈ <4 includes vx (v-longitudinal), vz (v-
normal), α (AOA), and u (elevator). Output vector y ∈ <4

includes v̇x (a-longitudinal), v̇z (a-normal), α̇ (r-pitch), and
ṙ (a-pitch). We assumed that the data are collected at interval
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of 1 to produce the historical data sets X and Y . The
formulated problem roughly describes monitoring of FOQA
(Flight Operations Quality Assurance) data.

Faults in one input or output channel were simulated.
Fault signatures were scaled such that ‖B∗fj‖S−1

∗
= 1

and ‖gk‖S−1
∗

= 1. The ‘true’ matrices B = B∗ and S∗
used in the scaling of the seeded faults were obtained by
fitting the linear regression to a large simulated data set of
100,000 points. When inverting ill-conditioned matrices, we
used regularization parameters 10−4 times the matrix norm.
The applied faults had amplitude R = 9.5.

Table I shows averaged results of 18,000 Monte Carlo
runs. Each fault was seeded in 1000 runs and 1000 runs had
no fault. In each run, a single new data point was generated
and processed by the monitors for the anomaly detection
and fault isolation. The monitors used model identified from
a data set D200 produced from simulation (34) prior to the
Monte Carlo runs.

Table I shows the percentage of the simulation runs with
various monitor reports. The upper part of the table shows
results for optimal Bayesian monitors; the lower part, for the
baseline version of the monitors described in Subsection III-
C. The Bayesian monitors take model uncertainty into
account. The baseline monitors neglect model uncertainty
(variance).

The column labels in Table I mean:
NoFF - No fault found: hypothesis HN holds, Monitor 1

(ANO) has not detected anomaly.
M1ANO - Monitor 1 (ANO) has detected anomaly: hy-

pothesis HA holds.
M2ISO - Accurate fault isolation: the seeded fault is in

the Monitor 2 (ISO) hypothesis set.
M3MAP - Accurate MAP isolation: Monitor 3 (MAP) has

correctly identified the seeded fault.
Ambig - Ambiguity set size: an average number of fault

hypothesis in the set produced by Monitor 2 (ISO).
Seeded - The fault or no-fault condition simulated.
One can see a major difference in isolating faults in

v-longitudinal and elevator channels. Table I shows that
for the Bayesian (robust) ISO monitor the isolation error
rate improves to less than 1% from respectively 94% and
38% error rates that the baseline ISO monitor has in these
channels. Note the accuracy improvement from MAP to ISO
monitors that is achieved at the expense of introducing the
ambiguity. For most channels, the ambiguity set has about
2-3 faults on average.

By comparing Bayesian and baseline monitor results in
Table I, one can notice that for many channels the Bayesian
(robust) MAP yields slightly worse accuracy than the base-
line MAP. This is because the robust MAP effectively has a
higher threshold for isolating the fault. This means some of
the correct faults hypothesis might be missed.

The results shown for this example support our claim that
Bayesian (robust) ISO monitor outperforms other monitors.

NoFF M1ANO M2ISO M3MAP Ambig Seeded
Robust Fault Isolation

98.6 1.4 0.0 0.0 No fault
0.4 99.6 99.6 14.2 2.5 v-longit
0.0 100.0 100.0 72.7 3.2 v-normal
0.0 100.0 99.4 90.2 2.6 AOA
0.0 100.0 100.0 78.9 2.2 elevator
0.0 100.0 99.1 17.1 3.1 a-longit
0.0 100.0 99.4 87.5 2.0 a-normal
0.0 100.0 99.4 86.6 2.0 r-pitch
0.0 100.0 98.7 86.3 2.6 a-pitch

Baseline Fault Isolation
98.6 1.4 0.0 0.0 No fault

0.4 99.6 5.8 0.1 1.5 v-longit
0.0 100.0 99.1 69.0 2.0 v-normal
0.0 100.0 99.3 94.3 1.6 AOA
0.0 100.0 62.3 62.3 1.0 elevator
0.0 100.0 99.1 55.6 2.0 a-longit
0.0 100.0 99.4 99.4 1.0 a-normal
0.0 100.0 99.4 99.4 1.0 r-pitch
0.0 100.0 98.5 91.1 1.6 a-pitch

TABLE I
FAULT ISOLATION FOR THE AIRCRAFT MONITORING EXAMPLE
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