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Abstract — In this paper, we present an improved algebraic 
geometry solution for the identification of switched ARX 
models in the presence of measurement noise. The procedure 
utilizes the highest order of sub-models, which is estimated by 
using statistical analysis of effective singular values in matrix 
rank determination. After embedding sub-models into a large 
continuous-time model for omitting the necessity of switching 
sequence, an analytical solution for the two-mode system is 
obtained using matrix differential calculus. The improvements 
made to the previous method are verified by simulations on two 
linear systems. Also the effectiveness of the proposed method is 
shown by using a two mode experimental pilot plant. 

I. INTRODUCTION 
he switching Auto Regressive eXogenous (SARX) 
model, also known as the Jump ARX model, is used to 

describe the behavior of certain hybrid systems. In this 
modeling, the hybrid system has different continuous time 
operational modes (sub-systems), and a discrete-valued 
variable switches the operating mode under certain 
conditions. Therefore the hybrid system is defined by 
interaction of continuous-time and discrete-valued 
dynamics. The discrete switching variable depends on other 
variables such as the time or the input characteristics. 
Existence of both continuous dynamics and discrete 
switching increases the complexity of the system control and 
identification problem.  

In the literature, the hybrid system identification using 
SARX models can be categorized into four major groups:  
the clustering-based approach [1], the Bayesian approach 
[2], the bounded error approach [3], and the algebraic 
geometry approach [4]. The latter approach will be discussed 
in detail. Several reviews of these four different approaches 
can be seen in [5, 6].   

One of the main advantages of the algebraic approach is 
that only an upper bound for the order of the sub-models 
needs to be assumed. Then a procedure estimating the actual 
maximum order of the sub-models is given prior to 
identification. After the order estimation, all sub-models are 
embedded into a large continuous time model, called the 
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hybrid decoupling polynomial (HDP) by using geometric 
mapping methods. The next step is to estimate all parameters 
of this embedded model (finding coefficients of the HDP). 
Finally, a procedure is introduced to recover the parameters 
of each sub-model from the embedded mapped model. This 
method has been shown to work effectively in the absence of 
noise, but has some major drawbacks, such as difficulty in 
estimating the highest order of the sub-models in the 
presence of noise. In [4], an additional step is proposed to 
ensure that the method provides acceptable results even in 
the presence of noise. Another disadvantage of the AG 
algorithm is in recovering the parameter of each sub-model 
when the noise variance is high. In Vidal and his co-workers 
work [4, 7], where there is measurement noise, both the 
variance of the estimation error and the mean square error 
are high. .  

In this paper, for estimating the highest order of the sub-
models, a new method is introduced that depends on the 
signal to noise ratio (SNR) of the data rather than the system 
itself and is easy to tune. Furthermore, the utilization of total 
least square (TLS) regression in parameter estimation of the 
embedded model simplifies the original algorithm presented 
in [4]. After estimating the parameters for HDP, a new 
method is developed to find the parameters of each sub-
model from the identified embedded model.  

In this new method, the derivatives of the HDP with 
respect to the regressors are calculated, and the equations are 
formulated so they can be used in the framework of a linear 
regression problem. For a two-mode model a unique closed-
form solution to this equation is derived.  

This paper is organized as follows. Section II presents the 
modeling and system description, the problem statement and 
a new procedure for estimating the maximum order of the 
sub-models. Section III reports the proposed identification 
method of the SARX model as well as the new algorithm, 
while Section IV presents the simulation results, which 
illustrate the improvement made by the proposed algorithm. 
Section V concludes the paper. 

II. MODEL DESCRIPTIONS 

A. SARX Model 
The Switched ARX (SARX) model has the following 

representation; 
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where  tu   is the input, and  ty   is the output of the 
system. t  is the discrete state, also known as the mode of 
operation. In this paper, t  is considered as an unknown 
arbitrary sequence from the integer set, :{1, 2,  ,  }t n   , 
and n is the total number of modes. ωt is the additive white 
noise that has a Gaussian distribution with zero mean and δ2 
variance. Another representation of the SARX system is 
shown as follows: 
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where 1 2 1[1      ]   
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       . i is the discrete-valued 

state and i  is the noise. The identification problem is 
defined as the following.   

Problem 1.  Identification of the switched ARX model.  
Given the input/output data 0{ ,  }T

t t tu y   from a hybrid ARX 
system (1), identify the maximum order of the ARX model ( 

   max   maxt tn and n   ), the model parameters ( )
1{ ( )}n i

j ji    

, ( )
1{ ( )}n i

j ji    , ic  and the discrete-valued states{ }t . 
The number of modes can be estimated as in [4], however, 

in this paper n is assumed to be known.    

B. Embedded SARX Model 
The main difference between the SARX model and the 

ARX model is the discrete switching sequence (   t ), which 
significantly increases the complexity of the identification 
procedure. Since each data point belongs to a different 
mode, the linear regression cannot be used to estimate the 
parameters. This problem motivates us to eliminate the role 
of the switching sequence and to find a representation of (2) 
that is independent from i (modes of operation).The 
embedding of all sub-equations into one equation can be 
done, by taking the product of all sub-equations in (2). The 
outcome is the following polynomial equation: 
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where Pn is called the hybrid decoupling polynomial (HDP) 
[7]. Although taking the product is not the only way to 
eliminate the switching sequence, the use of the HDP leads 
to certain advantages in algebraic structure. The HDP is a 
multivariate polynomial of degree n with 

   max  max 1t tK n n      variables, which can be 

linearly written in terms of its coefficients as 
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where, 1, ,  n nkh   is the coefficient of the monomial 
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( ): nM KK
nv    is a Veronese map of degree n, which is 

defined as [9] 1: [ , , ] [ , , ] T T
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in the degree-lexicographic order, e.g. 
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 is the total number of independent 

monomials in (4).   
Equations (3) and (4) should hold for all the data points 

and therefore, the following equation becomes a linear ARX 
model with the parameter vector nH :  
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where T is the number of data points, and 
  ( ), nT M K

nL n n 
  is the matrix of the embedded and 

mapped input/output data via the Veronese variety. Note that 
in this linear model, the switching sequence is eliminated 
completely. 

C. Determination of highest order of sub-models 
The main advantage of the AG approach is that, the orders 

of sub-models are not needed for the identification process, 
only the highest order of sub-models (  max tn  and 

 max tn  ) need to be estimated. 
The following theorem developed in [7] estimates the 

maximum order of the ARX sub-models. 
Theorem 1. (Identifying the maximum orders)  
By using the input/output data from the SARX system and 
  ( 2), nT M i j

nL i j    ,  if T is sufficiently large and the input 
along with the switching sequences are adequately excited, 
then the maximum order of SARX models can be calculated 
by:   
 
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The results obtained by Theorem 1 are precise in the 
deterministic case, but when the data is noisy, the rank of the 
Ln matrix cannot be determined easily and uniquely.  More 
likely  ,nL i j  has full rank with the noisy data. Therefore, 
instead of using the rank of Ln, the effective rank should be 
considered.  In [7], the rank of a noisy matrix is obtained 
through the following minimization problem: 
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where σ is a singular value of L, and     is a weighting 
parameter used to penalize the choice of higher ranks. This 
method for the rank estimation method has some problems, 
especially in selecting the parameter . No rules for 
choosing   are provided in [4]. The authors only suggest a 
low limit for   without giving any justification and as a 
result the choice of   involves trial and error. It will be 
shown in section IV that the suggested low limit works only 
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for the suggested system used in [4]. For other systems 
presented in this paper the range for correct   is extremely 
narrow. Since this method is not reliable due to its trial and 
error nature, we are motivated to find an alternative method 
whose results are independent from the specific system. 

The above problem can be approached by alternative 
method for calculating the rank of a noisy matrix. In [11], a 
method is developed by using statistical analysis for finding 
the effective singular values in the matrix rank 
determination. The definition of the problem given is as 
follows. 

Problem 2. Finding an effective rank for a noisy matrix. 
For the equation B A E   in which all the matrices have 

the dimension of  m n , the problem is to find the effective 
rank of B (say r) so that the rth singular value of B is greater 
than the 2-norm of E.  

1 2  ,      || ||r r E      ,            
where each element in the matrix E is an i.i.d. random 
variables with a Gaussian distribution with zero mean and a 
variance of σ2 , and r  is rth singular value of the matrix B. 
In [11], several different bounds for ε are introduced. One of 
these bounds uses chi-square ( 2 ) distribution properties as 

follow: 2 2 2
2
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|| || | |
m

j ij
i

S e e


  , so that 
2

2
S
  has a 2  

distribution with m degrees of freedom. Following that, for a 
given level of significance α, a constant c can be found such 

that  2
2  Sprob c 


   . The bounds for ε are: 

     c nc     (8) 
 By using the right hand side of the above inequality, the 

effective rank of matrix B with respect to the noise matrix E 
can be found. Notice that c is determined from the table of 
the chi-square distribution with m degrees of freedom and 
the given level of significance. The choice of the level of 
significance depends on the SNR of the signal [11]. 

The rank of matrix  ,nL i j  used in Theorom 1 can then be 
found by using (8) with   ,      nn T m M K  .  As will be 
shown in the simulation section, the tuning factor c  does not 
depend on the system anymore if the above method is used. 
Also, it will be shown that this method is more robust to the 
noise than the method used by Ma and Vidal [4]. 

III. ESTIMATION OF MODEL PARAMETERS 
As described in Problem 1, the parameters for each sub-

model in (2) should be estimated. In the algebraic approach, 
two major steps are taken to reach this goal. In the first step, 
the coefficients (Hn) for each monomial in the HDP 
constructed in (4) are estimated. In the next step, the 
estimated coefficients are used to recover the parameters of 
the sub-models (bi). 

First, the estimations of the parameters (Hn) for the 
embedded linear model (5) is discussed. This estimation is a 
standard regression problem where both the input/output 
data are corrupted with noise. Therefore instead of using the 

Least Square method, the Total Least Square method [8] 
should be used. TLS solution is the minimization solution to 
the following cost function:  

 argmin ||    ||   subject to   .m n d
TLS X

mA B A X B BX A            
Where ∆ܣ and ∆ܤ are error in variables for the system and 
represent the noise in our problem set. In this paper singular 
value decomposition (SVD) method for deriving TLS 
solution is used. Also, the first column of Ln matrix is used 
as B matrix and the rest of Ln is used as A matrix.  

A. Parameter estimation of the SARX model (bi) – 
deterministic case 
The main difficulty of the algebraic geometry method is to 

recover the model parameters (bi) from the estimated 
coefficients of HDP (Hn). Vidal et al. [4] suggested a method 
for solving this problem by using the derivatives of HDP in 
the deterministic situation:  
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If x belongs to ith sub-model, then   0T
ib x  , and since the 

first element of each bi is equal to 1, each parameter set can 
be found uniquely through the following equation: 
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e DP x
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where jx is the data point belonging the thj  sub-model. In 
this method, at least one data-point is needed for each sub-
model. The procedure involves finding the closest data-point 
to sub-models in presence of noise. In [7], by using the first-
order approximation to smallest distance of data points and 
hyperplanes representing the sub-models the following 
lemma is presented: 

Lemma 1.  The closest point from the data set to one of 
the sub-spaces can be chosen by 

 
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Now that one point near one sub-model has been found, 
the parameters corresponding to that sub-space can be 
calculated by using (10). In order to find another point ( 1nx  ) 
in the remaining sub-spaces, (11) should be penalized for 
choosing a point from nth hyperplane: 
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1 { }

| |

| |
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n Tx x
n

P x
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b x 


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Repeating this procedure will result in finding all the sub-
model parameters. This procedure works well for data with 
small noise variances, but when the variance of the noise 
increases, this algorithm does not provide accurate results 
due to the sub-optimality of (12) and can result in a the local 
minimum. Even when the appropriate data point is found, 
equation (10) holds only in the absence of the noise.  

B. Parameter estimation of SARX model (bi) via Element-
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wise approach 
In order to overcome the problems addressed in the 

previous section, we propose an approach that avoids finding 
the data point for each sub-model. In fact, in this approach, 
all data points are utilized without being clustered and 
results in a closed-form solution for the two-mode models. 
We name this as element-wise approach, in the sense that the 
parameters of the original sub-models are solved one by one 
in an analytical form. The derivation is as follows. 

Consider the two-mode model to be 1 1

2 2

T
t

T
t

b x
b x



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


, and the 

corresponding HDP is:
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T T

n t t tp x b x b x  . 

The derivative with respect to xt is 
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x


  
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 n tDP x  is a vector since tx  is a vector. In order to fit the 
problem into a linear regression problem, one can consider 
each element of the above equation: 

     1 2 2 1 ,T T
i n t i t i tD P x b b x b b x   

in which the ith element of  n tDP x  is  i n tD P x , and the jth 
element of bi is bij. Now, starting with the first element, and 
since previously assumed ܾଵଵ = ܾଶଵ = 1, we have  

         1 2 1 1 2 1 2 .T T T T T
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Now, using all the data points in the above equation 

results in  
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which is a linear regression problem with regression vector 
L, and the parameter vector to be estimated is  1 2  .b b  Since 

 1 n tD P x  is noisy, and some elements of  tx  also have noise, 
the TLS method will be used for  parameter estimation and 
 1 2b b  can be estimated. Let  

  1
1 2  .    b b A   (14) 
Using (13) in (14) we have  
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Using the second element of the above equation, we 
obtain 
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As done previously, all the data points are used in the 

above equation and by using the SVD and TLS, we can 
estimate the following:  

    1 1 2
12 1 2 12 1 –        ,    b A b A b b A    (15) 

 The goal is to find b1. Based on the second element of each 
vector in (15), we have 
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This ends to 2 1 2
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1 0,
2

b A b A   which is a second-order 

equation with respect to 12b . The solution for ଵܾଶ results in 
1 1 2 2
2 2 2

12

( ) 2
.

2
A A A

b
 

   (16)  

Now that 12 b  is found, by using the third element of each 

vector in (15), we have     2 1 1
3 12 3 13 2 12 13 –   .A b A b A b b  

Then by solving for 13b , the above equation gives 
2 1
3 12 3

13 1
2 12

 ,
2

A b Ab
A b





and with the similar procedure the other 

parameters can be solved. 
Remark 1. From the above procedure, b1 is found, and b2 

can be found from (14). This method illustrates that for a 
two-mode model, the parameter estimates can be found 
without clustering any data point.  

Remark 2. The proposed method does not increase the 
complexity with respect to the previous method discussed in 
section IIIB. In the previous method, for a two-mode model, 
two minimization problems should be solved (equations (11, 
12)), while in our method, two TLS regression problems 
should be solved instead.  

Remark 3. Equation (16) has two solutions. Selecting each 
of them and continuing the procedure will lead to either one 
of the parameter sets. Since only one quadratic equation 
needs to be solved, this method results in a unique solution 
for the two-mode models. However, in the three-mode 
models, using the same approach and with some 
straightforward mathematical manipulations, one ends up 
solving K different polynomial equations with order three.  
Since one cannot determine which solution belongs to which 
parameter vector, the unique solution cannot be found. 
Therefore, further studies are needed for generalizing this 
new method.  

Remark 4. After finding the parameter estimates, one can 
cluster the data points via the following minimization. 
Clustering the data points will re-construct the switching 
sequence.  

2

1, ,
arg min ( )T

t i ti n
b x
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  (17) 

IV. SIMULATION RESULTS 

A. Estimating the highest order of sub-models 
The simulation performed in this sub-section is for 

demonstrating the effectiveness of the proposed method in 
estimating the maximum order of sub-models compared to 
the existing results in [4]. For this reason, two systems are 
considered. The first system was given in [4], and the second 
system is chosen to be more complex than the first one. 
These systems are: 
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t t t
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y y w t y
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1 2 1  1
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.5 .3 5 ( )               0
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.7 .4 2 3 ( )                  0
t t t t t

t t t t t

y y y u w t y
System

y y y u w t y
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   

      
      

 

In both systems, u has a uniform distribution in [-10 10], 
and the noise has a Gaussian distribution with zero mean. 
Ma and Vidal [4] suggested a low bound of κ suitable for the 
system. However, the simulations below show that the 
desired κ for these two systems fall into very narrow 
intervals implying difficulties in selecting a suitable κ.  

 
In each simulation run, the noise and input sequences are 

assigned randomly with random initialization in order to 
prevent any replication. For each system, an interval is 
defined for κ. That interval is divided into 1000 points, and 
for each κ, the system is simulated 20 times. By using 
Theorem 1 and the selected κ, the correctness of the order 
estimation is measured for each run, and the mean is 
recorded for each κ. This procedure is repeated for different 
noise variances.  

As Fig.1 reveals, the desired interval for κ in system 1 is 
6 510 ,1.2 10    ; this results challenges the claim made by 

the authors in [4]. Fig.2 reveals that the desired interval for κ 
in system 2 is 0.01,0.03   .  

After finding the correct range for κ in each system, the 
procedure proposed by Ma and Vidal [4] finds the order of 
the system well. Thus, for each system, a different interval 
for κ should be found. Notice that this identification method 
is not supervised; therefore it is difficult to apply this 
method in practice.   

On the other hand, the alternative method proposed in this 
article shows that for both systems, the same value for α will 
result in the correct estimation of the maximum order of sub-

systems in the same range of noise variances (Table 1 and 
2). Thus, the result of the proposed method does not depend 
on the system, but only depends on the signal to noise ratio 
of the system or the variance of the noise [11]. The variance 
of the noise should be estimated first for this method. 
Hereby, the variance of the noise or at least its bound is 
assumed to be known. 

B. Parameter estimation of SARX models 
Two 2-mode systems are used in the simulations. The first 

one, which is less complex, was introduced in the work of 
Vidal et al. This system has also been used in other works 
[12] and has become a benchmark problem.  
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The second system is already introduced as system 2 in 
section IV A. In these two-mode systems, the element-wise 
(EW) approach is applied and the results are compared to 
that obtained from the previous approach in [4].  

In both systems, u has uniform distribution in the range of 
[-10 10], and y(0) is -10.  t is Gaussian noise with zero 
mean and different variances. The noise variances used in 
the following simulations are 2  [.01 .04  0.1 0.25]  . 
Simulations have been run 100 times for each noise 
variance. In each run, the generated noise is initialized with 
a random number in order to prevent any replication. The 
error between the estimated parameter b̂  and the true 

parameters b  is computed as 
1, ,1, ,

max mi
ˆ

n .i j

j ni n
j

b
erro

b
b

r
  


  

The accuracy of the clustering is computed by using (17). 
Simulation results are presented in Fig. 3. This figure 
demonstrates that the overall performance of the new 
approach is better than the original method. The most 
important observation from Fig.3 is that the original 
approach fails to have satisfactory results when the system 
becomes more complex. In system 2, the difference between 
the performances of the new approaches and the original 
method is significant. Another important point is that the 
variance of the estimation error decreases dramatically for 
both systems 1 and 2 when applying the proposed method. 
This is due to the utilization of the TLS regression. 
Moreover, in the original  approach,  parameter  κ,  which 
varies for each system, should be assigned correctly in order 
to get the correct results. This requirement gives our new 

 
Fig.1 Finding the interval for κ for system 1 in different noise 
standard deviations 
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Fig.2 Finding the interval for κ for system 2 in different noise 
standard deviation 
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TABLE 1. CORRECT DETECTION OF SYSTEM ORDER FOR SYSTEM 1 

USING PROPOSED APPROACH WITH 5 10   

Noise Variance .0025 .01 .04 0.1 

Efficiency percentage of correct 
detection of system order 

94.35 95.2 95.4 95.5 

 
TABLE 2. CORRECT DETECTION OF SYSTEM ORDER FOR SYSTEM 2 

USING PROPOSED APPROACH WITH 5 10   

Noise Variance .0025 .01 .04 0.1 
Efficiency percentage of correct 
detection of system order 

98.9 99.85 100 100 
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approach a significant advantage over the original one. 

C. Experimental switched control system  
In this section an experimental setup introduced in [13] is 

used to show the effectiveness of the proposed method on 
the real system. The pilot plant is a tank system with two 
different level controllers. Two controllers have different 
transient responses in set-point tracking. One of them results 
in a fast response with high overshoot and the other one 
provides slower responses with much less overshoot. 
Switching between two controllers is performed following a 
random sequence. In this experimental setup the goal is to 
identify the closed-loop model for the two mode hybrid 
system. 

The orders of the sub-models are selected as 2, 2n n   , 
which is same as the ones used in [13]. By applying the 
proposed EW approach to the de-trended data collected from 
the plant, the following parameters are estimated for the two 
mode system: 

1 2 1 2

1 2 1 2
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The data set available from this experiment consist of 
1000 data points. The first 700 data points are used for 
training and estimating purposes and the rest are used for 
model validation. The sampling time is 3 second. The self-
validation and cross-validation of the model are shown in 
fig.4. As it can be seen in this figure the model estimated by 
the proposed method shows a good performance in both self-
validation and cross-validation. The results obtained by this 
method are significantly better than the results reported in 
[13], which are obtained by using expectation maximization 
(EM) algorithm. The MSE of the self-validation results is 

69.86 10 and the MSE for cross-validation results is 

51.04 10 . Unfortunately these MSEs for the illustrated 
algorithm in [13] are not reported. In overall this experiment 
shows the applicability of our proposed algorithm.  

V. CONCLUSION 
We have improved the algebraic geometry method for 

identifying the switched ARX models. The proposed method 
shows improved results when the data is corrupted with 
noise. The results in experimental example show that the 
developed approach has a great performance in the practical 
systems. The procedure of finding the closed-form solution 
for the parameters can be extended to the systems with 
higher number of modes in future work. 
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Fig.4 Self validation and cross-validation of the estimated model 
using the proposed method. The solid line is the actual output and 
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Fig. 3: Simulation results for EW (Solid line) and Original approach 
(Dashed Line) for both systems. System 1 is in the left and system 2 
in the right. 
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