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Abstract—In this paper, three adaptive control designs
for systems with unknown dynamics and uncertain actuator
nonlinearities and/or actuation disturbances are presented.
First, an adaptive design utilizing an adaptive inverse is
used to compensate for systems with actuator nonlinearities
is developed. Then, an adaptive design to reject actuation
disturbances is developed. Finally, an adaptive design is devel-
oped to compensate both actuator nonlinearities and actuation
disturbances simultaneously. This adaptive control design is
applied to an aircraft flight control system model with synthetic
jet actuator nonlinearities and wind gust disturbances and
simulation results are presented to show the desired adaptive
system responses.

1. Introduction

For simple control problems, classical control techniques

are often adequate. However, in real applications, unknown

system dynamics, including actuator nonlinearities and ac-

tuation disturbances, may make it impossible to control a

system using classical control techniques alone. Even when

the dynamics of a system are not entirely known, adaptive

control techniques may be used to achieve control goals

in certain systems with unknown system dynamics [9].

Adaptive control is a hot research topic, showing promise to

overcome many challenges present in real control systems.

Adaptive algorithms have been used to compensate for

actuator nonlinearities in control systems. In [1], [2], [3],

and [4], adaptive algorithms are developed for flight control

systems to compensate for synthetic jet actuator nonlineari-

ties. An adaptive inverse is used to compensate for a dead-

zone nonlinearity in [11]. Neural networks and backstepping

techniques are used to compensate nonsmooth nonlinearities

in uncertain systems in [10].

Disturbance rejection can also be achieved with adaptive

control schemes. In [8], adaptive control for rejection of

sinusoidal disturbances to unknown systems is studied. An

algorithm is experimentally shown to attenuate sinusoidal

disturbances of known frequency in time-varying systems.

In [5], an adaptive estimator is designed to estimate system

states and the frequencies and magnitudes of unknown si-

nusoidal disturbances for mininum phase and non-minimum

phase MIMO systems. In [7], an adaptive control design is

presented to achieve state tracking for MIMO systems with

system uncertainties and bounded disturbances. Sufficient

gain conditions are derived for the controller to yield semi-

global asymptotic stability.

In Section 2, we introduce the system models to be

controlled. In Section 3, we develop adaptive designs for

actuator nonlinearity compensation. In Section 4, we develop

an adaptive design for disturbance rejection. In Section 5, we

develop an adaptive design for both actuator nonlinearity

compensation and disturbance rejection. In Section 6, we

study adaptive compensation for a flight control system

model with the synthetic jet actuator nonlinearity and actua-

tion disturbances. In Section 7, we present simulation results

to demonstrate the desired adaptive compensation control

system performance.

2. Problem Statement

The goal of this paper is to expand upon the results in [6].

In [6], adaptive designs were presented to compensate for

actuator nonlinearities and actuation disturbances in systems

with known dynamics. In this paper, we will expand these

designs to include systems with unknown dynamics (a less

restrictive case). This enables us to solve the problem of

actuator nonlinearities and actuation disturbances for a more

general class of systems.

In this study, we consider a single-input single-output

linear time invariant system described by

ẋ = Ax+Bu+Bdd(t), u = N(v(t)), y = Cx, (2.1)

where A ∈ ℜn×n, B ∈ ℜn×1 and C ∈ ℜ1×n are unknown

constant matrices, Bd ∈ ℜn×1 is a disturbance vector, d(t)
is a disturbance signal, and N(·) is an actuator nonlinearity.

We will first develop adaptive designs for two special

cases of this system. The first case is the system with an

actuator nonlinearity without disturbance, described by

ẋ = Ax+Bu, u = N(v(t)), y = Cx. (2.2)

The second case is the system without the actuator nonlin-

earity but with disturbance, described by

ẋ = Ax+Bu+Bdd(t), y = Cx. (2.3)

In developing these adaptive designs, we refer to the

nominal case system described by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t). (2.4)
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For such a nominal system, a nominal feedback law

u(t) = kT1 (t)x(t) + k2(t)r(t), (2.5)

is used, where k1(t) ∈ ℜn and k2(t) ∈ ℜ are parameters to

be updated with an adaptive law. Such a standard adaptive

control system has been well understood, and adaptive meth-

ods have already been developed in the literature. However,

there are still open issues for systems with unknown actuator

nonlinearities and actuation disturbances, such as those for a

state feedback output tracking adaptive control design which

has a simple controller structure for aircraft flight control

system applications, and those for adaptive disturbance using

state feedback for output tracking.

Actuator Nonlinearities. In real-life control systems,

actuators used to control systems are often nonlinear. These

nonlinearities must be compensated. In our paper, the actu-

ator nonlinearities N(·) will be parameterizable as

u(t) = N(v(t)) = −θ∗Ta ωa(t). (2.6)

We will specifically study the synthetic jet actuator non-

linearity used for aircraft flight control [1], which for low

angles of attack of an aircraft may be parameterizable as

N(v(t)) = θ∗a2 −
θ∗a1
v(t)

, (2.7)

where θ∗a1 and θ∗a2 are some unknown parameters. We will

use this model as a benchmark example in our actuator

nonlinearity compensation study.

Actuation Disturbances. Actuation disturbances can

come in many forms. For our main topic of interest, flight

control, actuation disturbances are usually in the form of

wind gusts. We denote the actuation disturbances δ(t) as

δ(t) = Bdd(t), (2.8)

where Bd is the disturbance matrix and d(t) is the distur-

bance function. We will consider disturbances of the form

d(t) = d0 +

q∑

j=1

djfj(t), (2.9)

where di, i = 0, 1, 2, . . . , q, are real constants, and fj(t), j =
1, 2, . . . , q, are real continuous functions.

Control Objective. The control objective is to make the

system output y(t) track the output ym(t) of a reference

model system

ym(t) = Wm(s)[r](t),Wm(s) =
1

Pm(s)
, (2.10)

where Pm(s) is the desired closed-loop characteristic poly-

nomial whose zeros are all stable.

To state the system assumptions, we consider the system

(2.4) in the input-output form

y(s) = C(sI −A)−1Bu(s) =
Z(s)

P (s)
u(s) (2.11)

where Z(s) = zmsm + · · · + z1s + z0, zm 6= 0, and

P (s) = det(SI−A) is a monic polynomial. We can design

adaptive control schemes to achieve output tracking with the

following assumptions:

Assumption 2.1: Z(s) is a stable polynomial;

Assumption 2.2: The degree of Z(s) is known; and

Assumption 2.3: The sign of zm is known.

It can be shown that under assumptions 2.1-2.2 there exist

matching parameters k∗1 ∈ ℜn and k∗2 ∈ ℜ that satisfy

det(sI −A−Bk∗1) = Pm(s)Z(s)k∗2 , k
∗

2 =
1

zm
. (2.12)

This implies that there will always be matching parameters

k∗1 and k∗2 that when used in place of k1(t) and k2(t),
respectively, in the feedback law (2.5), the closed-loop

system will match the reference model system.

For the nominal system (2.4), we can design adaptive laws

to update the estimates k1(t) and k2(t) for k∗1 and k∗2 when

unknown, to ensure output tracking is achievable.

For the system (2.2) with actuator nonlinearities, the

system (2.3) with actuation disturbances, and the system

(2.1) with both actuator nonlinearities and disturbances,

adaptive control designs will be developed next, with new

features and properties associated with system structures.

3. Adaptive Design for Actuator Nonlinearity

Compensation

An adaptive actuator nonlinearity compensation scheme

for a system with an actuator nonlinearity and known (A,

B, C) was proposed in [6]. We will develop this scheme the

case with unknown (A, B, C), in a state feedback control

framework useful for aircraft flight control. First, we derive

a compensation algorithm, then we apply the algorithm to a

system with the synthetic jet actuator nonlinearity.

A system with an actuator nonlinearity is described by

(2.2). The control objective is to make the output of this sys-

tem track the output of a reference model system. Since this

system to be controlled has actuator nonlinearity N(v(t)),
parameterizable as (2.6), We employ an adaptive inverse

v(t) = N̂I(ud(t)) that is parameterizable as

ud(t) = −θTa (t)ωa(t), (3.1)

where ud(t) is a control signal from a feedback design,

ωa(t) is some known signal which contains the signal v(t),
and θa(t) is an adaptively updated estimate of θ∗a from the

actuator nonlinearity N(v(t)) parameterized in (2.6).

For the synthetic jet nonlinearity (2.7), the adaptive in-

verse is

v(t) = N̂I(ud(t)) =
θa1(t)

θa2(t)− ud(t)
(3.2)

where θa1(t) and θa2(t) are the estimates of the unknown

parameters θ∗a1 and θ∗a2, and ud(t) is a design feedback

signal. This inverse can be expressed in the form of ud(t) =
−θTa (t)ωa(t) for θa = [θa1, θa2]

T and ωa(t) = [ 1
v(t) ,−1]T .
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In addition to the parameters θa(t) of the actuator nonlin-

earity inverse, the parameters k1(t) and k2(t) are adaptively

updated. We construct the feedback control law to generate

the signal ud(t):

ud(t) = kT1 (t)x(t) + k2(t)r(t), (3.3)

where r(t) is a bounded signal and the parameters k1(t) and

k2(t) are updated with the adaptive law described later in

this Section. Using (2.6) and (3.2), the control error can be

parameterized as

u(t)− ud(t) = −θ∗Ta ω∗

a(t) + θTa (t)ωa(t). (3.4)

Using (3.4) and (3.3), we can rewrite u(t) as

u(t) = k∗T1 x+ k∗2r + (θ(t)− θ∗)Tω(t) + da(t), (3.5)

where error caused by the uncertain actuator nonlinearity is

da(t) = −θ∗Ta (ωa(t)− ω∗

a(t)), ; (3.6)

θ(t) = [kT1 (t), k2(t), θa(t)]
T , (3.7)

θ∗ = [k∗T1 , k∗2 , θ
∗

a]
T , (3.8)

ω(t) = [xT (t), r(t), ωa(t)]
T . (3.9)

The system (2.2) with unknown parameters (A, B, C) and

u(t) from (3.5) can be expressed as

y(t) = Wm(s)[r](t)+ρ∗Wm(s)[(θ−θ∗)Tωa+da](t)+ǫ0(t),
(3.10)

where ρ∗ = zm and ǫ0 is an exponentially decaying term due

to the initial conditions. With d̄a(t) = ρ∗Wm(s)[da](t), and

using the controlled system output (3.10) and the reference

model output (2.10), we have the output error as

y(t)− ym(t) = ρ∗Wm(s)[(θ − θ∗)Tω](t) + d̄a(t), (3.11)

where the term ǫ0 has been ignored. We then define the

estimation error

ǫ(t) = y(t)− ym(t) + ρ(t)ξ(t), (3.12)

where

ξ(t) = θT (t)ζ(t)−Wm(s)[θTω](t), (3.13)

ζ(t) = Wm(s)[ω](t). (3.14)

With (3.11)-(3.14), the estimation error simplifies to

ǫ(t) = ρ∗(θ(t)−θ∗)T ζ(t)+(ρ(t)−ρ∗)ξ(t)+ d̄a(t). (3.15)

Adaptive Laws. We choose initial parameters that satisfy

θi(0) ∈ [θai , θ
b
i ], (3.16)

for i = 1, 2, ..., n+ 1 + nθ. We define the adaptive laws

θ̇(t) = −
sign[ρ∗]Γǫ(t)ζ(t)

m2(t)
+ f(t), (3.17)

ρ̇(t) = −
γρξ(t)ǫ(t)

m2(t)
, γρ > 0, (3.18)

where m(t) =
√

1 + ζT (t)ζ(t) + ξ2(t), and

fi(t) =





0 if θi(t) ∈ (θai , θ
b
i ) or

if θi(t) = θai and gi(t) ≥ 0 or

if θi(t) = θbi and gi(t) ≤ 0,
−gi(t) otherwise,

Γ = diag{γ1, . . . , γn+1+nθ
} = ΓT > 0. (3.19)

For our stability analysis, we consider a positive definite

function V (θ̃, ρ̃) = |ρ∗|θ̃TΓ−1θ̃ + γ−1
ρ ρ̃2, where θ̃(t) =

θ(t) − θ∗ and ρ̃(t) = ρ(t) − ρ∗. Using the above adaptive

laws, we find the time derivative

V̇ = −
ǫ2(t)

m2(t)
, t ≥ 0. (3.20)

This ensures that θi(t) ∈ [θai , θ
b
i ] for i = 1, 2, ..., n +

1 + nθ, and that
∫ t2

t1

ǫ2(t)
m2(t) dt ≤ a1 + b1

∫ t2

t1

d̄a
2(t)

m2(t) dt,∫ t2

t1
‖θ̇(t)‖22 dt ≤ a2 + b2

∫ t2

t1

d̄a
2(t)

m2(t) dt and
∫ t2

t1
‖ρ̇(t)‖22 dt ≤

a2 + b2
∫ t2

t1

d̄a
2(t)

m2(t) dt for constants a1, a2, b1, b2 > 0 and all

t2 > t1 ≥ 0. The use of parameter projection is to ensure a

desired implementation of the adaptive inverse (3.2).

4. Adaptive Design for Disturbance Rejection

To design adaptive algorithms for actuation disturbance

rejection, we first develop a disturbance reject parametriza-

tion, and then derive an adaptive algorithm for compensating

for the actuation disturbances in a system when the system

matrices A, B and C are unknown. We will apply this

algorithm to a flight control system model.

For output tracking to be achievable, the same assump-

tions as Assumptions 2.1-2.3 for the system dynamics are

needed. Additionally, when disturbances are nonconstant, the

following matching equation also needs to be satisfied:

1

k∗2
Wm(s)u∗

0 + C(sI −A−Bk∗T1 )−1Bd = 0 (4.1)

for some u∗

0 ∈ ℜ. The following proposition is used to

determine whether or not the above matching condition is

satisfied and will be used for the aircraft model evaluation.

Proposition 4.1: [9] Assuming (A,B) is controllable,

there exist constants k∗1 ∈ ℜn, k∗2 , u
∗

0 ∈ ℜ such that

C(sI −A−Bk∗T1 )−1Bk∗2 = Wm(s) =
1

Pm(s)
, (4.2)

and matching equation 4.1 is satisfied, where Pm(s) is

a stable monic polynomial of degree n∗, if and only if

(C,A,B) and (C,A,Bd) have the same relative degree n∗.

When the above condition is true, we develop the compen-

sation term

u0(t) = u00(t) +

q∑

j=1

u0j(t)fj(t), (4.3)
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which is an estimate of

u∗

0(t) = u∗

00 +

q∑

j=1

u∗

0jfj(t), (4.4)

where u∗

0j = u∗

0dj , j = 0, 1, 2, . . . , q, or alternatively

u∗

0(t) = u∗

0d(t). (4.5)

We can express u0(t) and u∗

0(t) as

u0(t) = θTd (t)ωd(t), (4.6)

u∗

0(t) = θ∗Td ωd(t), (4.7)

respectively, where

θd(t) = [u00(t), u01(t), . . . , u0q(t)]
T , (4.8)

θ∗d = [u∗

00, u
∗

01, . . . , u
∗

0q]
T , (4.9)

ωd(t) = [1 , f1(t), . . . , fq(t)]
T . (4.10)

We then choose the adaptive control law

u(t) = kT1 (t)x(t) + k2(t)r(t) + u0(t), (4.11)

for disturbance rejection, where u0(t) is for either a constant

or nonconstant disturbance d(t), as defined in (4.6).

The tracking error is

y − ym = ρ∗Wm(s)[(k1(t)− k∗1)
Tx+ (k2(t)− k∗2)r

+(θd − θ∗d)ωd](t) + ǫ0(t),

where Wm(s) = 1
Pm(s) , where Pm(s) is a stable monic

polynomial of degree n∗ and ǫ0(t) = CeA+bk∗T

1
tx(0)+δd(t)

converges to zero exponentially.

We define the estimation error

ǫ(t) = y(t)− ym(t) + ρ(t)ξ(t), (4.12)

where

ξ(t) = θT (t)ζ(t)−Wm(s)[θTω](t), (4.13)

ζ(t) = Wm(s)[ω](t), (4.14)

θ(t) = [kT1 (t), k2(t), θ
T
d (t)]

T , (4.15)

ω(t) = [x(t), r(t), ωT
d (t)]

T . (4.16)

Adaptive Laws. We then choose the adaptive laws

θ̇(t) = −
sign[ρ∗]Γζ(t)ǫ(t)

m2(t)
, Γ = ΓT > 0, (4.17)

ρ̇(t) = −
γρξ(t)ǫ(t)

m2(t)
, γρ > 0, (4.18)

where m(t) =
√

1 + ζT (t)ζ(t) + ξ2(t).
For our stability analysis, we consider a positive definite

function V (θ̃, ρ̃) = |ρ∗|θ̃TΓ−1θ̃ + γ−1
ρ ρ̃2, where θ̃(t) =

θ(t) − θ∗ and ρ̃(t) = ρ(t) − ρ∗. Using the above adaptive

laws, we find the time derivative

V̇ = −
ǫ2(t)

m2(t)
, t ≥ 0. (4.19)

This ensures that θ(t) ∈ L∞, ρ(t) ∈ L∞,
ǫ(t)
m(t) ∈ L2 ∩L∞,

θ̇(t) ∈ L2∩L∞, and ρ̇(t) ∈ L2∩L∞. We have satisfied the

objectives that all closed-loop signals are bounded, y(t) −
ym(t) ∈ L2 and limt→∞(y(t)− ym(t)) = 0.

5. Adaptive Designs for Actuator Nonlinearity

Compensation and Disturbance Rejection

In this Section, we will develop algorithms for the system

(2.1) that has both actuator nonlinearities and actuation

disturbances. We will first develop an algorithm for the

case with unknown (A, B, C). We will then apply the

algorithm to a flight control system model with the synthetic

jet actuator nonlinearity and nonconstant disturbance. For

output tracking to be achievable, the same assumptions as

Assumptions 2.1-2.3 for disturbance rejection or actuator

nonlinearity compensation are needed. Additionally, when

disturbances are nonconstant, the relative degree condition

from Proposition 4.1 should also be satisfied.

In this case, we choose the control law as

ud(t) = kT1 (t)x(t) + k2(t)r(t) + u0(t), (5.1)

where u0(t) is the disturbance rejection signal. The signal

ud(t) is used for the adaptive inverse (3.2) to generate the

control signal v(t) for the system (2.1). The tracking error

can be expressed as

y − ym = ρ∗Wm(s)[(θ − θ∗)Tω](t) + d̄a(t) + ǫ0(t), (5.2)

with

θ(t) = [kT1 (t), k2(t), θ
T
a (t), θ

T
d (t)]

T , (5.3)

θ∗ = [k∗T1 , k∗2 , θ
∗T
a , θ∗Td ]T , (5.4)

ω(t) = [xT (t), r(t), ωT
a (t), ω

T
d (t)]

T . (5.5)

We also choose the disturbance rejection signal (4.3).

We define the estimation error

ǫ(t) = y(t)− ym(t) + ρ(t)ξ(t), (5.6)

where

ξ(t) = θT (t)ζ(t)−Wm(s)[θTω](t), (5.7)

ζ(t) = Wm(s)[ω](t). (5.8)

Adaptive Laws. We then use the adaptive laws for

updating the parameter estimates θ(t) and ρ(t):

θ̇(t) = −
sign[ρ∗]Γζ(t)ǫ(t)

m2(t)
+ f(t), Γ = ΓT > 0,

ρ̇(t) = −
γρξ(t)ǫ(t)

m2(t)
, γρ > 0, (5.9)

where m(t) =
√

1 + ζT (t)ζ(t) + ξ2(t), and

fi(t) =





0 if θi(t) ∈ (θai , θ
b
i ) or

if θi(t) = θai and gi(t) ≥ 0 or

if θi(t) = θbi and gi(t) ≤ 0,
−gi(t) otherwise,

with θai , i = n+1, . . . , n+na and θbi , i = n+1, . . . , n+na

as the lower and upper bounds, respectively, to ensure there

are no singularities in the adaptive inverse.

For our stability analysis, we consider a positive definite

function V (θ̃, ρ̃) = |ρ∗|θ̃TΓ−1θ̃ + γ−1
ρ ρ̃2, where θ̃(t) =
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θ(t) − θ∗ and ρ̃(t) = ρ(t) − ρ∗. Using the above adaptive

laws, we find the time derivative

V̇ = −
ǫ2(t)

m2(t)
, t ≥ 0. (5.10)

This verifies that that θi(t) ∈ [θai , θ
b
i ] for i =

1, 2, ..., na+nd, and that
∫ t2

t1

ǫ2(t)
m2(t) dt ≤ a1+b1

∫ t2

t1

d̄a
2(t)

m2(t) dt,∫ t2

t1
‖θ̇(t)‖22 dt ≤ a2 + b2

∫ t2

t1

d̄a
2(t)

m2(t) dt and
∫ t2

t1
‖ρ̇(t)‖22 dt ≤

a2 + b2
∫ t2

t1

d̄a
2(t)

m2(t) dt for constants a1, a2, b1, b2 > 0 and all

t2 > t1 ≥ 0. For the synthetic jet actuator nonlinearity (2.7)

and its inverse (3.2), the effect of da can be further reduced.

6. An Aircraft Flight Control System Study

Consider a linearized lateral flight control system model,

described by (2.1) with

A =




−0.0134 48.5474 −632.3724 32.0756
−0.0199 −0.1209 0.1628 0
−0.0024 −0.0526 −0.0252 0

0 1 0.0768 0


 ,

B =




0
−0.0431
−0.0076

0


 , C =




0
0
0
1




T

,

from [4] are unknown. The states are lateral velocity x1(t),
roll rate x2(t), yaw rate x3(t), and roll angle x4(t). The input

u(t) is the equivalent aileron angular position (generated by

a set of synthetic jet actuators). The input v(t) is used to

control a synthetic jet actuator to change the output y(t) =
x4(t), or roll angle. The system has an actuation (wind gust)

disturbance δ(t) = Bdd(t) and the synthetic jet actuator

nonlinearity (2.7). The transfer function of (C, A, B) has

relative degree 2, so we choose the reference model with a

Pm(s) of degree 2:

Wm(s) =
1

Pm(s)
=

1

s2 + s+ 1
. (6.1)

We will now study the nature of the disturbance and

ensure that it can be rejected. The disturbance function d(t)
represents the effect of the wind forces on ẋ(t). The dis-

turbance may have a physical meaning on the accelerations,

ẋ1(t), ẋ2(t) and ẋ3(t). A disturbance component δi(t) to

each ẋi(t), is of the form δi(t) = Bdidi(t), i = 1, 2, 3,
where Bd1 = [1 0 0 0]T , Bd2 = [0 1 0 0]T , and

Bd3 = [0 0 1 0]T . Then the disturbance to the aircraft can be

described as δ(t) =
∑3

i=1 Bdiδi(t). The lateral velocity x1

and lateral acceleration ẋ1 do not affect the output y = x4,

therefore the disturbance δ1(t) does not need to be rejected

for output tracking. Transfer functions (C, A, Bd2) and

(C, A, Bd3) both have relative degree 2. This implies that

u∗

0 from (4.4) exists for the system with disturbances d2(t)
and d3(t), that is, d2(t) and d3(t) can be rejected. Since the

condition of Proposition 4.1 is satisfied, we conclude that

disturbance rejection is achievable for this aircraft control

system. For this system, we use the adaptive inverse (3.2)

to compensate for the actuator nonlinearity N(·), and the

control law (5.1). We notice a singularity to avoid when

ud(t) = θa2. We continue developing the algorithm under

the assumption that ud is smaller than θa2, then modify

the algorithm for when the assumption does not hold. The

estimate θd(t) of θ∗d and the signal ωd(t) of the disturbance

rejection signal u0(t) are chosen from (4.3).

We express the output of the controlled system as

y(t) = ym(t) +
1

k∗2
Wm(s)[(θ − θ∗)Tω](t) + ǫ0(t), (6.2)

where θa(t) = [θa1(t), θa2(t)]
T , θ∗a = [θ∗a1, θ∗a2]

T ,

and ωa(t) = [ 1
v(t) ,−1]T are derived in Section 3,

u0 ∈ ℜnd , u∗

0 ∈ ℜnd , θd(t) ∈ ℜnd , θ∗d ∈ ℜnd

and ωd(t) ∈ ℜnd are derived in Section 4, θ(t) =
[kT1 (t), k2(t), θTa (t), θTd (t)]

T , ω(t) = [x(t), r(t), ωT
a (t),

ωT
d (t)]

T and ǫ0(t) is the exponentially decaying term.

We use the adaptive laws (5.9), ensuring that θ(t) ∈

L∞, ρ(t) ∈ L∞,
ǫ(t)
m(t) ∈ L2 ∩ L∞, θ̇(t) ∈ L2 ∩ L∞, and

ρ̇(t) ∈ L2 ∩ L∞. It can be shown that under the condition

that ud(t) < θa2, that is, the singularity is avoided, all

closed-loop signals are bounded, y(t) − ym(t) ∈ L2 and

limt→∞(y(t)− ym(t)) = 0.

We now modify our scheme to compensate for the case in

which ud(t) approaches θa2(t). We choose a small δa, and

use the new feedback control law

ud(t) ={
θa2(t)− δa if ūd(t) ≥ θa2(t)− δa
kT1 (t)x(t) + k2(t)r(t) + u0(t) otherwise,

where ūd(t) = kT1 (t)x(t) + k2(t)r(t) + u0(t). In a local

system operation, this could prevent the condition v(t) = ∞
which would cause a failure to reach our control goals.

7. Simulation Study

The use of an adaptive algorithm to overcome actuator

nonlinearities and actuation disturbance was demonstrated

in [6] for systems with known dynamics. In this simulation,

we verify the adaptive algorithm developed in Section 5 for

the more general case of systems with unknown dynamics.

In our simulation study, we will examine the performance

of the adaptive control scheme. We will use the system (2.1)

with unknown system matrices, the synthetic jet actuator

nonlinearity (2.7), and a sinusoidal disturbance.

We use the reference model (6.1) and the system ma-

trices from Section 6, we calculate k∗1 and k∗2 to be

[−.4597
deg·sec

ft
, 20.0309 sec, 5.4434 sec, 22.8914]T

and −22.8912 respectively. The parameter θ∗a is arbitrarily

chosen to be [33.33 volt · deg, 20 deg]T .

We arbitrarily choose the initial state x(0) =

[0.01 ft
sec , −0.001

deg
sec , 0.015

deg
sec , 0.01 deg]T , the

initial actuator nonlinearity parameter θa(0) = [32 volt ·
deg, 27 deg]T with ωa = [ 1

v(t) ,−1]T , initial disturbance

rejection parameter θd(0) = [0 deg, 0 deg]T with ωd =
[sin(3t), 1]T , and initial parameter estimates k1(0) =

2955
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Fig. 1. System output and tracking error.

[−0.5
deg·sec

ft
, 20 sec, 5.5 sec, 23]T and k2(0) = −25,

and ρ(0) = −0.04. We choose a reference signal r(t) =
0.5 sin(.1t) degrees. We choose γρ = 10 and Γ =
diag{5000, 5000, 250000, 30000, 100, 100, 100, 100, 100}.

The system has sinusoidal disturbance (in degrees):

d(t) =





0 for t < 200

0.25(t− 200)(sin(3t) + 1) for 200 ≤ t ≤ 201

0.25(sin(3t) + 1) for t > 201,

with disturbance matrix Bd = [0 1 0 0]T .

From Figure 1 we see that output tracking is achieved.

The adaptive parameters compensate for the initial errors in

estimates of k∗1 , k∗2 and θ∗a, and adjust when the disturbance

at t = 200 is applied to achieve output tracking. The effect of

the disturbance is still present in x1(t) and x3(t), as shown

in Figure 2. This shows that disturbance rejection is achieved

at the chosen output whose tracking is a design goal.

8. Conclusions

In this paper, we have recognized the challenges caused by

actuator nonlinearities and actuation disturbances in systems

with unknown (A, B, C). We have derived adaptive algo-

rithms for actuator nonlinearity compensation and actuation

disturbance rejection that use state feedback in systems with

unknown (A, B, C). We have applied these algorithms to

realistic models for flight control systems and found that they

can achieve output tracking. We have developed an expanded

adaptive algorithm to simultaneously compensate for actu-

ator nonlinearities and reject disturbances and shown their

potential for application to real-life system models. We have

illustrated the advantages of adaptive control schemes in the

presence of disturbances, system dynamics uncertainties and

actuator nonlinearities in simulation.

In future work, we will expand our methods for use in

multi-input multi-output systems.

ACKNOWLEDGMENTS

This research was partially supported by a NASA STTR

phase II grant and by the NSF grant ECS06011475.

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

x
2
 (

d
e

g
/s

e
c
)

Time (sec)

Roll rate x
2
(t)

0 50 100 150 200 250 300 350 400 450 500
−100

0

100

x
1
 (

ft
/s

e
c
)

Time (sec)

Lateral velocity x
1
(t)

0 50 100 150 200 250 300 350 400 450 500
−1

0

1

x
4
 (

d
e

g
)

Time (sec)

Roll angle x
4
(t)

0 50 100 150 200 250 300 350 400 450 500
−0.1

0

0.1

x
3
 (

d
e

g
/s

e
c
)

Time (sec)

Yaw rate x
3
(t)

Fig. 2. State variables.

REFERENCES

[1] D. Deb, G. Tao, J. Burkholder, “Adaptive Approximation Based
Compensation of Synthetic Jet Actuator Nonlinearities for Aircraft
Control,” Proceedings of 2007 AIAA Guidance, Navigation and Con-

trol Conference, Paper AIAA-2007-6523, Hilton Head, SC, 2007.
[2] D. Deb, G. Tao, J. O. Burkholder, D. R. Smith, “Adaptive Compen-

sation Control of Synthetic Jet Actuator Arrays for Airfoil Virtual
Shaping,” Journal of Aircraft, vol. 44, no. 2, pp. 616–626, March–
April 2007.

[3] D. Deb, G. Tao, J. O. Burkholder, D. R. Smith, “Adaptive Synthetic
Jet Actuator Compensation for A Nonlinear Aircraft Model at Low
Angles of Attack,” IEEE Transactions on Control Systems Technology,
vol. 16, no. 5, pp. 983–995, September 2008.

[4] D. Deb, G. Tao, J. O. Burkholder, D. R. Smith, “An Adaptive Inverse
Control Scheme for a Synthetic Jet Actuator Model,” Proceedings of

the 2005 American Control Conference, pp. 2646–2651, Portland, OR,
2005.

[5] W. Lan, B. M. Chen, Z. Ding, ”Adaptive estimation and rejection of
unknown sinusoidal disturbances through measurement feedback for
a class of non-minimum phase non-linear MIMO systems,” Interna-

tional Journal of Adaptive Control and Signal Processing, 20:77–97,
January 2006.

[6] S. Mondschein, G. Tao, J. Burkholder, ”Adaptive Actuator Nonlin-
earity Compensation and Disturbance Rejection Applied to Aircraft
Models with Synthetic Jet Actuators,” Proceedings of 2010 AIAA

Guidance, Navigation and Control Conference, Paper AIAA-2010-
8149, Toronto, Ontario Canada, August 2010.

[7] P. M. Patre, W. MacKunis, M. Johnson, W. E. Dixon, ”Composite
adaptive control for systems with additive disturbances,” Proceedings

of the 2009 American Control Conference, pp. 1928–1933, St. Louis,
MO, June 2009.

[8] S. Pigg, M. Bodson, “Adaptive rejection of sinusoidal disturbances
of known frequency acting on unknown systems” Proceedings of

the 2006 American Control Conference, pp. 4777-4781, Minneapolis,
MN, June 2006.

[9] G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons,
Hoboken, NJ, 2003.

[10] J. Zhou, M. J. Er, J. M. Zurada, ”Adaptive neural network control of
uncertain nonlinear systems with nonsmooth actuator nonlinearities,”
Neurocomputing vol. 70, pp. 1062–1070, 2007.

[11] J. Zhou, C. Wen, Y. Zhang, ”Adaptive output control of nonlinear
systems with uncertain dead-zone nonlinearity,” IEEE Transactions

on Automatic Control, vol. 51, no. 3, pp. 504–511, March 2006.

2956


