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Abstract— A sequential quadratic programming method is
proposed for solving nonlinear optimal control problems sub-
ject to general path constraints including mixed state-control
and state-only constraints. The proposed algorithm formulates
linear quadratic optimal control subproblems with a solution
that provides a descent direction for a non-differentiable exact
penalty function. A set of conditions is given under which the
minimization of the merit function produces a sequence of
controls with limit points that satisfy the first order necessary
conditions of the optimal control problem. The subproblems
solved at each step of the algorithm inherit the structure of the
nonlinear optimal control problem and can be solved efficiently
via Riccati methods.

I. INTRODUCTION

Optimal control problems provide an important class of

tools for modeling and solving complex engineering prob-

lems. Numerous algorithms have been proposed for comput-

ing the solution of such problems. Indirect methods solve

Continuous-Time Optimal Control Problems (CT-OCP) by

considering the first-order necessary conditions and applying

Pontryagin’s Maximum Principle to reduce them into equiv-

alent multi-point boundary value problems [1]. On the other

hand, the strategy in direct methods is to solve the CT-OCP

through an approximating Nonlinear Programming (NLP)

problem and relate the optimality conditions of the CT-OCP

to the Karush-Kuhn-Tucker (KKT) optimality conditions of

the NLP [2].

In practice, direct methods are widely used for solving

numerically OCP’s because of their relative ease of for-

mulation and desirable stability properties. An overview of

direct methods is provided in [3] where such approaches

are classified as simultaneous or sequential. Simultaneous

methods tackle the NLP in the space of state and control

variables; most notable are direct collocation methods [4]–

[6] and direct multiple shooting methods [7]–[9]. Sequential

methods (or Direct Single Shooting Methods) tackle the

NLP in the space of control variables after first eliminating

the state variables by simulating the dynamical equations

[10], [11]. Thus sequential methods have fewer variables

than simultaneous methods and also have the additional

advantage that intermediate iterates are dynamically feasible,

a property that is important in real-time applications such

as Model Predictive Control (MPC). Unlike most sequential

methods, simultaneous methods lead to sparse NLP’s that
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can be exploited to speed up execution; examples are the

use of sparse solvers [4], condensing [8], [12], and band-

structure exploiting [13]. Popular methods for solving the

NLP problems (either in sequential or simultaneous methods)

are Sequential Quadratic Programming (SQP) and Interior

Point (IP) methods.

In this paper, we propose a novel SQP approach for

computing the solution to Discrete-Time Nonlinear Optimal

Control Problems (DT-OCP) subject to general nonlinear

path constraints on the states and controls. At each iteration,

a constrained Linear-Quadratic Optimal Control (LQ-OCP)

subproblem is obtained by taking a quadratic approximation

of the cost function and linearizing the dynamical equa-

tions and state/control constraints about the current solution

candidate. These LQ-OCP’s can be solved efficiently by

exploiting their structure with the algorithm of [14], [15]

or with the interior point method of [13]. We show that the

solution to these subproblems are descent directions for a

non-differentiable merit function in the control variables and

provide conditions under which convergence to a solution

of the KKT conditions of the NL-OCP is achieved. The

proposed algorithm extends the algorithm of [16] where

no path constraints are allowed and thus we refer to it

as the Constrained Sequential Linear Quadratic (CSLQ)

algorithm. Our algorithm can be categorized as a single

shooting SQP method but with the key characteristic that

the QP subproblem is solved via a constrained LQ-OCP

problem that preserves the inherit structure of the NL-OCP.

In this manner, the CSLQ algorithm shares the advantages

of sequential methods such dynamic feasibility while enjoys

the computational efficiency of simultaneous methods due

to sparsity. Indeed, [11] showed before that single shooting

methods can in fact use LQ-OCP formulations for solving the

SQP subproblems and exploit problem structure. However,

we differ from [11] in several respects. In particular, our

formulation allows for general nonlinear path constraints and

nonconvex cost functions and there is no need to modify the

solution of the LQ-OCP subproblem as in [11] to maintain

feasibility. Our choice for the Hessian approximation is

that of a Constrained Gauss-Newton method [17] but we

introduce additional linear terms in the cost that prove to be

instrumental in connecting the optimality conditions of each

LQ-OCP subproblem to the those of the NL-OCP.

The remainder of the paper is organized as follows.

Section II defines the problem treated, Section III describes

the proposed CSLQ algorithm and Section IV presents a

numerical example illustrating the results.
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II. PROBLEM FORMULATION AND MAIN RESULTS

The nonlinear optimal control problems (NL-OCP) con-

sidered in this work are of the form

min
u(n), x(n)

J = ψ(x(N)) +
N−1∑

n=0

L(x(n), u(n), n) (1a)

subject to x(n+ 1) = f(x(n), u(n), n); x(0) = x0.
(1b)

φ(x(m), u(m),m) ≤ 0 m ∈ Cxu (1c)

where J in (1a) is the performance index of the NL-OCP

and x(n) ∈ R
nx and u(n) ∈ R

nu are the system state and

control input vectors at time n, respectively. The evolution

of the state sequence is governed by the first order ordinary

difference equation in (1b) and the range of values that

can be assumed by both the control and state vectors are

restricted by the path constraints as defined in (1c), where

Cxu ⊂ {0, 1, . . . , N − 1} is the subset of indices at which

the previous constraints are imposed. Moreover, the path

constraint vector has dimension φ(x(n), u(n), n) ∈ R
pn

where pn is a positive integer. We assume that f , ψ, and

φ are continuously differentiable and L twice continuously

differentiable with respect to their arguments.

A. Formulation of the Constrained Sequential Linear

Quadratic (CSLQ) Algorithm

In the following, we describe the proposed CLSQ al-

gorithm for solving the nonlinear optimal control problem

(NL-OCP) in (1). In this algorithm, a sequential quadratic

programming (SQP) approach is used where the generally

difficult NL-OCP problem is replaced with a sequence of

more manageable linear quadratic optimal control subprob-

lems subject to linear state/control constraints. The solu-

tion to each of these subproblems then provides a search

direction that can be used to step towards the optimal

solution of (NL-OCP). More specifically, given the current

control Uk =
[
uT (0) . . . uT (N − 1)

]T
and corresponding

state Xk =
[
xT (1) . . . xT (N)

]T
trajectory sequences at

step k, we consider control and state variations Ūk =[
ūT (0) . . . ūT (N − 1)

]T
and X̄k =

[
x̄T (1) . . . x̄T (N)

]T
, re-

spectively. We then formulate the following Linear Quadratic

Optimal Control Problem (LQ-OCP) by taking a second

order approximation of the performance index (1a) and

linearizing the dynamic equations (1b) and constraints (1c)

along the current solution with respect to the variations Ūk

and X̄k (dependence on k is omitted for notational clarity):

min
x̄(n),ū(n),ξ(n)

J̄ =
1

2
x̄(N)TQ(N)x̄(N) + x̄(N)T x̄o(N)+

+
1

2

N−1∑

n=0

[
x̄T (n) ūT (n)

] [ Q(n) K(n)
KT (n) R(n)

] [
x̄(n)
ū(n)

]

+
N−1∑

n=0

(
x̄T (n)x̄o(n) + ūT (n)ūo(n)

)
+ ρξ(0) (2a)

subject to

x̄(n+ 1) = A(n)x̄(n) +B(n)ū(n); x̄(0) = 0 (2b)

ξ(n+ 1) = ξ(n); (2c)

Case (a) : ξ(0) = 0 or (2d)

Case (b) : ξ(0) ≥ 0 is unspecified (2e)

C(m)x̄(m) +D(m)ū(m) + r(m) ≤ epm
ξ(m), (2f)

m ∈ Cxu

where epm
is a vector of ones of dimension pm and we

define: 



Q(N) = ψxx(x(N))

xo(N) = ψT
x (x(N))

Q(n) = Lxx(x(n), u(n)) + ǫ(n)I

R(n) = Luu(x(n), u(n)) + ǫ(n)I

K(n) = Lxu(x(n), u(n))

xo(n) = LT
x (x(n), u(n)) (2g)

uo(n) = LT
u (x(n), u(n))

A(n) = fx(x(n), u(n))

B(n) = fu(x(n), u(n))

C(m) = φx(x(m), u(m))

D(m) = φu(x(m), u(m))

r(m) = φ(x(m), u(m))

The subscripts on ψ, L, f , φ, and g denote the partials with

respect to the state and control variables. ρ > 0 is a constant

selected as discussed later in the paper. The auxiliary scalar

state ξ is introduced to ensure the feasibility of (LQ-OCP).

Indeed, two cases are included in the (LQ-OCP) formulation;

first the solution of (LQ-OCP) is attempted with ξ(0) = 0—

Case (a). However, if this problem is infeasible because

of the constraints (2f), (LQ-LCP) is solved with leaving

ξ(0) ≥ 0 unspecified, as an optimization variable—Case (b),

guaranteeing the feasibility of the optimal control problem.

Furthermore, we select ǫ(n) > 0 sufficiently big such that

the weighting matrices in the cost function (2a) satisfy

R(n) = RT (n) ≥ ǫ0I > 0, (3)

Q(n)−K(n)R−1(n)KT (n) ≥ 0 n = 0, . . . , N − 1
(4)

Q(n) = QT (n) ≥ 0 n = 1, . . . , N (5)

for a fixed ǫ0 > 0. The linear quadratic optimal control

problem (2) is equivalent to a quadratic program (QP) and

as such it can be solved using a general-purpose QP solver;

however for problems with a long time horizon, this approach

may prove computationally prohibitive due to the large-scale

of the problem. Efficient algorithms to solve (2) that take

advantage of the underlying structure of the problem have

been reported in [15], [14], and [13].

Next, we consider the non-differentiable penalty function:

M(U) = J(X,U) + ρ V (X,U), X = F (U ;x0) (6)

where X = F (U ;x0) denotes that X is the state trajectory

obtained from (1b) by applying the input U and with x(0) =
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x0. J(X,U) is defined in (1a) and V (X,U), representing the

maximum constraint violation, is defined as

V (X,U) = max
i,n

{
[φi(x(n), u(n), n)]

+
}

(7)

where [φi(x(n), u(n), n)]
+ ≡ max{0, φi(x(n), u(n), n)}

with φi(x(n), u(n), n) denoting the ith component of φ. The

CSLQ algorithm is more precisely stated next.

Step 0: Set k = 0, let Uk =
[
uT (0) . . . uT (N − 1)

]T
be

an arbitrary control sequence and select a penalty parameter

ρk > 0.

Step 1: Compute the state trajectory Xk =[
xT (1) . . . xT (N)

]T
corresponding to Uk by recursively

computing the nonlinear dynamic equations in (1b).

Step 2: Formulate an (LQ-OCP) problem (2) by taking

ρ = ρk and the matrices in (2a) to (2f) as in (2g) and

evaluated about the current solution (Xk, Uk). Then,

solve Case (a) of (LQ-OCP) (i.e. by setting ξ(0) = 0) and

if feasible, let Ūk = Ū be the solution of the (LQ-OCP),

cvk = 0, and ρk+1 = max{ρk,
∑N

n=0 e
T
pn
µ̄(n) + ǫ0}. Else,

solve Case (b) of (LQ-OCP) and take Ūk = Ū , cvk = ξ0,

and ρk+1 = ρk. Here, cvk is the maximum linearized

constraint violation at step k. If ‖Ūk‖ < tol and cvk <
tol, where tol is a termination tolerance, then EXIT with

U∗ = Uk, X∗ = Xk, Λ∗ =
[
λ̄T (0) . . . λ̄T (N)

]
, and

µ∗ =
[
µ̄T (0) . . . µ̄T (N)

]
being control, state, and Lagrange

multiplier sequences that approximately satisfy the FONC

optimality conditions for the (NL-OCP). Else if k > kmax

or ρk > ρmax, then EXIT since the maximum number of

iterations has been exceeded or the (NL-OCP) appears to be

infeasible. Otherwise, proceed with Step 3.

Step 3: Let Ūk from the previous step be a search direction

and compute Uk+1 = Uk +αŪk where the step length αk ∈
(0, 1] is obtained by the Armijo rule, such as for the penalty

function (6), it holds

M(Uk)−M(Uk + αkŪk) ≥ σαkǫ0‖Ūk‖
2 (8)

and αk = βml for some scalars 0 < β < 1, 0 < σ < 1
2 ,

and where ml is the first nonnegative integer for which (8)

is satisfied. (We remark that (23) below guarantees that αk

satisfying (8) can be found in a finite number of iterations

by testing successively l = 0, 1, . . .) Continue with Step 1.

¥

B. Properties of the CSLQ Algorithm

In the remainder of the paper, we elaborate on the prop-

erties of the proposed procedure.

Lemma 2.1: First-Order Necessary Conditions for (LQ-

OCP)

Consider the linear quadratic optimal control problem de-

fined by (2) and control and state trajectory sequences Ū =[
ūT (0) . . . ūT (N − 1)

]T
and X̄ =

[
x̄T (1) . . . x̄T (N)

]T
respectively. Then, for Ū and X̄ to be a global optimal

solution of the (2), it is necessary that a co-state vector

sequence Λ̄ =
[
λ̄T (0) . . . λ̄T (N)

]T
and a multiplier vector

sequence µ̄ =
[
µ̄T (0) . . . µ̄T (N − 1)

]T
exist (with λ̄(n) ∈

R
Nx , µ̄(n) ∈ R

pn ), such that for n = 0, 1, . . . , N − 1 the

following conditions hold:

x̄(n+ 1) = A(n)x̄(n) +B(n)ū(n) (9)

ξ(n+ 1) = ξ(n) = ξ0 (10)

λ̄(n) = Q(n)x̄(n) +AT (n)λ̄(n+ 1)+

+ CT (n)µ̄(n) +K(n)ū(n) + x̄o(n) (11)

λξ(n) = λξ(n+ 1)− eTpn
µ̄(n) + δ(n)(ρ− η) (12)

0 = R(n)ū(n) +BT (n)λ̄(n+ 1) +DT (n)µ̄(n)

+KT (n)x̄(n) + ūo(n) (13)

and furthermore

x̄(0) = 0 (14)

Case (a) (ξ(0) = 0) : ξ0 = 0 or (15)

Case (b) (ξ(0) is unspecified) :

λξ(0) = 0, ξ0, η ≥ 0, η · ξ0 = 0 (16)

λ̄(N) = Q(N)x̄(N) + CT (N)µ̄(N) + x̄o(N) (17)

λξ(N) = −eTpN
µ̄(N) (18)

C(m)x̄(m) +D(m)ū(m) + r(m) ≤ epm
ξ0, m ∈ Cxu

(19)

µ̄T (m) [C(m)x̄(m) +D(m)ū(m) + r(m)− epm
ξ0] = 0,

m ∈ Cxu (20)

µ̄(m) ≥ 0, m ∈ Cxu and µ(m) = 0, m /∈ Cxu. (21)

¥

We remark that η is the lagrange multiplier for the

constraint ξ0 ≥ 0 in Case (b) and η can be taken to be

arbitrary in Case (a); also δ(n) is defined by δ(0) = 1, and

δ(n) = 0, n 6= 0.

The following result shows that the solution to the linear

quadratic optimal control problem (2) is a descent direction

for (6).

Theorem 2.2: Given the discrete-time nonlinear optimal

control problem (1), consider a control sequence U and

corresponding state trajectory X . Next, solve the constrained

linear quadratic problem (2) obtained by taking a quadratic

approximation of the cost index (1a) and a linear approxi-

mation of the constraints (1b)-(1c) about U and X . Then, if

the solution Ū to (2) is not zero and if Case (a) is solved it

holds

ρ ≥
N∑

n=0

pn∑

i=1

µ̄i(n), (22)

it follows that Ū satisfies

M(U + αŪ) ≤ M(U)− αǫ0

N−1∑

n=0

ūT (n)ū(n) + o(α). (23)

Therefore, Ū is a descent direction for the non-differentiable

penalty function

M(U) = J(X,U) + ρ V (X,U)

defined in (6).
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Note that condition (22) is not required in Case (b); in

Case (a), ξ(0) = 0 and the cost function of (2) does not

depend on ρ.

Proof: Let Ũ = U + αŪ , X̃ = X + αX̄ , with α > 0.

Then, the solution of (1b) corresponding to Ũ is X̃ + o(α)
and

M(Ũ) = J(X̃, Ũ) + ρ V (X̃, Ũ) + o(α). (24)

Next, notice that

J(X̃, Ũ) = J(X,U) + α∆J(X,U) + o(α) (25)

where

∆J(X,U)= x̄T (N)x̄o(N)+
N−1∑

n=0

x̄T (n)x̄o(n)+ūT (n)ūo(n)

(26)

using the definitions in (2g). Then, multiplying the ter-

minal co-state condition (17) by x̄T (N) and solving for

x̄T (N)x̄o(N) results in

x̄T (N)x̄o(N) = x̄T (N)λ̄(N)− x̄T (N)Q(N)x̄(N)+

+ rT (N)µ̄(N)− ξ0e
T
pN

µ̄(N) (27)

(using (20) for m = N and noting that D(N) = 0.)

Now, to express x̄T (n)x̄o(n) + ūT (n)ūo(n) first multiply

the costate equation (11) and the control equation (13) by

x̄T (n) and ūT (n), respectively. Then, summing these results

and using the first-order necessary conditions (9) and (20)

yields

x̄T (n)λ̄(n) = x̄T (n+ 1)λ̄(n+ 1) + x̄T (n)x̄o(n)+

+ ūT (n)ūo(n) + x̄T (n)Q(n)x̄(n)+

+ 2x̄T (n)K(n)ū(n) + ūT (n)R(n)ū(n)

− rT (n)µ̄(n) + ξ0e
T
pn
µ̄(n). (28)

Solving for x̄T (n)x̄o(n) + ūT (n)ūo(n) and summing the

above equation from n = 0 to n = N − 1 and noting from

(14) that x̄0 = 0 gives:

N−1∑

n=0

x̄T (n)x̄o(n) + ūT (n)ūo(n) =

−
N−1∑

n=0

[
x̄T (n)Q(n)x̄(n) + 2x̄T (n)K(n)ū(n)+

+ūT (n)R(n)ū(n)
]
+

+
N−1∑

n=0

rT (n)µ̄(n)− x̄T (N)λ̄(N)− ξ0

N−1∑

n=0

eTpn
µ̄(n).

(29)

Then, substituting (27) and (29) in (26) gives:

∆J =− x̄T (N)Q(N)x̄(N)−
N−1∑

n=0

[
x̄T (n)Q(n)x̄(n)+

+2x̄T (n)K(n)ū(n) + ūT (n)R(n)ū(n)
]
+

+
N∑

n=0

rT (n)µ̄(n)− ξ0

N∑

n=1

eTpn
µ̄(n). (30)

We next seek to bound

V (X̃, Ũ) = V (X + αX̄, U + αŪ) = max
i,n

{θi(n)} (31)

where we defined for brevity

θi(n) ≡ [φi(x(n) + αx̄(n), u(n) + αū(n), n)]+.(32)

Then, it readily follows

θi(n) ≤ [ri(n)(1− α) + αξ0 + o(α)]+ (33)

using definitions (2g) and with ri(n) denoting the ith com-

ponent of r(n). Since ξ0 ≥ 0, we readily obtain

[ri(n)(1−α)+αξ0+o(α)]+ =





o(α), ri(n) < 0
αξ0 + o(α), ri(n) = 0
(1− α)ri(n)+
+αξ0 + o(α), ri(n) > 0

(34)

and further

θi(n) ≤ (1− α)[ri(n)]
+ + αξ0 + o(α). (35)

Now substitute (35) in (31) to obtain

V (X̃, Ũ) ≤ (1− α)max
i,n

{[ri(n)]
+}+ αξ0 + o(α)

≤ V (X,U)− αmax
i,n

{[ri(n)]
+}+ αξ0 + o(α).

(36)

Then, combining (25), (30), and (36) in (24), we find

M(Ũ) ≤ M(U)− αx̄T (N)Q(N)x̄(N)−

− α
N−1∑

n=0

[
x̄T (n)Q(n)x̄(n) + 2x̄T (n)K(n)ū(n)+

+ūT (n)R(n)ū(n)
]
+

+ α

(
N∑

n=0

rT (n)µ̄(n)− ξ0

N∑

n=0

eTpn
µ̄(n)−

−ρmax
i,n

[ri(n)]
+ + ρξ0

)
+ o(α). (37)

From (21) and (37), we obtain

M(Ũ) ≤ M(U)− αx̄T (N)Q(N)x̄(N)−

− α
N−1∑

n=0

[
x̄T (n)Q(n)x̄(n) + 2x̄T (n)K(n)ū(n)+

+ūT (n)R(n)ū(n)
]
−

− α

(
ρ−

N∑

n=0

pn∑

i=1

µ̄i(n)

)
max
i,n

{[ri(n)]
+}−

− αξ0

(
N∑

n=0

eTpn
µ̄(n)− ρ

)
+ o(α). (38)

Consider first Case (a). Since in this case ξ0 = 0 and by

assumption ρ ≥
∑N

n=0

∑pn

i=1 µ̄i(n), it follows

M(Ũ) ≤ M(U)− αǫ0

N−1∑

n=0

ūT (n)ū(n) + o(α)
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that is, (23) is satisfied. Next consider Case (b). In this case

(12) and (18) yield

N∑

n=0

pn∑

i=1

µ̄i(n) =
N∑

n=0

eTpn
µ̄(n) = −λξ(0) + ρ− η = ρ− η

(39)

since from (16) λξ(0) = 0. Furthermore, (39) gives

ρ−
N∑

n=0

pn∑

i=1

µ̄i(n) = η ≥ 0 and

ξ0

(
N∑

n=0

eTpn
µ̄(n)− ρ

)
= −ηξ0 = 0

where we used again (16). Then from the above equations,

(23) follows again. Thus under the assumptions of the

theorem and for α sufficiently small, M(U +αŪ) < M(U)
and Ū is a descent direction for the merit function (6).

The following result gives conditions under which the

CSLQ algorithm produces a sequence of controls that satisfy

the FONC for the nonlinear optimal control problem (1). Its

proof is omitted due to space limitations.

Theorem 2.3: Let Uk be the sequence of controls

generated by the CSLQ algorithm. Also assume that there

exists k̄ such that ρk = ρ̄ for all k ≥ k̄ and that the

(LQ-OCP) Case (a) (ξ(0) = 0) subproblems solved during

Step 2 are feasible for an infinite set of times K. Then

every limit point U∗ of Uk, k ∈ K is a stationary point of

(NL-OCP), in the sense that there exist multiplier sequences

Λ∗, and µ∗ such that along with U∗ and the corresponding

state trajectory X∗ obtained from (1b) satisfy the first order

necessary optimality conditions for the nonlinear optimal

control problem of (1). ¥

We remark that if the nonlinear optimal control prob-

lem is feasible, the CSLQ algorithm typically resorts in

solving Case (a) (LQ-OCP) subproblems after k is large

enough, therefore, the conditions of Theorem 2.3 are sat-

isfied and convergence is achieved. Theorem 2.3 shows that

the algorithm converges to a stationary point of the merit

function. It can be shown that the stationary points of the

NL-OCP are stationary points of the merit function for

ρ >
∑N

n=0

∑pn

i=1 µ
∗

i (n) where the µ∗

i (n) are the lagrange

multipliers of the NL-OCP. The converse is not true unless

additional assumptions on the constraints such as convexity

are invoked [18]; thus if either Case (b) subproblems are

solved after some k > K or ρk → ∞, convergence to a

stationary point of the merit function but not of the NL-

OCP occurs and the algorithm may be restarted. However, the

latter case typically signifies that the NL-OCP is infeasible

or does not have lagrange multipliers.

III. NUMERICAL EXAMPLE: ACROBOT

Consider the underactuated two-link robot depicted in

Fig. 1 with a single actuator positioned on the second joint.

This dynamical system is commonly known in the literature

as the ‘acrobot’ for its resemblance to a gymnast on parallel

bars. In this example, we will determine the necessary control

L1
θ1

θ2

m2,I2

m1,I1

u

g

L2

Fig. 1: Acrobot geometry
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Fig. 2: Optimal control for the Acrobot swing-up task

effort to achieve a swing-up task consisting of completely

inverting the starting position of the acrobot. To accomplish

this maneuver, we must actuate the second link just as a

gymnast would swing his legs to achieve this position. The

problem definition is borrowed from [19]. This swing-up task

can be formulated as an optimal control as:

min
u(t),θ(t),θ̇(t)

J =

∫ tf

0

u2(t)dt. (40)

subject to M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Bu (41)

[θT (0) θ̇T (0)] = [0 0 0 0] (42)

[θT (tf ) θ̇T (tf )] = [π 0 0 0] (43)

− 10 ≤ u(t) ≤ 10 (44)

with

M(θ) =

[
I2 + d+ 2a cos(θ2) I2 + a cos(θ2)

I2 + a cos(θ2) I2

]
,

C(θ, θ̇) =

[
−2a sin(θ2)θ̇2 −a sin(θ2)θ̇2
a sin(θ2)θ̇1 0

]
, BT =[0 1]

G(θ) =

[
b sin(θ1) + c sin(θ1 + θ2)

c sin(θ1 + θ2)

]
(45)

where a = m2L1L2/2, b = L1(m1 + 2m2)g/2, c =
m2gL2, and d = I1 + m2L

2
1 with u(t) representing the

torque applied at the second joint and θ(t) = [θ1(t) θ2(t)]
T

and θ̇(t) = [θ̇1(t) θ̇2(t)]
T specifying the angle and angu-

lar velocity of each of the two links respectively. More
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Fig. 3: Optimal Acrobot poses for swing-up task.

specifically, the swing-up task consists of starting from

a hanging static position
(
[θT (0) θ̇T (0)] = 0

)
at t =

0 sec, and reaching an inverted position with zero velocity(
[θT (tf ) θ̇

T (tf )] = [π 0 0 0]
)

within tf = 4 sec. Addition-

ally, we required that the task be performed with minimum

actuation effort as expressed by the performance index (40)

and without exceeding the actuation bounds stated in (44).We

approximate the continuous-time problem in discrete-time as

follows. The time horizon is partitioned into N = 150 equal

subintervals of length Ts and the control u(t) is assumed

to be piecewise constant over each of the subintervals;

that is u(t) = u(nTs) ≡ u(n) for tn = nTs ≤ t <
tn+1 = (n + 1)Ts, n = 0, . . . , N − 1. Then, a 4th-order

Runge-Kutta integration rule is used to discretize the system

dynamics and cost function. The continuous-time control

constraints where enforced at the discretization points as

−10 ≤ u(n) ≤ 10 n = 0, . . . , N − 1. Using the physical

parameters: m1 = 1, m2 = 1, L1 = 1, L2 = 2, I1 = 1/3,

I2 = 1, and g = 9.81, the proposed algorithm terminated

with a cost JD = 51.4 and with a constraint violation∑∣∣∣[θT (tf ) θ̇T (tf )]− [π 0 0 0]
∣∣∣ = 0.001. The optimal con-

trol is plotted in Fig. 2, while some acrobot poses of the

optimal swing-up motion are shown in Fig. 3.
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