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Abstract— This paper focuses on the development of
Bayesian-based domain search strategies for distributed
multiple autonomous vehicles with intermittent information
sharing. Multi-sensor fusion based on observations from
neighboring vehicles is implemented via binary Bayesian
filtering. We will prove that, under appropriate sensor
models, the belief of whether objects exist or not will
converge to the true state. An uncertainty map based on these
probabilities is constructed to guide the vehicles’ motion. It
will be shown that all objects in the search domain will be
detected. Different motion control schemes are numerically
tested to illustrate the effectiveness of the proposed strategy.

I. INTRODUCTION

In recent years, MAVs have been increasingly used to

perform operations that were traditionally carried out by

humans. Furthermore, the use of distributed MAV systems

facilitates improved information sharing and increases

system robustness against sensor failure. In this paper,

we consider domain search problems using distributed

MAVs with intermittent communications in a Bayesian

framework. The objective is to find each object within the

domain and fix its position in space. We assume that the

number and positions of objects of interest are unknown

beforehand. Each vehicle is only capable of taking obser-

vations within its sensory range. This is consistent with

the sensor models used in [1]–[3] and applicable to large-

scale domain search. It is also assumed that each vehicle

can only communicate with neighboring vehicles within

its limited communication range.

Because a vehicle sensor’s sensing capability is limited,

false alarms and missed detections are inevitable and the

system performance is indeterministic [4]. In order to

reduce this uncertainty due to sensor perception, or equiv-

alently, to maximize the probability of detecting an object,

all the available observations a vehicle has access to (i.e.,

taken by the vehicle itself and its neighboring vehicles)

should be fused together. We will prove that given sensors

with a detection probability greater than 0.5, the search

uncertainty will converge to a small neighborhood of zero,

i.e., all unknown objects of interest are found with 100%
confidence. Although this may seem intuitive, there lacks

a rigorous mathematical proof in the literature due to the

probabilistic nature of the problem.

We first review some related literature. In [5], the

Dempster-Shafer evidential method is utilized for domain
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search with multiple uninhabited aerial vehicles (UAVs)

under global communications. The objective is to mini-

mize the environment uncertainty in a finite amount of

search time. With the same goal, in [6], the authors present

an agent-based negotiation scheme for a multi-UAV search

operation with limited sensory and communication ranges.

In [7], the authors use the Modified Bayes Factor to

model the level of confidence of target existence for an

UAV search task in an uncertain environment. In [8], the

problem of searching an area containing both regions of

opportunity and hazard with multiple cooperative UAVs

is considered. In [9], the authors use a density function to

represent the frequency of random events taking place over

the mission domain. The goal is to maximize coverage

using mobile sensors with limited ranges and minimum

communication cost. An alternative approach related to

search in an uncertain environment is Simultaneous Local-

ization and Mapping (SLAM) [10]. In [4], the occupancy

grid mapping algorithm is addressed, which is often

used after solving a SLAM problem to generate robot

navigation path from the raw sensor endpoints.

The work presented here is analogous to the binary

Bayesian filtering and the occupancy grid mapping algo-

rithm [4], which are very popular mapping techniques to

deal with the uncertainty in sensor perception in intelligent

robotics. However, we seek to 1) find the conditions that

guarantees satisfactory detection results using multiple ve-

hicles with limited-range sensors and intermittent commu-

nications, and 2) provide a rigorous mathematical proof

for these conditions that are also consistent with intuition.

This is a nontrivial problem given limited theoretical

results existing in the literature and its significance for

effective sensor management, especially when the sensing

and communication resources are limited.

The paper is organized as follows. A Bernoulli type

sensor model is introduced in Section II. In Section III, the

binary Bayesian filtering is used to update the probability

of object existence. We will prove in Section IV that the

expected probability of object presence will eventually

converge to one if there is actually an object or zero if

there is none, under appropriate sensor assumptions. In

Section V, an information uncertainty map based on these

probabilities is constructed to guide the vehicles’ motion.

A coverage metric is defined to evaluate the search task.

In Section VI, a simulation-based study is provided to

test two different vehicle motion control strategies under

the proposed framework. We conclude the paper with a

summary of current and future work in Section VII.
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II. PROBLEM FORMULATION

A. Problem Setup

Let D ∈ R
2 be a domain in which objects are located.

Assume there are Nv autonomous vehicles Vi, i =
1, 2, · · · , Nv, searching for an unknown number of objects

of interest within D. Denote the position of vehicle Vi as

qi(t). Each vehicle Vi satisfies the following first order

discrete-time equation of motion

qi(t+ 1) = qi(t) + ui(t),
where ui ∈ R

2 is the control input. Assume that a

vehicle pair can only share information whenever they

are within the communication range ρ. The set Ni(t) =
{Vj|‖qi(t) − qj(t)‖ ≤ ρ} defines vehicle Vi’s neighbors

at time t including Vi itself. This model is consistent with

the intermittent communication structure in [11], [12].

We discretize D into Ntot unit cells, let c̃ be an arbitrary

cell in D and q̃ be the centroid of c̃. Let 1 ≤ No ≤
Ntot be the total number of objects, which are i.i.d.

distributed over D. By choosing a fine enough grid in

the discretization, a cell is guaranteed to contain at most

one object. Denote the position of the static object Oj ,

j ∈ {1, 2, . . . , No} as pj . Both No and pj are unknown

beforehand. Let X(c̃) be a binary state random variable,

where 0 corresponds to object absent, and 1 corresponds

to object present.

B. Sensor Model

We assume a sensor model with limited sensory ca-

pability for each vehicle Vi, which follows a Bernoulli

distribution within its sensory domain Wi(t), and gives

binary outputs: object ‘absent’ or ‘present’ ∀c̃ ∈ Wi(t).
To be consistent with the binary state, we define a

binary observation variable Yi(c̃) for each vehicle Vi,

where 0 corresponds to a negative observation indicating

object absent, and 1 corresponds to a positive observation

indicating object present.

Given a state X(c̃) = j, the conditional probability

mass function f of the Bernoulli observation distribution

of vehicle Vi is given by

fYi
(Yi = k|X = j; c̃)

=

{
βi
j if k = j

1− βi
j if k 6= j

, j, k = 0, 1. (1)

The following matrix gives the general conditional

probability matrix associated with each vehicle Vi:

Bi =
[

Prob(Yi = 0|X = 0; c̃) Prob(Yi = 0|X = 1; c̃)
Prob(Yi = 1|X = 0; c̃) Prob(Yi = 1|X = 1; c̃)

]

(2)

where Prob(Yi = k|X = j; c̃), j, k = 0, 1, is the

probability of vehicle Vi having observation k given that

the actual state at cell c̃ is X = j and is given by

the Bernoulli observation distribution (1). For the sake

of simplicity, we assume that βi
j = βi for both states

X = j, j = 0, 1. Clearly, βi ∈ [0, 1].

III. BAYES PROBABILITY UPDATES

In this section, we employ the binary Bayesian filtering

to update the probability of object presence at c̃ of vehicle

Vi based on all the observations available at the current

time step and the prior probability. Define Ȳ i
t (c̃) =

{Yj,t(c̃), Vj ∈ Ni(t)} as the observation sequence taken

by all the vehicles in Ni(t). Given Ȳ i
t (c̃), Bayes’ rule

gives, for each vehicle Vi,

Pi(X = 1|Ȳ i
t ; c̃, t+ 1)

= αiPi(Ȳ
i
t |X = 1; c̃)Pi(X = 1; c̃, t),

where Pi(X = 1|Ȳ i
t ; c̃, t+ 1) is the posterior probability

of object presence at cell c̃ updated by Vi after the

observation sequence Ȳ i
t (c̃) has been taken. Because the

observations taken by different vehicles are i.i.d., we have

Pi(Ȳ
i
t |X = 1; c̃) = Πj∈Ni(t)Prob(Yj,t|X = 1; c̃). The

quantity Pi(X = 1; c̃, t) is the prior probability of object

presence, and αi serves as a normalizing function which

ensures
∑1

j=0 Pi(X = j|Ȳ i
t ; c̃, t+ 1) = 1.

According to the law of total probability, we have

Pi(X = 1|Ȳ i
t ; c̃, t+ 1) = (3)

Pi(X = 1; c̃, t)

Pi(X = 1; c̃, t) + Πj∈Ni(t)
( 1
βj − 1)2yj,t(c̃)−1(1− Pi(X = 1; c̃, t))

,

where yj,t(c̃) is the dummy variable for the random

variable Yj,t(c̃).

IV. CONVERGENCE ANALYSIS

In this section, we discuss the conditions for conver-

gence for the sequence {Pi(X = 1|Ȳ i
t ; c̃, t+1)} when βi

is a deterministic parameter within [0, 1].
For the sake of simplicity, denote Pi(X = 1|Ȳ i

t ; c̃, t+1)
as Pt+1, Pi(X = 1; c̃, t) as Pt, and Πj∈Ni(t)(

1
βj −

1)2yj,t(c̃)−1 as St, Equation (3) then simplifies to the

following non-autonomous nonlinear discrete-time system

Pt+1 =
Pt

Pt + St(1− Pt)
. (4)

Note that St is a random variable dependent on Ȳ i
t (c̃). Let

|Ni(t)| be the cardinality of Ni(t), then Ȳ i
t (c̃) has 2|Ni(t)|

possible combinations at each time step t for cell c̃. Let

s1t , s
2
t , · · · , s

2|Ni(t)|

t be the realizations of St corresponding

to each of the 2|Ni(t)| different observation sequences. The

probability of having each particular observation sequence

Ȳ i
t (c̃) = {Yj,t(c̃) = yj,t(c̃), Vj ∈ Ni(t)} given X(c̃) = 1

is: Πj∈Ni(t)(β
j)yj,t(c̃)(1− βj)(1−yj,t(c̃)).

Consider the following conditional expectation

E[1− Pt+1|Pt] = E[
St(1− pt)

pt + St(1 − pt)
|Pt = pt]

=
2|Ni(t)|
∑

m=1

smt (1− pt)

pt + smt (1 − pt)
Prob(St = smt ), (5)

where pt is the dummy variable for Pt. Let us investigate

the value of smt and the corresponding Prob(St = smt )
from m = 1 to 2|Ni(t)|.

• m = 1 corresponds to the observation sequence

{1, 1, · · · , 1}, we have s1t = Πj∈Ni(t)(
1
βj − 1) and

Prob(St = s1t ) = Πj∈Ni(t)β
j

• m = k + 1, k = 1, · · · , |Ni(t)| correspond to

the observation sequence where only the kth vehicle

in vehicle Vi’s neighborhood observes a 0. Define

Cn
k as the binomial coefficient. Because there are

C
|Ni(t)|
1 such observation sequences with different
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E[1− Pt+1|Pt] =




Πj∈Ni(t)(1− βj)

1− ǫ+Πj∈Ni(t)(
1
βj − 1)ǫ

+

|Ni(t)|∑

k=1

Πj∈Ni(t)(1 − βj)

( 1
βk − 1)(1− ǫ) + Πj∈Ni(t), 6=k(

1
βj − 1)ǫ

+ . . .+

C
|Ni(t)|
2∑

k=1

Πj∈Ni(t)(1− βj)

( 1
βq − 1)( 1

βr − 1)(1− ǫ) + Πj∈Ni(t), 6=q,r(
1
βj − 1)ǫ

+ . . .+
Πj∈Ni(t)(1− βj)

Πj∈Ni(t)(
1
βj − 1)(1− ǫ) + ǫ




 ǫ. (6)

orders, the value of k is in the set [1, |Ni(t)|]. Hence,

we have sk+1
t =

(

Πj∈Ni(t), 6=k(
1
βj − 1)

)(
βk

1−βk

)

and Prob(St = sk+1
t ) =

(
Πj∈Ni(t), j 6=kβ

j
)
(1− βk)

• m = k+1+ |Ni(t)|, k = 1, · · · , C
|Ni(t)|
2 correspond

to the the observation sequences where two of the

vehicles, e.g., the qth and rth vehicle, observe a 0. Be-

cause there are C
|Ni(t)|
2 such observation sequences,

k is within [1, C
|Ni(t)|
2 ]. Therefore, we have

s
k+1+|Ni(t)|
t

=

(

Πj∈Ni(t), 6=q,r(
1

βj
− 1)

)( βq

1− βq

)( βr

1− βr

)

and

Prob(St = s
k+1+|Ni(t)|
t ) =

(
Πj∈Ni(t), j 6=q,rβ

j
)
(1−

βq)(1− βr)
• And so on for other values of m

• m = 2|Ni(t)| correspond to the observation sequence

{0, 0, · · · , 0}, we have smt = Πj∈Ni(t)

(
βj

1−βj

)

and

Prob(St = smt ) = Πj∈Ni(t)(1 − βj)

Suppose pt = 1− ǫ, where ǫ ∈ [0, 12 ) is some constant,

Equation (5) can be rewritten as Equation (6) if not all

sensing parameters βj = 1, and E[1−Pt+1|Pt] = 0 when

all βj = 1, j ∈ Ni(t). Consider the following condition:

Sensing Condition 1: βi ∈ (12 , 1], i = 1, 2, · · · , Nv.

This condition requires that all vehicle sensors are more

likely to take correct measurements.

Now assume that ǫ is a small number in the neighbor-

hood of zero, under Sensing Condition 1, Πj∈Ni(t)(
1
βj −

1)ǫ is also a small number close to zero. Hence, Equation

(6) can be approximated as

E[1− Pt+1|Pt]

≈

(

Πj∈Ni(t)
(1− βj) +

|Ni(t)|
∑

k=1

Πj∈Ni(t), 6=k(1 − βj)βk + . . .+

C
|Ni(t)|
2
∑

k=1

Πj∈Ni(t), 6=q,r(1− βj)βqβr + . . .+Πj∈Ni(t)
βj

)

ǫ. (7)

Observe the expression within the bracket in Equation

(7), it gives the total probability of all possible observation

sequences taken by the vehicles in Ni(t) given X(c̃) = 1,

and is therefore equal to 1. If βj = β, ∀Vj ∈ Ni(t),
the expression gives the total probability of a binomial

distribution with parameters β and |Ni(t)|. Hence, E[1−
Pt+1|Pt = 1− ǫ] ≈ ǫ and we have the following lemma.

Lemma IV.1. Under Sensing Condition 1, if an object

is present, given that the prior probability of object

present Pi(X = 1; c̃, t) of vehicle Vi is within a small

neighborhood of radius ǫ from 1 at time step t, the con-

ditional expectation of the posterior probability Pi(X =

1|Ȳ i
t ; c̃, t+1) will remain in this neighborhood at the next

time step t+ 1. If all the sensors are “perfect” with zero

error probability, i.e., βj = β = 1, then the conditional

expectation of Pi(X = 1|Ȳ i
t ; c̃, t+ 1) is 1.

Following a similar derivation, we get a lemma for

the posterior probability of object absence Pi(X =
0|Ȳ i

t ; c̃, t+ 1) given X(c̃) = 0. To summarize the above

results, we have the following theorem.

Theorem IV.1. For βi ∈ (12 , 1], i = 1, 2, · · · , Nv, if

there is an object absent (respectively, present), given that

Pi(X = 0; c̃, t) (respectively, Pi(X = 1; c̃, t)) is within a

small neighborhood of 1 at time step t, the conditional

expectation of Pi(X = 0|Ȳ i
t ; c̃, t + 1) (respectively,

Pi(X = 1|Ȳ i
t ; c̃, t+ 1)) will remain in this neighborhood

at the next time step. If βi = β = 1, then the conditional

expectation is 1.

This theorem gives a weak result because it implies that

only if the initial prior probability is close to the true state,

given “good” sensors with detection probabilities greater

than 0.5, the belief of whether objects exist or not will

remain near the true state. We next derive a stronger result

under the case of homogeneous sensor properties. Next,

consider the following condition.

Sensing Condition 2: βi = β ∈ (12 , 1], i = 1, 2, · · · , Nv.

This condition implies that all the vehicles have identi-

cal sensors with the same detection probability β ∈ (12 , 1].
Under Sensing Condition 2, the term within the bracket

in Equation (6) is equivalent to the following expression:

g(β, ǫ, |Ni(t)|) =
|Ni(t)|∑

k=0

C
|Ni(t)|
k (1 − β)|Ni(t)|

( 1
β
− 1)k(1 − ǫ) + ( 1

β
− 1)|Ni(t)|−kǫ

, β 6= 1. (8)

Lemma IV.2. The function g(β, ǫ, |Ni(t)|) < 1 when β ∈
(12 , 1), ǫ ∈ (0, 1

2 ), |Ni(t)| ≥ 1 and equals to 1 when ǫ = 0,

β ∈ (12 , 1), |Ni(t)| ≥ 1.

Proof. For brevity, let n = |Ni(t)|. Proving that

g(β, ǫ, |Ni(t)|) is less than 1 is equivalent to prove that
n∑

k=0

Cn
k (1 − β)n

( 1
β
− 1)k(1− ǫ) + ( 1

β
− 1)n−kǫ

<

n∑

k=0

1

n+ 1
, or,

n
∑

k=0

(n+ 1)Cn
k
(1 − β)n −

[

( 1
β
− 1)k(1− ǫ) + ( 1

β
− 1)n−kǫ

]

[

( 1
β
− 1)k(1− ǫ) + ( 1

β
− 1)n−kǫ

]

(n+ 1)
< 0.

Because β ∈ (12 , 1), or ( 1
β
− 1) ∈ (0, 1), we have

n
∑

k=0

(n+ 1)Cn
k
(1 − β)n −

[

( 1
β
− 1)k(1− ǫ) + ( 1

β
− 1)n−kǫ

]

[

( 1
β
− 1)k(1− ǫ) + ( 1

β
− 1)n−kǫ

]

(n+ 1)
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<

n
∑

k=0

(n+ 1)Cn
k
(1− β)n −

[

( 1
β
− 1)k(1 − ǫ) + ( 1

β
− 1)n−kǫ

]

[

( 1
β
− 1)n(1 − ǫ) + ( 1

β
− 1)nǫ

]

(n+ 1)
.

Since
[

( 1
β
− 1)n(1− ǫ) + ( 1

β
− 1)nǫ

]

(n+ 1) > 0, if
n
∑

k=0

(n+ 1)Cn
k (1− β)n −

[

(
1

β
− 1)k(1− ǫ) + (

1

β
− 1)n−kǫ

]

< 0,

then g(β, ǫ, n) is less than 1. Note that
n∑

k=0

(n+ 1)Cn
k (1− β)n = (n+ 1)(2− 2β)n,

and
n∑

k=0

(
1

β
− 1)k =

n∑

k=0

(
1

β
− 1)n−k =

1− ( 1
β
− 1)n+1

2− 1
β

,

Therefore, to prove the lemma, we only need to prove that

(n+ 1)(2− 2β)n −
1− ( 1

β
− 1)n+1

2− 1
β

< 0. (9)

Next, we use the principle of mathematical induction to

prove the inequality in Equation (9).

When n = 1, the left hand side of Equation (9) is given

by
−(2β−1)2

β
and is hence less than 0.

Assume that for n = m,

(m+ 1)(2− 2β)m −
1− ( 1

β
− 1)m+1

2− 1
β

< 0,

therefore, when n = m+ 1, we have

(m+ 2)(2− 2β)m+1 −
1− ( 1

β
− 1)m+2

2− 1
β

<

(m+ 2)(2− 2β)
1− ( 1

β
− 1)m+1

(m+ 1)(2− 1
β
)
−

1− ( 1
β
− 1)m+2

2− 1
β

. (10)

Skipping the detailed derivations, we obtain that the right
hand side of Equation (10) is equal to the following
expression,
(1− 2β)m+ (3− 4β) + ( 1

β
− 1)m+2 [(1− 2β)m+ (1− 4β)]

(m+ 1)(2− 1
β
)

,

and it can be shown that the numerator is always less

than 0 and the denominator is always larger than 0 for

β ∈ (12 , 1) and m ≥ 1.

To see why this is true, first when m = 1 and β ∈ (12 , 1),
the numerator equals to the following expression

(4 − 6β) +

(
1

β
− 1

)3

(2− 6β) < 0.

Next, we take derivative of the numerator with respect to

m, which gives

(1− 2β) + (m+ 2)

(
1

β
− 1

)m+1

[(1− 2β)m+ (1 − 4β)]

+

(
1

β
− 1

)m+2

(1− 2β) < 0.

Therefore, the numerator is a monotonically decreasing

function for m ≥ 1 with a negative value at m = 1.

When ǫ = 0, g(β, ǫ, n) reduces to
n∑

k=0

Cn
k (1− β)n

( 1
β
− 1)k

=

n∑

k=0

Cn
k β

k(1− β)n−k = 1.

This completes the proof. �

Therefore, from Lemma IV.2, the expectation E[1 −
Pt+1|Pt = 1 − ǫ] is always less than ǫ > 0. Hence, we

have the following lemma.

Lemma IV.3. Under Sensing Condition 2, if there is an

object present, given that the prior probability of object

presence Pi(X = 1; c̃, t) is within a neighborhood of one

with radius ǫ ∈ [0, 12 ), then the conditional expectation

of the posterior probability E[Pi(X = 1|Ȳ i
t ; c̃, t + 1)]

converges to 1.

Same lemma follows for the update sequence

E[Pi(X = 0|Ȳ i
t ; c̃, t + 1)]. Therefore, we have the

following theorem.

Theorem IV.2. For βi = β ∈ (12 , 1], i = 1, 2, · · · , Nv, if

an object is present (respectively, absent), then E[Pi(X =
1|Ȳ i

t ; c̃, t+ 1)] converges to 1 (respectively, 0).

V. UNCERTAINTY MAP AND COVERAGE METRIC

A. Uncertainty Map

In this section, we use an information-based approach

to construct an uncertainty map for a multi-cell search

domain, which will be used to guide the vehicles within

the domain. The information entropy function of a proba-

bility distribution is used to evaluate uncertainty [13]. Let

Pi(c̃, t) be the probability distribution for object existence

at cell c̃ of vehicle Vi at time t and it is given by

Pi(c̃, t) = {1 − Pi(X = 1; c̃, t), Pi(X = 1; c̃, t)}. We

define the information entropy for Pi(c̃, t) as:

Hi(Pi(c̃, t)) = −Pi(X = 1; c̃, t) lnPi(X = 1; c̃, t)

− (1− Pi(X = 1; c̃, t)) ln (1− Pi(X = 1; c̃, t)) . (11)

If Pi(X = 1; c̃, t) = 0, we set the term Pi(X =
1; c̃, t) lnPi(X = 1; c̃, t) = 0 by convention. It also

follows that limPi(X=1;c̃,t)→0 Pi(X = 1; c̃, t) lnPi(X =
1; c̃, t) = 0. The same applies for (1 − Pi(X =
1; c̃, t)) ln(1−Pi(X = 1; c̃, t)) when Pi(X = 1; c̃, t) = 1.

Hi(Pi(c̃, t)) ≥ 0 measures the uncertainty level of object

presence or absence of vehicle Vi at cell c̃ at time t.

The greater the value of Hi, the larger the uncertainty

is. Hi(Pi(c̃, t)) = 0 is the desired uncertainty level. The

maximum value attainable by Hi(P (c̃, t)) is Hmax =
0.6931 when P (Xi(c̃) = 1; t) = 0.5. The information

entropy distribution at time step t over the domain forms

an uncertainty map at that time instant. The vehicles are

guided towards cells with higher uncertainty. Two different

vehicle motion control schemes will be investigated and

their performance will be compared in Section VI. The

overall goal is to search the entire domain and detect all

the objects of interest until zero uncertainty is achieved.

From Theorem IV.1, we know that given the true state,

the expected posterior probability of object existence

∀c̃ ∈ D will be bounded within a small neighborhood

of 1 with radius ǫ if the priors are given by 1 − ǫ.

This corresponds to an upper bound on the uncertainty

level Hu
i = −ǫ ln ǫ − (1 − ǫ) ln(1 − ǫ). Moreover, from

Theorem IV.2, it is guaranteed that the expected posterior

probability converges to 1, which is equivalent to Hi →
0, ∀c̃ ∈ D. This is to say, there is no uncertainty about

object presence/absence at every cell in the search domain.
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B. Coverage Metric

Now, let us define the coverage metric used in this paper

to evaluate the progress of the search task. Associate each

vehicle Vi with the following search cost function:

Ji(t) =

∑

c̃∈D Hi(Pi(c̃, t))

HmaxAD
. (12)

The cost Ji(t) is proportional to the sum of uncertainty

over D and AD is the area of the domain. According to

this definition, we have 0 ≤ Ji(t) ≤ 1. If Hi(Pi(c̃, ts)) =
0 at some t = ts for all c̃ ∈ D, then Ji(ts) = 0 and the

entire domain has been satisfactorily covered and we know

with 100% certainty that there are no more objects yet to

be found.

VI. VEHICLE MOTION CONTROL SCHEME

A. General Motion Control Scheme

According to the search metric (12), the upper bound on

the uncertainty level Hu
i results in J u

i (tf ) =
Hu

i

Hmax
= δ ≥

0 at some time tf > 0. This is equivalent to say that the

attained accuracy of the search task is 1−δ. Furthermore,

100% certainty can be obtained if Sensing Condition 2

is satisfied. Therefore, under any vehicle motion control

scheme that covers every cell within D, Ji → δ, i.e., all

the objects of interest will be guaranteed to be found with

desired uncertainty. Here, we seek vehicle motion control

strategies that take advantage of the uncertainty map. Two

feasible vehicle motion control schemes will be presented,

and their performance is compared in simulations.

Let us briefly introduce the mathematical model for

βi used in these control schemes. The key feature of

this model is that the sensing capability is limited (see

[1]–[3], [11], [12] for more details), other sensor models

can be used and the following control schemes still hold.

Define si = ‖qi(t)− q̃‖ as the relative distance between

the vehicle’s position qi(t) and the centroid q̃ of the

observed cell c̃. Let βi be dependent on si and is given

by the following fourth-order polynomial function within

the sensor range ri and bn = 0.5 otherwise,

βi(s) =

{
Mi

r4
i

(
s2 − r2i

)2
+ bn if s ≤ ri

bn if s > ri
, (13)

where Mi+bn gives the peak value of βi if the cell c̃ being

observed is located at the sensor vehicle’s location. The

parameter ri is the range of the sensor. The sensing capa-

bility decreases with range and becomes 0.5 outside of the

limited sensory range Wi, implying that the sensor returns

an equally likely observation of “absent” or “present”

regardless of the true state. This sensor model guarantees

the realization of Sensing Condition 1. To satisfy Sensing

Condition 2, one may assume an identical value β > 0.5
within Wi and 0.5 outside of it for all the vehicles.

B. Memoryless Motion Control Scheme

We first consider a motion control scheme that guides

the vehicles based on only the uncertainty map at current

time step, that is, the control scheme is memoryless. For

the sake of simplicity, we assume that there is no speed

limit on the vehicles, i.e., a vehicle is able to move to any

cell within D from its current location.

Consider the set

Qi
H(t) = {c̃ ∈ D : argmax

c̃
Hi(Pi(c̃, t))},

which is the set of cells with highest search uncertainty

level Hi within D. Next, let q̃i
c(t) be the centroid of the

cell that vehicle Vi is currently located at and define the

subset Qi
d(t) ⊆ Qi

H(t) as

Qi
d(t) = {c̃ ∈ Qi

H(t) : argmin
c̃
‖q̃i

c(t)− q̃‖}.
The set Qi

d(t) contains the cells which have both the

shortest distance from the current cell and the highest

uncertainty.

At every time step, a vehicle Vi takes observations at all

the cells within its sensory range. In general, βi 6= βj . If

Vi and Vj have same distance to the centroid of a certain

cell c̃, we may have βi = βj . The posterior probabilities

at these cells are updated according to Equation (3) based

on all the fused observations. The uncertainty map is then

updated. At the next time step, the vehicle will choose

the next cell to go to from Qd(t) based on the updated

uncertainty map. Note that Qd(t) may have more than one

cell. Let NHd be the number of cells in Qd(t), the sensor

will randomly pick a cell from Qd(t) with probability
1

NHd
. This process is repeated until Hi is within a small

neighborhood of zero with radius ǫ for every cell c̃ ∈ D.

C. Motion Control Scheme with Memory

Now we develop a motion control scheme that takes

into account both the current probability information,

uncertainty map and the sensing history. Let us first

consider the following condition:

Condition C1: Hi(Pi(c̃, t)) ≤ Hu
i , ∀c̃ ∈ Wi(t).

For every vehicle Vi, the motion control scheme with

memory is given as follows:

u
∗
i (t) =

{
ūi(t) if C1 does not hold
¯̄ui(t) if C1 holds

(14)

where

ūi(t) = k̄i
∑

c̃∈Wi(t)

(
[

(2Pi(X = 1; c̃, t)− 1)2 − 1
]2

·
t∑

τ=0

(

βi(τ + 1)− βi(τ)
)

︸ ︷︷ ︸

Memory Term

)

,

is the nominal control law inspired by its deterministic

continuous counterparts in [1], [11], [12], where both the

current probability of object presence Pi(X = 1; c̃, t) and

the sensing capability βi up to the current time step are

used, and
¯̄ui(t) = −¯̄ki(qi(t)− q̃

∗
i )

is the perturbation control law. The centroid q̃
∗
i of cell c̃∗i

is chosen from the set Qi(t) = {c̃ ∈ D : Hi(Pi(c̃, t)) >
Hu

i }, which is based on the uncertainty information at the

current time step and only available to vehicle Vi itself.

D. Simulation-based Performance Comparison

Next we provide numerical simulations to compare the

performances of both motion control schemes. We assume
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Fig. 1. Probability of object presence of V1 at time step t = 1200.

a square domain D with size 50× 50. The parameter Mi

is set as 0.4 and Hu
i = 0.02 corresponding to ǫ = 0.0002.

There are 10 objects with a randomly selected deployment.

Figure 1 shows the probability of object presence ac-

cording to vehicle V1 at time step t = 1200 under both

control schemes. All the peaks represent the position of

the objects with probability 1. The probability of object

presence as estimated by other vehicles is similar to that

shown in Figure 1. This indicates that all the unknown

objects of interest have been found.

Figure 2(a) shows the trajectories of all the vehicles

under the motion control scheme without memory. Fig-

ure 2(b) shows the trajectories under the motion control

scheme with memory.
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Fig. 2. Fleet motion (green dots represent for vehicles’ initial positions
and red dots for final positions) under motion control scheme (a) without
memory, and (b) with memory.

Figure 3(a) shows Ji(t), i = 1, · · · , 6, respectively

under the motion control scheme without memory. Figure

3(b) shows Ji(t) under the motion control scheme with

memory. Here we set k̄i = 1, ¯̄ki = 0.025. In both cases, all

the cost functions converge to zero at time step t = 1200,

which is consistent with the result shown in Figure 1.
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Fig. 3. Cost function for vehicle V1−V6 under motion control scheme
(a) without memory, and (b) with memory.

Comparing the simulation results, there is more re-

dundancy in vehicle trajectories under the memoryless

motion control. This is because the controller is only

dependent on the current uncertainty map and does not

take into account the history of the paths that the vehicles

traveled before. However, the reduction of uncertainty

is faster under the memoryless control scheme because

it is a global controller that always seeks the cell with

highest uncertainty within the entire search domain. If

fuel efficiency is a priority, one may want to avoid using

a memoryless motion controller that spreads all over the

domain. On the contrary, if time is a limited resource,

one may prefer a memoryless motion controller in order

to achieve the desired detection certainty quicker.

VII. CONCLUSION

In this paper, we developed a Bayes probability update

rule for domain search problems using distributed MAVs

with limited sensory range and intermittent communi-

cations. The expected probability of object existence is

guaranteed to be within a desired uncertainty level of the

actual state under appropriate sensor model. It is further

proved that this belief will converge to the true state given

“good” homogenous sensors across the sensor network.

Two vehicle motion control strategies are proposed. Cur-

rently, we are investigating similar convergence results for

heterogeneous sensor networks. Future research will focus

on the tracking of mobile objects.

REFERENCES

[1] Y. Wang, I. I. Hussein, and R. S. Erwin, “Awareness-Based
Decision Making for Search and Tracking,” American Control

Conference, 2008, invited Paper.
[2] Y. Wang and I. I. Hussein, “Bayesian-Based Decision Making for

Object Search and Characterization,” American Control Confer-

ence, 2009.
[3] Y. Wang, I. I. Hussein, D. R. Brown III, and R. S. Erwin,

“Cost-Aware Sequential Bayesian Tasking and Decision-Making
for Search and Classification,” American Control Conference, 2010.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, ser.
Intelligent Robotics and Autonomous Agents, R. C. Arkin, Ed.
The MIT Press, September 2005.

[5] Y. Yang, M. M. Polycarpou, and A. A. Minai, “Multi-UAV Coop-
erative Search using an Opportunistic Learning Method,” Journal

of Dynamic Systems, Measurement, and Control, vol. 129, no. 5,
pp. 716–728, September 2007.

[6] P. B. Sujit and D. Ghose, “Multiple UAV Search using Agent Based
Negotiation Scheme,” American Control Conference, June 2005.

[7] L. F. Bertuccelli and J. P. How, “Bayesian Forecasting in Multi-
vehicle Search Operations,” AIAA Guidance, Navigation, and Con-

trol Conference and Exhibit, August 2006.
[8] R. W. Beard and T. W. McLain, “Multiple UAV Cooperative Search

under Collision Avoidance and Limited Range Communicaiton
Constraints,” IEEE Conference on Decision and Control, December
2003.

[9] W. Li and C. G. Cassandras, “Distributed cooperative coverage
control of sensor networks,” Proceedings of the IEEE Conference

on Decision and Control, pp. 2542 – 2547, 2005.
[10] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous Map

Building and Localization for an Autonomous Mobile Robot,”
in IEEE/RSJ International Workshop on Intelligent Robots and

Systems IROS ’91, Osaka, Japan, November 1991, pp. 1442–1447.
[11] Y. Wang and I. I. Hussein, “Awareness Coverage Control Over

Large Scale Domains with Intermittent Communications,” Ameri-

can Control Conference, 2008.
[12] ——, “Awareness Coverage Control Over Large Scale Domains

with Intermittent Communications,” IEEE Transactions on Auto-

matic Control, 2010, to appear.
[13] T. M. Cover and J. A. Thomas, Elements of Information Theory,

2nd ed. Wiley, 2006.

1285


