
Robust H∞ control in fast Atomic Force Microscopy ∗

Ning Chuang, Ian R. Petersen and Himanshu R. Pota ∗∗

Abstract— This paper presents the design of a robust H
∞

controller for fast tracking of an Atomic Force Microscope
(AFM). The controller design is based on a physical model of
the AFM piezoelectric tube positioner. External capacitors are
connected in series with the x and y contacts of the piezoelectric
tube to provide measured voltages which are proportional to
the charge on the actuator. The parameters for a nonlinear
hysteresis model are obtained from measurements of the system
frequency response and time domain response. Experimental
results show that the robust H

∞ controller can increase the
scanning speed significantly.

I. INTRODUCTION

This paper describes an approach to controlling the scanning

stage in an Atomic Force Microscope, see Figure 1. In recent

years, there has been large amount of research interest in

tracking control problems for probe-based imaging and nano-

positioning; e.g. see [1]. A variety of different control meth-

ods have been developed to control piezoelectric positioning

devices to generate controlled motion with fast positioning.

The most typical and traditional control method is the PID

method such as used in the commercial NT-MDT Ntegra

scanning probe microscope (SPM).

Fig. 1. Robust H∞ controller connection on the AFM

Many previous papers have dealt with the tracking control

problems arising in such nano-positioning problems; e.g.,

see [1]–[9], [11]–[13], [15]. The features of our controller

design method as compared to these previous approaches

are as follows: we treat the nonlinear hysteresis in the

AFM piezoelectric actuator as a sector bounded nonlinearity;

we use an external capacitor connected in series with the

piezoelectric actuator to provide an extra measurement which

leads to a similar effect as the charge-controlled method

of [14]; we use a robust H∞ tracking control approach to

synthesize the controller taking into account the resonant

nature of the system being controlled. The Atomic Force
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Microscope being considered is an NT-MDT Ntegra SPM

system. It is required that the displacement of the scanner

tracks a sawtooth reference input signal. Our motivation is to

increase the AFM scanning speed with improved quality in

the scanned images when compared with the existing AFM

internal PID controller.
II. THE AFM SYSTEM MODEL

Our model for the AFM piezoelectric actuator is similar to

that used in [23] and [24], based on the model given in [16]

which uses a description consisting of both electrical and

mechanical elements, see Figure 2. An expression [16] for

the relationship between the interaction force FP generated

by the actuator and the voltages Uh and UP in this model is

FP = Tem(Uh + UP ). (1)

In equation (1), Tem is defined as the transformer ratio

between the electrical energy and mechanical energy of the

piezoelectric actuator of the AFM.

We consider the electrical model of a piezoelectric actuator

discussed in [16], [23] and [24] which is similar to the

actuator used in the AFM system, except that the actuator

in this paper is a piezoelectric tube. This electrical model is

shown in Figure 2.

Fig. 2. An electrical circuit model of the electrical side of the piezoelectric
tube actuator.

Here u represents the amplifier voltage applied to the circuit,

R1 represents the output resistance of the amplifier driving

the actuator, C2 is the capacitance of an external capacitor in

series with the piezoelectric actuator, U2 is the voltage across

the external capacitor, which is measured using a differential

probe, R2 is the equivalent resistance of the differential

probe. In the papers [16], [23] and [24], a nonlinear model is

proposed for the relationship between the hysteresis voltage

Uh and the charge q. This is described by the equation:

q̇ = α|U̇h|(a Uh−q)+b U̇h (2)

where α > 0, a > 0 and b > 0 are constants which determine

the size and shape of the hysteresis nonlinearity. If α is small,

the system can be considered as being approximately linear.

Using (2), a nonlinear relationship between the current i in

the piezoelectric actuator and the derivative of the voltage

generated by the hysteresis, U̇h can be derived as follows:

q̇ = i =

{
(b+α(a Uh−q)) U̇h if U̇h ≥ 0;

(b−α(a Uh−q)) U̇h if U̇h < 0.
(3)
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This relationship is presented graphically in Figure 3.

Fig. 3. Graph of the relationship between i and U̇h.

From Figure 3, it is clear that the function i = g(U̇h) defined

in (3) has an inverse provided |q − a Uh| ≤
b
α

. This inverse

function is as follows:

U̇h = f(i) =

{
i

b+α(aUh−q) if i ≥ 0;

i
b−α(aUh−q) if i < 0.

(4)

From equations (1) and (4), we can use the circuit shown

in Figure 2 to derive a state space model of the AFM

piezoelectric tube actuator.

To determine a model for the mechanical side of AFM

positioning system, we obtained frequency response mea-

surements that showed the system has two closely spaced

mechanical resonances. Hence, we assume that the transfer

function of the mechanical subsystem from force input to

displacement output is as follows:

d(s)

FP (s)
=

K1
1

m1

s2 + c1

m1
s + k1

m1
K1

+
K2

1
m2

s2 + c2

m2
s + k2

m2
K2

. (5)

From the measured AFM displacement frequency response,

there are two resonant peaks located closely at ω1 and ω2

respectively. Hence, the displacement of the actuator d is

then defined as K1d1 + K2d2 in order to make the model

well matched, where K1 and K2 are constants given by the

opposite signs and d1 and d2 are proportional to the one part

of the total displacement according to the two resonance.

This leads us to define the state variables x1 = K1d1, x2 =
ḋ1

K1
, x3 = K2d2, x4 = ḋ2

K2
, x5 = U2, x6 = Uh, x7 = UP

and x8 = q. The state equations for x1, x2, x3 and x4 can

be obtained from the terms in the transfer functions in (5).

Also, the state equation for x5 = U2 can be derived from

the fact that by iC2
= U̇2C2 = UR1

R1
− U2

R2
. Furthermore, the

state equations for x6 and x8, which contain the nonlinear

relationship between q and Uh, are obtained from (4) and

Kirchhoff’s Laws to obtain an expression for i. The state

equation for x7 is derived from the equation qp = Tem y

which is given in the paper [16]. Here q̇p = ip as shown in

Figure 2. This leads to the equation q̇p = Tem ẏ = i−CP U̇p.

Thus, a complete state space model for the AFM positioning

system can be written as follows:

ẋ1 = K1x2;

ẋ2 = − k1
m1

x1− c1
m1

x2+
Tem
m1

x6+
Tem
m1

x7;

ẋ3 = K2x4;

ẋ4 = − k2
m2

x3− c2
m2

x4+
Tem
m2

x6+
Tem
m2

x7;

ẋ5 = −( 1
R1C2

+ 1
R2C2

)x5− 1
R1C2

x6− 1
R1C2

x7+
1

R1C2
u;

ẋ6 =






−Temx2−Temx4− 1
R1

x5− 1
R1

x6− 1
R1

x7+
1

R1
u

b+α(ax6−x8)
if i ≥ 0;

−Temx2−Temx4− 1
R1

x5− 1
R1

x6− 1
R1

x7+
1

R1
u

b−α(ax6−x8)
if i < 0;

ẋ7 = −Tem
CP

x2−Tem
CP

x4− 1
R1CP

x5− 1
R1CP

x6− 1
R1CP

x7+
1

R1CP
u;

ẋ8 = − 1
R1

x5− 1
R1

x6− 1
R1

x7+
1

R1
u;

y =
[

d
U2

]
. (6)

The eighth-order nonlinear state space model (6) can be used

to simulate the nonlinear dynamics of the AFM positioning

system. In order to determine the parameters in this model,

both time and frequency domain measurements were made

on the experimental system. The two measured outputs of the

AFM positioning system are specified as the displacement d

and the series capacitor voltage U2.

For the displacement d sensor output, an additional transfer

function combining a low-pass filter and a time delay is

added to the position output of the model to allow for the

time delay arising from the capacitive sensor electronics. The

value of this delay time was determined to fit the measured

frequency response data. The transfer function used to model

this delay is a first order transfer function of the form:

Td(s) = Ks

τ
2 s − 1
τ
2 s + 1

.

The corresponding low pass filter transfer function is of the

form:
F (s) =

1
1

Ps
s + 1

.

Here, the parameter Ks represents the gain constant of the

capacitive sensor electronics and τ is the sensor electronics

time delay. Thus, T (s) = Td(s)F (s) is the transfer function

from the displacement d to the capacitive sensor output. A

state space model for this transfer function is as follows:
ẋd = Ad xd + Bd d;

d̃ = Cd xd + Dd d. (7)

Here d̃ denotes the position sensor output signal. Similarly,

an additional time delay is also added to the output U2 due

to the fact that the measured value of U2 is obtained through

a signal access module and measured using a high voltage

probe. This delay is also modeled as a first order transfer

function of the form:
TU2

(s) =
τ2

2 s − 1
τ2

2 s + 1
.

A state space model of this transfer function is as follows:
ẋd2 = Ad2 xd2 + Bd2 U2;

Ũ2 = Cd2 xd2 + Dd2 U2. (8)

To compare the model and measured frequency response, we

first obtain state equations for a linear model derives from

equation (6) by setting α = 0:

ẋ=




0 K1 0 0 0 0 0 0
−k1
m1

−c1
m1

0 0 0 Tem
m1

Tem
m1

0

0 0 0 K2 0 0 0 0

0 0
−k2
m2

−c2
m2

0 Tem
m2

Tem
m2

0

0 0 0 0
−R2−R1
R1R2C2

−1

R1C2

−1

R1C2
0

0 −Tem
b

0 −Tem
b

−1

R1b
−1

R1b
−1

R1b
0

0 −Tem
CP

0 −Tem
CP

−1

R1CP

−1

R1CP

−1

R1CP
0

0 0 0 0 −1

R1

−1

R1

−1

R1
0




x
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+




0
0
0
1

R1C2
1

R1b
1

R1CP
1

R1




u;

y =

[
KS 0 KS 0 0 0 0 0
0 0 0 0 KU2

0 0 0

]
x+

[
Dd

DU2

]
u.

Here, y =

[
d

U2

]
.

(9)

Also, KS and KU2
are defined as the sensor gain and voltage

gain due to the differential probe and the amplifier. Dd and

DU2
are defined as the DC offset values due to the scanned

sample setup position. This gives a linear state space model

of the form:

ẋ = Ax + B u;
y = Cx + D u.

This state space model is augmented with the state equations

(7) and (8) to give an overall linear state space model whose

parameters will be chosen to fit the experimental measured

frequency responses.

III. MODEL PARAMETERS

Frequency response tests showed the same frequency re-

sponses for both x and y directions of the AFM positioning

system. This means that the same robust H∞ controller could

be used for both the x and y directions. The experimentally

measured frequency response data was obtained using an

HP 35665A Dynamic Signal Analyzer (DSA), in which the

DSA provided a source sinusoidal signal via a differential

amplifier to the AFM piezoelectric tube. Thus, the outputs

from the displacement d̃ from the displacement capacitive

sensor and the external capacitor voltage Ũ2 were measured

to plot the frequency response curves shown in Figures (4)

and (5) respectively.
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Fig. 4. Measured and model frequency responses for the transfer function

from u to d̃ of the AFM positioning system.

The parameters in the linear system model (7), (8) and

(9) were chosen to give a good match between the model

frequency response and the measured frequency response.

The model parameter values obtained are shown in Table I.
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Fig. 5. Measured and model frequency responses for the transfer function

from u to Ũ2 of the AFM positioning system.

b 4.5 × 10−7 F

R1 50Ω
R2 2 × 109 Ω
CP 4 × 10−7 F

C2 1 × 10−8 F

CT 2.12 × 10−7 F

Tem 1 × 10−2 C/m

c1 2 × 10−2 Ns/m

c2 4.5 × 10−3 Ns/m

k1 3.943 × 103 N/m

k2 9.1985 × 10−18 N/m

m1 6 × 10−4 kg

m2 2.33 × 10−5 kg

K1 7
K2 −0.6
KS −4.8 × 105 V/m

KU2
−0.775

Dd −4 × 10−8

DU2
−0.09

τ 8 × 10−5 s

τ2 1.6 × 10−5 s

Table I Model parameter values.

IV. DESIGN OF THE ROBUST H∞ CONTROLLER

A. Uncertain linear system model

In this paper, we apply a similar method to [23] and [24]

involving sector bounded nonlinearities to solve a nonlinear

tracking problem in the piezo-actuator based AFM position-

ing system.

Fig. 6. Sector bounded nonlinearity in the piezoelectric actuator model.

A sector bound on the hysteresis nonlinearity (4) in our

model is defined by the lines U̇h = δ+ i and U̇h = δ− i, as

shown in Figure 6. Here δ+ > δ− > 0. The corresponding

sector bound is defined by the lines U̇h = δ+ i and U̇h =
δ− i, as shown in Figure 6. Here δ+ > δ− > 0, δ+ = 1

b−α ρ+ ,

δ− = 1
b+α ρ+ , δ+ = 1

b−α ρ+ and δ− = 1
b+α ρ+ . Also, ρ+ is

the maximum value of ρ = a Uh − q.

In our case, a value of ρ+ = 8.22 × 10−8 was used

based on simulation of the nonlinear model (6). Thus, the
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nonlinear equation (4) can be considered as a sector bounded

nonlinearity if there is an upper bound on the magnitude of

the quantity ρ = a Uh − q. This sector bounded nonlinearity

can then be replaced by a norm bounded time-varying

uncertainty.

Our approach to design a robust controller for the AFM posi-

tioning system in either the x direction control or y direction

control involves a method of robust H∞ control with norm-

bounded time-varying uncertainty via output feedback using

the approach of [17] and [18]. This method for designing a

robust H∞ controller was also used in [23] and [24]. In order

to treat the sector bounded nonlinearity as a norm bounded

uncertainty of the form considered in [17] and [18], we let

the uncertainty be of the form: f(i) = (∆δ∆(x)+ 1
b
)i; where

i = q̇ is defined in (6) and ‖∆(x)‖ ≤ 1. Here,

δo =
δ+ + δ−

2
and ∆δ =

δ+ − δ−

2
.

This gives δ+ = δo + ∆δ and δ− = δo − ∆δ. We have the

following equation for the current i in the actuator from (6):

q̇ = i =− 1
R1

x5− 1
R1

x6− 1
R1

x7+
1

R1
U.

Then, the state equation for x6 becomes;

ẋ6 = −Tem
b

x2−Tem
b

x4− 1
R1 b

x5− 1
R1 b

x6− 1
R1 b

x7+
1

R1 b
U

+∆δ∆(x)(E1x+E2u). (10)

where E1 =
[
0 0 0 0− 1

R1
− 1

R1
− 1

R1

]
;

E2 =
[

1
R1

]
.

Hence, this gives us an uncertain system of the form con-

sidered in [18]. Here, the term ∆δ∆(x)(E1x+ E2u) can be

regarded as providing a norm bounded perturbation to the

linear state equation for x6. The uncertain system model can

be further simplified to decouple the state x8 from all other

state variables, as the state x8 is defined as the current i in

the piezoelectric actuator. Then, the uncertain system model

can be written as follows:

ẋ =




0 K1 0 0 0 0 0
−k1
m1

−c1
m1

0 0 0 Tem
m1

Tem
m1

0 0 0 K2 0 0 0

0 0
−k2
m2

−c2
m2

0 Tem
m2

Tem
m2

0 0 0 0
−R2−R1
R1R2C2

−1

R1C2

−1

R1C2

0 −Tem
b

0 −Tem
b

−1

R1b
−1

R1b
−1

R1b

0 −Tem
CP

0 −Tem
CP

−1

R1CP

−1

R1CP

−1

R1CP

0 0 0 0 −1

R1

−1

R1

−1

R1




x

+




0
0
1

R1C2
1

R1b
1

R1CP


u + [ ∆ A ∆ B ]

[
x
u

]

y =
[

1 0 1 0 0 0 0
0 0 0 0 1 0 0

]
x = Cx. (11)

Here,
[
∆A ∆B

]

 x

u



= H1 ∆(x)[E1x+E2u] = H1ξ (12)

where ξ = ∆(x)ζ, ζ = i = E1x + E2u, ‖∆(x)‖ ≤ 1 and

H1 =
[

0 ∆δ 0
]T

. Then, the uncertain system model

(11), (12) can be rewritten as:

ẋ = Ax + [ H1 B2 ]
[

ξ
u

]
;

[
ζ
ỹ

]
=

[
E1

C

]
x +

[
0 E2

0 0

][
ξ
u

]
(13)

where ξ = ∆(x) ζ and ‖∆(x)‖ ≤ 1.

We also simplify the model state equations (13) using a

corresponding minimal realization to obtain the following

equivalent uncertain system model:

ẋr = Arxr + [ H1r B2r ]
[

ξ
u

]
;

[
ζ
d

U2

]
=

[
E1r

C1r

C2r

]
xr +

[
H2r E2r

H3r E3r

H4r E4r

][
ξ
u

]
(14)

where ξ = ∆(x) ζ and ‖∆(x)‖ ≤ 1.

B. Robust H∞ control problem formulation

In order to obtain an uncertain system model on which the

robust H∞ controller will be used, the state equations (14)

are then augmented with the sensor model state equations

(7), (8), along with a number of weighting filters. The

construction of our robust H∞ tracking controller is based

on the model shown in Figure 7.

Fig. 7. Block diagram illustrating the robust H∞ tracking control problem
formulation for the AFM positioning system.

We introduce a low pass weighting filter after the error

output z̃ = w − d̃, and a high pass filter as a weight on

the control input. In this robust H∞ control problem, w̃ is

the normalized reference input and z is the error output.

Also, a feed-forward gain K2 = 1 is introduced to represent

the default open loop control. The low pass filter on z̃ has

been introduced since no tracking is required at very high

frequencies. The low pass filter is chosen to have a transfer

function Gf (s) =
Gf

s+pf
= 132×103

s+3×103 . A state space model for

this low pass filter is obtained as follows:

ẋf = Af xf + Bf z̃;
z = Cf xf . (15)

Also, the high pass filter weighting the high frequency

inputs is chosen as Gw(s) = Gw s
s+pw

= 1.1 s+1.1×10−10

s+5000 . A

corresponding state space model for the high pass filter is

obtained as follows:

ẋw = Aw xw + Bw u;
zw = Cw xw + Dw u. (16)

As mentioned above, the two time delay models (7) and (8)

also need to be included in the overall model to allow for
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the delay in the outputs d and U2 respectively. Accordingly,

the robust H∞ control problem including the low pass

filter, the high pass filter, the position sensor time delay

transfer function (7), and the U2 measurement time delay (8)

can be defined by the following state equations which also

includes extra disturbance inputs to meet the requirements

of a standard H∞ control problem:

ẋ =




Ar 0 0 0 0 0
−Bf DdC1r Af Bf Cd 0 0 Bf Cf2

BsC1r 0 As 0 0 0
BdC2r 0 0 Ad 0 0

0 0 0 0 Aw 0
0 0 0 0 0 Af2


x +




H1r

Bf DsH3r

BsH3r

BdH4r

0
0


ξ

+




K2B2r
γ

0 0 0
−K2Bf DsE3r

γ
0 0 0

K2BsE3r
γ

0 0 0
K2BdE4r

γ
0 0 0

K2Bw
γ

0 0 0
Bf2

γ
0 0 0



w̌ +




B2r

Bf DsE3r

BsE3r

BdE4r

Bw

0


ũ;

ζ = [ E1r 0 0 0 0 0 ]x +H2r ξ+[ K2E2r
γ

0 ]w̌+E2rũ;

ž =
[

0 Cf 0 0 0 0
0 0 0 0 Cw 0

]
x +

[
0
0

]
ξ+

[
0 0 0 0

DwK2
γ

0 0 0

]
w̌+

[
0

Dw

]
ũ;

y =

[
DdC1r 0 Cs 0 0 0

0 0 0 0 0 0
DdC2r 0 0 Cd 0 0

]
x +

[
DsH3r

0
DdH4r

]
ξ

+

[
DsH3r

γ
ǫ1 0 0

1
γ

0 ǫ2 0
K2 E4rDd

γ
0 0 ǫ3

]
w̌ +

[
DsE3r

0
DdE4r

]
ũ. (17)

Here, ξ = ∆(x) ζ, ‖∆(x)‖ ≤ 1, and

x=




xr

xf

xs

xd

xw

xf2


; y =

[
d̃
ŵ

Ũ2

]
; w̌ =

[
w̃
w1

w2

w3

]
; ž =

[
z

zw

]
;

u= ũ + K2 w.

Furthermore, w̃ is related to the reference input w via

the relationship w = w̃
γ

, and w1, w2 and w3 are ad-

ditional disturbances which act as measurement noises in

the measurement of the displacement output d̃, the external

capacitance output voltage Ũ2 and the reference input signal

w respectively. These disturbances are scaled by factors of

ǫ1, ǫ2 and ǫ3 which are used as the design parameters in

the controller design. The values of these design parameters

are adjusted to achieve the best performance in the tracking

controller. Also ž is the error output of the system which

has components z and the weighted input signal zw which

is used to provide a penalty on the control input u. The

additional disturbances w1, w2 and w3 and the addition error

output term have been added to ensure that the resulting H∞

control problem is a standard problem which can be solved

using a Riccati equation approach. The parameter γ > 0 is

a design parameter which determines the required level of

disturbance attenuation.

C. Construction of the robust H∞ controller

We now construct a robust H∞ controller by applying the

results of [17] to the uncertain system defined by the equation

(17). This leads us to consider a standard H∞ problem.

Indeed the method of [17], when applied to the uncertain

system (18) leads to an H∞ control problem defined by the

state equations:

ẋ=




Ar 0 0 0 0 0
−Bf DdC1r Af Bf Cd 0 0 Bf Cf2

BsC1r 0 As 0 0 0
BdC2r 0 0 Ad 0 0

0 0 0 0 Aw 0
0 0 0 0 0 Af2




︸ ︷︷ ︸
Ā

x +




√
ǫH1r

K2B2r
γ

0 0 0

−√
ǫBf DsH3r

−K2Bf DsE3r

γ
0 0 0

√
ǫBsH3r

K2BsE3r
γ

0 0 0
√

ǫBdH4r
K2BdE4r

γ
0 0 0

0
BwK2

γ
0 0 0

0
Bf2

γ
0 0 0




︸ ︷︷ ︸
B̄1

w̄ +




B2r

Bf DsE3r

BsE3r

BdE4r

Bw

0




︸ ︷︷ ︸
B̄2

ũ

[
ζ
z
zw

]
=

[
E1r√

ǫ
0 0 0 0 0

0 Cf 0 0 0 0
0 0 0 0 Cw 0

]

︸ ︷︷ ︸
C̄1

x+




H2r
K2 E2r√

ǫγ
0 0 0

0 0 0 0 0

0
DwK2

γ
0 0 0




︸ ︷︷ ︸
D̄11

w̄+




E2r√

ǫ

0
Dw





︸ ︷︷ ︸
D̄12

ũ;

[
d̂
ŵ

Û2

]
=

[
DsC1r 0 Cs 0 0 0

0 0 0 0 0 0
DdC2r 0 0 Cd 0 0

]

︸ ︷︷ ︸
C̄2

+

[√
ǫDsH3r

K2 E3rDs
γ

ǫ1 0 0

0 1
γ

0 ǫ2 0
√

ǫDdH4r
K2 E4rDd

γ
0 0 ǫ3

]

︸ ︷︷ ︸
D̄21

w̄ +

[
DsE3r

0
DdE4r

]

︸ ︷︷ ︸
D̄22

ũ. (18)

Here, ǫ > 0 is an additional design parameter introduced

according to the theory of [17] and [18]. In this H∞ control

problem, it is required to construct an output feedback

controller such that the closed loop system is stable and the

transfer function from w̄ to z̄ has H∞ norm strictly less than

one.

However, the H∞ control problem defined by the state

equations (18) is not a standard H∞ problem since the

D̄11 term is non-zero. This means that the standard Riccati

equation approach cannot be applied directly to this problem.

Hence, we now apply a standard loop shifting method to

remove the D̄11 term; see also Section 4.5.1 of [22]. Indeed,

we consider a H∞ control problem defined by the state

equations of the form:

ẋ = Āx + B̄1w̄ + B̄2ũ;
z = C̄1x + D̄11w̄ + D̄12ũ;
y = C̄2x + D̄21w̄ + D̄22ũ. (19)

where we assume D̄′
11D̄11 < I , and we wish to construct an

output feedback controller such that the closed loop system is

stable and the H∞ norm of the closed loop transfer function

from w to z is strictly less than unity. In order to achieve

this, the condition Θ = I − D̄′
11D̄11 > 0 must hold. Then,

in order to remove the D̄11 term, we define w̆ = Θ
1
2 w̄ −

Θ− 1
2 D̄′

11(C̄1x+D̄12u) and Ψ = I+D̄11Θ
−1D̄′

11 > 0. From

this it follows that this H∞ control problem is equivalent to

an H∞ control problem defined by the state equations

ẋ = Ãx + B̃1w̆ + B̃2ũ;

z̄ = C̃1x + D̃12ũ;

y = C̃2x + D̃21w̆ + D̃22ũ. (20)
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where, Ã = Ā+B̄1Θ
−1D̄′

11C̄1; B̃1 = B̄1Θ
1
2 ;

B̃2 = B̄2+B̄1Θ−1D̄′
11D̄12; C̃1 =Ψ

1
2 C̄1;

C̃2 = C̄2+D̄21Θ−1D̄′
11C̄1; D̃12 =Ψ

1
2 D̄12;

D̃21 = D̄21Θ− 1
2 ; D̃22 = D̄22+D̄21Θ−1D̄′

11D̄12.

Having removed the D̄11 term using above method, the H∞

control problem defined by the state equations (19) can be

converted into a standard H∞ control problem (20) to be

solved via an algebraic Riccati equation approach by adding

a new measured output y̌ = ȳ − D̃22ũ; e.g., see [19], [20],

[21] and [22]. The design parameters used in our case were

chosen as shown in Table II.
ǫ 4.83 × 10−9

ǫ1 8.0 × 10−4

ǫ2 4.0 × 10−5

ǫ3 5.9 × 10−4

γ 288
pf 3.0 × 103 rad/s

Gf 44
pw 5.0 × 103 rad/s

zw 1.0 × 10−10 rad/s

Gw 1.1

Table II Robust H∞ controller design parameters.

V. PERFORMANCE OF THE ROBUST H∞ CONTROLLER

A. Experimental test setup

The robust H∞ tracking controller for the AFM positioning

system was implemented in the dSpace DSP system as il-

lustrated in Figure 8. The continuous time controller transfer

functions obtained above were discretized using a standard

zero order hold method with a sampling period of 50 kHz

for both the x and y directions.

Fig. 8. Experimental test setup used in the AFM positioning system.

B. Frequency domain performance of the Robust H∞ con-

trol system

The robust H∞ controller was synthesized to yield the

controller transfer functions H1(s), H2(s) and H3(s), in

which H1(s) and H3(s) are connected as a feedback to the

plant outputs d and U2 respectively, and H2(s) is connected

as a feedforward to the reference input w. Bode plots of

H1(s), H2(s), H3(s) are shown in Figures 9 - 11.

From these Bode plots, it can be seen that our H∞ control

method has yielded a controller with reasonable gains and

bandwidth. In order to verify the stability of the resulting

control system, a Nyquist plot of the loop gain frequency

response is presented in Figure 12. In this Nyquist plot, the

loop gain frequency response data is obtained by multiplying

the measured open loop plant frequency response data by the

calculated controller frequency response of each frequency.

This Nyquist plot indicates that the control system should

indeed be robustly stable.
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Fig. 9. Bode plot of the controller transfer function H1(s) from d̃ to ũ.
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Fig. 10. Bode plot of the controller transfer function H2(s) from ŵ to ũ.
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In the closed-loop case, four different Bode plots are given.

The first of these plots corresponds to the frequency re-

sponse of the measured closed-loop frequency response.

The second of these plots corresponds to the closed-loop

frequency response calculated using the measured open loop

frequency response data. The third of these plots corresponds

to the frequency response calculated from the plant and our

controller models. The fourth of these plots corresponds to

the measured open loop frequency response.
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Fig. 13. A comparison of Bode plots for the open loop and closed loop
transfer functions.

C. Experimental tracking performance of the robust H∞

control system

The performance of the robust H∞ controller was also exam-

ined experimentally by tracking a sawtooth reference signal

applied to the piezoelectric tube actuator. The frequency of

the reference sawtooth input signal is set at 5 Hz, see Figure

14.
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Fig. 14. (a) Displacement signal with a 5Hz sawtooth reference input w.
(b) tracking error with 5Hz reference input.

VI. IMAGE SCANNING RESULTS

A. Low pass filtering at the reference signal

The robust H∞ controller designed for the AFM positioning

system has a much higher bandwidth than the original PID

controller. When this controller was implemented it was

found that abrupt change in the reference signals lead to

significant oscillations in the tube scanner resulting in poor

image qualities. Hence, we introduced Chebychev low pass

filters on the reference signals with different cut-off frequen-

cies in the x and y directions. The best cut-off frequencies

used for the x and y directions were 900Hz and 100Hz

respectively.

B. Scanned images

Using the existing NT-MDT AFM scanning software, any

scanning speed above 10Hz can only be set to frequencies

of 10Hz, 31.25Hz, 62.5Hz and 125Hz. Figures 15 to 18

illustrate the results obtained using our robust H∞ tracking

controller implemented in a dSpace DSP control system to

control the AFM scanning system in both x and y directions

compared to the internal PID controller. Each of these images

was obtained by scanning a TGQ1 grating reference sample.

Fig. 15. 10Hz scanned images using the AFM PID controller (a) 2D-image
(c) 3D-image and using the H∞ controller (b) 2D-image (d) 3D-image.

Fig. 16. 31.25Hz scanned images using the AFM PID controller (a) 2D-
image (c) 3D-image and using the H∞ controller (b) 2D-image (d) 3D-
image.
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Fig. 17. 62.5Hz scanned images using the AFM PID controller (a) 2D-
image (c) 3D-image and using the H∞ controller (b) 2D-image (d) 3D-
image.

Fig. 18. 125Hz scanned images using the AFM PID controller (a) 2D-image
(c) 3D-image and using the H∞ controller (b) 2D-image (d) 3D-image.

VII. CONCLUSION

In this paper, we consider the use of a robust H∞ tracking

controller for fast scanning in Atomic force Microscopy.

Experimental results show that high speed and high precision

3D-image scanning can be achieved using our controller. The

performance obtained from the scanned images have been

compared with the conventional AFM PID control method

in our commercial type NT-MDT AFM. A comparison was

given in this paper between the use of our robust H∞

controller and the NT-MDT AFM PID controller and our

experimental results showed that the scanned images were

significantly improved at scanning speeds of up to 125 Hz.

It has been noted that the oscillations occur with the tracking

performance for scanning speed above 60 Hz. Therefore,

further control strategy is needed for active damping of these

oscillations at higher frequencies.
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