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Abstract— A Model Predictive Control (MPC) approach is
developed for spacecraft rendezvous and docking to a rotat-
ing/tumbling platform and for debris avoidance maneuvers.
With this approach, the constraints on thrust, approach velocity
and spacecraft positioning within the Line-of-Sight cone from
the docking port are systematically treated. The trajectories are
simulated and time-to-dock and fuel consumption are evaluated
as cost function parameters are varied. Debris avoidance
maneuvers are considered, with the debris in the spacecraft
rendezvous path.

I. INTRODUCTION

Rendezvous and proximity maneuvers are important parts

of spacecraft missions, which may be necessary to recover a

tumbling/out-of-control satellite, that may exhibit complicate

motion, or to avoid debris appearing on the rendezvous

path. The requirements in rendezvous and docking problems

lead to control problems with imposed pointwise-in-time

and terminal constraints on both state and control variables.

For instance, the approaching spacecraft must maintain its

position within a Line-of-Sight (LOS) cone from the docking

port on the target platform. In addition, terminal velocity

of the spacecraft should match the velocity of the docking

port to ensure soft-docking. Collision with debris on the

spacecraft path must be avoided, and the spacecraft fuel

consumption must be minimized during the maneuvers.

The above requirements and constraints can be system-

atically treated using a Model Predictive Control (MPC)

framework. As an example, we consider an application of

this framework to spacecraft docking and debris avoidance

maneuvers in orbital plane. The target platform is disk-

shaped, and is assumed to rotate with constant angular

velocity around its center of mass.

The rendezvous and docking problems have been studied

in the literature, see, e.g., [1], [2] and the references therein.

Prior work on applying MPC to spacecraft rendezvous and

docking includes [4], where auxiliary integer variables are

introduced to represent the state of the mission at a given

time (specifically whether a prescribed “box” around the

docking port is reached or yet to be reached) and the problem

is treated as a mixed integer programming problem where the

objective function is the weighted sum of fuel consumption

and maneuver time. Recent publications on the application

of MPC to these problems also include [6], [7].
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Fig. 1. Spacecraft and a target platform.

In this paper, we treat the problem using a computationally

more tractable linear-quadratic MPC formulation, where the

cost penalizes the control effort and distance to the docking

port. In the formulation proposed here, all the variables

are real-valued so that the resulting optimization problem

is a quadratic program, where complexity is polynomial as

opposed to exponential complexity of integer programs. We

also impose LOS constraints and demonstrate that the soft-

docking constraints can be enforced by replacing them by

appropriately defined, convex, pointwise-in-time constraints.

Compared to our previous work [3], where a non-rotating

platform is considered, here we demonstrate that prediction

of the platform and docking port motion, in the case of a

rotating platform, is beneficial in terms of being able to

satisfactorily complete a larger variety of maneuvers and

in terms of reducing fuel consumption. Furthermore, by

introducing virtual rotating platforms around debris, debris

avoidance maneuvers can be performed.

In the rest of the paper, in Section II we recall the

dynamical model used for describing the motion of the

spacecraft relative to the platform, and in Section III we

discuss the MPC control design for the case of a rotating

platform. In Section IV we present the results in several

simulated maneuvers. The proposed approach is applied to

the debris avoidance in Section V and the conclusions are

summarized in Section VI.

II. PROBLEM FORMULATION

We consider an autonomous rendezvous between a space-

craft and a target platform. The platform has disk shape of

radius rp, and rotates at a constant angular velocity ωp (see

Fig. 1). The target platform is in a circular orbit around the

Earth, with orbit radius R0, and the spacecraft motion is

confined to the orbital plane.
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The linearized continuous-time dynamical model for the

rendezvous problem has the form [8]

Ẋ = AX + BU, (1)

where X = (δx δy δẋ δẏ)T , U = (ux uy)T , and

A =









0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0









, B =









0 0
0 0
1 0
0 1









.

Here, δx and δy are components of the position of the

spacecraft relative to the center of the platform, ux and uy

are the acceleration components of the spacecraft induced by

the thrusters in the x and y directions, respectively, and n is

the target platform orbital rate, n =
√

µ/R3
0, where µ is the

gravitational constant. The disturbances due to air drag, solar

pressure and non-ideal gravity perturbations are neglected in

the model formulation as the effects of these disturbances

during the short time period of the maneuver can be easily

compensated by the MPC. In the case of impulsive thrusters,

we assume that the commanded thrust force magnitude and

direction are realized by appropriate thruster on-off times [2].

The spacecraft must approach the port while remaining

within a Line-of-Sight (LOS) cone from the port. A soft-

docking constraint is imposed so that the velocity of the

spacecraft once it reaches the port is close to the velocity

of the platform. Since the platform has convex shape, by

remaining within a Line-of-Sight cone and by matching the

velocity of the port, the spacecraft is guaranteed not to collide

with the platform. A debris avoidance constraints will also

be introduced and treated later in the paper.

III. MODEL PREDICTIVE CONTROL DESIGN

We now proceed with deriving a discrete-time model,

approximating the constraints, and designing the MPC con-

troller. By sampling (1) with period Ts, a discrete-time model

for the spacecraft motion relative to the platform is obtained

X(k + 1) = AdX(k) + BdU(k) (2)

where X(k) and U(k) are state and input vectors at the

sampling instant k. In order to define the cost function for the

MPC controller, we compute first the value function of the

infinite horizon unconstrained LQ problem for stabilizing the

relative position and velocity of the spacecraft to the origin,

min
{U(k)}∞

k=0

J =
∞
∑

k=0

X(k)
T
QX(k) + U(k)

T
RU(k) (3)

where, Q, R, are positive definite diagonal matrices. Let P
be the solution of the Riccati equation resulting in the value

function V(X(0)) = X(0)T PX(0) for the LQ problem. We

use P in the terminal cost of the MPC problem as a stability

enforcing mechanism.

For the formulation and treatment of the MPC problem

where the platform is rotating, additional state variables rx,

ry , σx and σy are introduced, where rx(k) and ry(k) identify

the coordinates of the docking port at the time instant k and

σx(k) and σy(k) are relative coordinates of the spacecraft

with respect to the docking port at the time instant k. Due

to platform rotation,

rx(k + 1) = cos(ωpTs)rx(k) − sin(ωpTs)ry(k),

ry(k + 1) = sin(ωpTs)rx(k) + cos(ωpTs)ry(k),
(4)

σx(k + 1) = δx(k) − rx(k),

σy(k + 1) = δy(k) − ry(k).
(5)

From (2), (4), (5), by defining the augmented state vector as

X̄ =
(

δx δy δẋ δẏ rx ry σx σy

)T
,

the model can be written in the form,

X̄(k + 1) = ĀX̄(k) + B̄Ū(k) (6)

with appropriately defined Ā and B̄, Ū = [UT s]T , where

s is an auxiliary variable used in the definition of the

constraints, as explained next.

Due to physical limits of the trusters we need to enforce

at any time instant k the control constraints

Umin ≤ U(k) ≤ Umax. (7)

Next, we define the system constraints based on the

specifications of soft-docking and LOS constraints. The soft-

docking constraint ensures that the velocity of the spacecraft,

when approaching the docking port, converges to the docking

port velocity. To handle this terminal constraint, we first

replace it by a related pointwise-in-time constraint, requiring

that the 1-norm of the spacecraft velocity relative to the

docking port is bounded by an affine function of the 1-norm

of the distance of the spacecraft relative to the docking port.

This approach is a generalization to the multi-dimensional

context of the approach used in [5] to treat a soft-landing

constraint for an electromagnetic actuator. Specifically, the

following constraint is imposed over the prediction horizon

in the MPC problem

ζ(k)
∆
= |σx(k)| + |σy(k)| (8)

≥η(|δẋ(k) − vpx
(k)| + |δẏ(k) − vpy

(k)| − s(k)) − β,

where vpx
and vpy

are velocity components of the docking

port. The port velocities can be computed as vpx
(k) =

−ωpry(k) and vpy
(k) = ωprx(k). The values η > 0 and

β > 0 are constant parameters and s(k) is a slack variable,

which is introduced to avoid infeasibility of the constraint.

Constraint (8) is nonlinear, and in order to handle it in a

linear-quadratic MPC approach it needs to be formulated

as a linear constraint. We do this assuming that along the

constraint horizon the signs of δẋ(k)− vpx
(k) and δẏ(k)−

vpy
(k) does not change. Thus, we enforce

Φx(k)X̄(k) + ΦuŪ(k) ≥ −β (9)

where Φx(k) = [ 0 0 −ψ1(k) −ωpψ1(k) ψ2(k) −ωpψ2(k) ],
ψ1 = ηsgn(ẋ(k)− vpx

(k)), ψ2 = ηsgn(ẏ(k)− vpy
(k)), and

sgn is the sign function, Φu =
[

0 0 η
]

.

Besides the soft-docking constraints, the spacecraft tra-

jectory must satisfy the LOS constraints which confine the
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spacecraft to the intersection of the LOS cone, with vertex

moved slightly inside the platform, and a half-plane, see a, b,

c in Fig. 1. Let γ denote the half of the LOS cone angle and

let rtol denote the distance by which the vertex of LOS cone

is moved inside the platform. The value rtol > 0 slightly

relaxes the LOS constraints to facilitate the application of

MPC and mitigate ill-conditioning of the problem caused

by cone constraints becoming almost infeasible when the

docking port is approached (as a and b come arbitrary close

together and the platform rotates). The half-plane constraint

c is defined by the tangent line to the platform at the position

of the docking port, and it ensures that collisions of the

spacecraft with the target platform are avoided even with

the relaxed LOS cone constraints.

The LOS constraints are described by

a:
sin(ϕ(k) + γ)

(rp − rtol) sin γ
δx(k) −

cos(ϕ(k) + γ)

(rp − rtol) sin γ
δy(k) ≥ 1,

b: −
sin(ϕ(k) − γ)

(rp − rtol) sin γ
δx(k) +

cos(ϕ(k) − γ)

(rp − rtol) sin γ
δy(k) ≥ 1,

c:
cos ϕ(k)

rp sin γ
δx(k) +

sin ϕ(k)

rp sin γ
δy(k) ≥ 1,

(10)

where ϕ(k) is the angle between the platform docking port

and the x-axis at the time instant k. When the docking port

is not moving, ϕ(k) = ϕ, and the LOS constraints are linear

inequalities in δx(k) and δy(k). For the case where the

platform rotates we compare two approaches to the treatment

of these constraints. In the first one, the constraints do not

account for the predicted motion of the platform, i.e., ϕ(k)
is assumed to remain constant along the MPC prediction

horizon. In the second approach the constraints along the

prediction horizon account for the motion of the platform.

A. No prediction of platform motion

In the case of no prediction of platform motion, we set

ωp = 0 and ϕ(k) = ϕ in (6), (10), (9) hence resulting in

X̄(k + 1) = ĀX̄(k) + B̄Ū(k) (11a)

Ȳ (k) = C̄(k)X̄(k) + D̄Ū(k) (11b)

where (11b) represent the constrained outputs, i.e.,

Ȳ (k) ≥ Ȳmin (12)

and Ȳmin = ( 1 1 1 −β)
T

. By defining σ = [σx σy]T ,

δv = [δvx δvy]T , ξ = [σT δvT ]T , the cost function of the

MPC controller is formulated from P , Q, R in (3) as

J̄ = X̄(NJ)T
P̄ X̄(NJ) +

NJ−1
∑

j=0

X̄(j)T
Q̄X̄(j) + Ū(j)T

R̄Ū(j)

= ξ(NJ)T
Pξ(NJ)

+

NJ−1
∑

j=0

ξ(j)T
Qξ(j) + U(j)T

RU(j) + ρs(j)2.

(13)

Here ρ > 0 is a large weight on the slack variable causing

this variable to be zero whenever feasible.

At every time instant k, the MPC controller solves

min
Ū(k)

NJ−1
∑

j=0

X̄(j|k)T
Q̄X̄(j|k) + Ū(j|k)T

R̄Ū(j|k)

+ X̄(NJ |k)T
P̄ X̄(NJ |k)

s.t. X̄(j + 1|k) = ĀX̄(j|k) + B̄Ū(j|k)

Ȳ (j|k) = C̄(k)X̄(j|k) + D̄Ū(j|k)

Ȳ (j|k) ≥ Ȳmin, j = 0, . . . , Nc

Ū(j|k) ≥ Ūminj = 0, . . . , Nu

Ū(j|k) ≤ Ūmax, j = 0, . . . , Nu

X̄(0|k) = X̄(k)

Ū(j|k) = U(Nu|k), j = Nu, . . . NJ − 1

(14)

where a(j|k) indicates the value of a predicted j steps ahead

from step k, Ū(k) = {Ū0, Ū1, · · · , ŪNu
}, Nu denotes the

control horizon, and Nc denotes the constraint horizon. The

input constraints in (14) are formulated from (7). The first

element of the optimizer of (14) is applied as input, i.e.,

Ū(k) = ŪMPC(X̄(k)) = Ū∗
0 (X̄(k)), where we highlight

that the solution of (14) is function of X̄(k). Note also that

due to C(k), the constraints are time-varying, but they are

assumed constant in the optimization problem (14).

B. Prediction of platform motion

Even if the constraints in (14) change with time, as the ini-

tial state of the finite horizon optimal control problem X(k)
changes, the bounds are assumed constant in prediction, i.e.,

ϕ(k) = ϕ, ωp = 0 are assumed in (14). In this section we

propose a method to incorporate in the MPC optimization

problem a prediction of the LOS constraint (10) changes

due to the rotation of the docking port. In order to continue

exploiting a linear-quadratic MPC framework, we employ

the approximations

ϕ(h) ≃ ϕ(k) + ϕ̇(k)(h − k)Ts = ϕ(k) + ϕ̄(h, k, Ts) (15)

sin(ϕ(h) + γ) ≃ sin(ϕ(k) + γ) + cos(ϕ(k) + γ)ϕ̄(h, k, Ts),

cos(ϕ(h) + γ) ≃ cos(ϕ(k) + γ) − sin(ϕ(k) + γ)ϕ̄(h, k, Ts),
(16)

where k denotes the current time instant and h ≥ k is a

future time instant. This results in the constraints

a
′

:L1δx(h) − L2δ(h)

+ {L2δx(k) + L1δy(k)}(ϕ(h) − ϕ(k)) ≥ 1,

b
′

: − L3δx(h) + L4δy(h)

− {L4δx(k) + L3δy(k)}(ϕ(h) − ϕ(k)) ≥ 1,

c
′

:L5δx(h) + L6δy(h)

− {L6δx(k) + L5δy(k)}(ϕ(h) − ϕ(k)) ≥ 1,

(17)

where

L1 =
sin(ϕ(k) + γ)

(rp − rtol) sin γ
, L2 =

cos(ϕ(k) + γ)

(rp − rtol) sin γ
,

L3 =
sin(ϕ(k) − γ)

(rp − rtol) sin γ
, L4 =

cos(ϕ(k) − γ)

(rp − rtol) sin γ
,

L5 =
cos(ϕ(k))

rp sin γ
, L6 =

sin(ϕ(k))

rp sin γ
.
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Introducing the auxiliary state variables

Z(k) =

(

z1

z2

)

=

(

ϕ(k + 1)
ϕ(k)

)

=

(

ϕ(k) + ωpTs

ϕ(k)

)

,

(18)

it follows

Z(k + 1) =

(

2 −1
1 0

)

Z(k) = ΘZ(k). (19)

Considering (6) (10), (9), (19), (9), (17) we obtain linear

model with time-varying constraints

X̃(k + 1) = ÃX̃(k) + B̃Ũ(k) (20a)

Ỹ (k) = C̃(k)X̃(k) + D̃Ũ(k) (20b)

where Ũ = Ū , the state vector is

X̃ =
(

δx δy δẋ δẏ rx ry σx σy z1 z2

)T
, (21)

and the system constraints are

Ỹ (k) ≥ Ỹmin, Ỹmin = Ȳmin. (22)

The MPC cost function is defined as

J̃ = X̃(NJ)T
P̃ X̃(NJ) +

NJ−1
∑

j=0

X̃(j)T
Q̃X̃(j) + Ũ(j)T

R̃Ũ(j)

= ξ(NJ)T
Pξ(NJ)

+

NJ−1
∑

j=0

ξ(j)T
Qξ(j) + U(j)T

RU(j) + ρs(j)2.

(23)

From (20), (22), (23), (7) the MPC finite horizon optimal

control problem with prediction of the LOS constraints

dynamics is formulated similarly to (14).

IV. SIMULATED MANEUVERS

We assume the following platform parameters: rp =
1.5m, γ = 30deg, rtol = 0.1m, n = 1.107 × 10−3rad/s

(corresponding to the orbit of 500km above the Earth). The

sampling period is Ts = 0.5s, and the simulations duration

is 50s. In (8), we set η = 0.5 and β = 0.1(1.5 + ωp) to

relax the constraint in the case of a fast platform rotation.

For MPC we select NJ = 40, Nc = Nu = 5. The input

constraints of the spacecraft were set as −0.8 ≤ ux ≤ 0.8,

−0.8 ≤ uy ≤ 0.8 (m/s2).

In the first case study, the initial location for the spacecraft

was (δx0, δy0) = (50,−10) (in meters) and the initial

position of the docking port was (rx0, ry0) = (1.5, 0) (in

meters) which corresponded to radial approach, where the

spacecraft approaches the platform along a radial line from

the center of the Earth, if the platform were not rotating.

With an aggressive platform rotation rate of ωp = 5deg/s the

closed-loop responses without prediction of LOS constraint

evolution due to platform motion, and with such a prediction

are shown in Fig. 2 and Fig. 3, respectively. In both cases, the

soft-docking, the LOS cone and thrust magnitude constraints

are enforced by the MPC controller, and the spacecraft suc-

cessfully completes the maneuver. Although relative velocity

plots are not included in the paper due to lack of space, these

confirm that the soft-docking constraints are satisfied
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Fig. 2. Trajectory from radial approach without prediction of platform
motion.
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Fig. 3. Trajectory from radial approach with prediction of platform motion.

In the second case study, the initial location of the space-

craft is (δx0, δy0) = (−10, 50) and the initial position of the

docking port is (rx0, ry0) = (0, 1.5) which correspond to in-

track approach where the spacecraft approaches the platform

in a direction parallel to the orbit, if the platform was not

rotating. With ωp = 5deg/s the closed-loop responses without

prediction of LOS constraint evolution due to platform

motion and with this prediction are shown in Fig. 4 and

Fig. 5, respectively. Without prediction, the spacecraft fails

the maneuver while with prediction the spacecraft is able to

complete the maneuver while satisfying all the constraints.

The spacecraft trajectories starting from various initial

locations within LOS cone are now examined for the case

when the platform rotates with ωp = 3deg/s, see Fig. 6.

With prediction of LOS motion, the spacecraft is able to

successfully complete the maneuvers. Note that the tra-

jectories initiated near the bottom of the LOS boundary

require complicated spacecraft maneuvers to remain within

the constraints. In the case of no prediction of LOS constraint

motion, some maneuvers fail.

A. Fuel consumption analysis

We consider three performance metrics, J1 =
∑Td

k=0 |ux(k)| + |uy(k)|, J2 =
∑Td

k=0 ux(k)2 + uy(k)2,

J3 =
∑Td

k=0

√

(ux(k))2 + (uy(k))2, where Td = [td/Ts]
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Fig. 4. Trajectory from in-track approach without prediction of platform
motion. Docking fails.
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Fig. 5. Trajectory from in-track approach, with prediction of platform
motion. Docking succeed.

and td is time to docking. While J2 is related to the

control effort penalty used in MPC, J1 is related to the

fuel consumption of a spacecraft which has two orthogonal

families of pairs of thrusters, and J3 is related to the fuel

consumption of a spacecraft with a single thruster which is

oriented as appropriate utilizing the attitude control.

Table I gives the results in the radial approach maneuver

presented before, using R = αI – where the scalar α is

varied – in (3). The three cost functions, J1, J2, J3 appear

to exhibit similar tendencies, justifying the use of J2 to

indirectly influence J1 and J3 when included as a part of

MPC cost function. Note that when using prediction of the

LOS dynamics the metrics are improved as compared to the

case when the prediction is not used. These results suggest

that including the prediction of the changes in the LOS

constraint induced by the target platform rotating/tumbling

motion is beneficial to obtain fuel-efficient maneuvers.

V. DEBRIS AVOIDANCE MANEUVERS

In this section we consider the additional objective of

avoiding a debris on the spacecraft rendezvous path. To

simplify the problem the target platform is treated as a non-

rotating point mass which is located at the origin. We “cover”

the debris by a disk of radius rd centered at (dx, dy).
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Fig. 6. Trajectories from different spacecraft initial locations: (top) from the
LOS constraint boundaries; (bottom) from the interior of LOS constraints.

ωp = 3deg/s α 107 108 5 × 108 109 5 × 109

J1 37.51 28.42 33.43 36.13 40.66

no LOS pred. J2 23.62 15.64 18.66 20.44 20.81

J3 28.20 22.71 25.83 27.74 30.53

td 21.0 32.0 50.5 56.0 58.0

J1 28.63 25.89 21.86 20.97 19.88

LOS pred. J2 14.52 11.83 8.77 7.92 6.39

J3 21.62 20.94 17.53 16.86 16.19

td 23.0 31.5 51.5 55.5 51.0

TABLE I

FUEL CONSUMPTION RELATED COSTS AND DOCKING TIME VERSUS α.

For avoiding the debris we create a slow “virtual” rotation

on the covering disk, with angular rate ωd, and we impose

that the spacecraft must remain in a specified half-plane

relative to a tangent line to the disk, see Fig. 7. At activation,

the disk tangent line is perpendicular to the line between

the spacecraft location, (δx(0), δy(0)), and the center of

the circle, (dx, dy). Then, ϕd(0) is defined as the angle

between the x-axis and the normal to the tangent line so that

ϕd(0) = tan−1
(

δy(0)−dy

δx(0)−dx

)

, and ϕd(k+1) = ϕd(k)+ωdTs.

Thus, the debris avoidance constraint is formulated by

cos ϕd(k)

rd

(δx(k)−dx)+
sin ϕd(k)

rd

(δy(k)−dy) ≥ 1. (24)

The approach developed in Section (III-B) is applied so
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Fig. 7. Treating debris avoidance maneuvers.

that (24) is approximated in prediction by

L7(δx(h) − dx) + L8(δy(h) − dy)

+ (−L8(δx(k) − dx) + L7(δy(k) − dy))(ϕd(h) − ϕd(k)) ≥ 1,
(25)

where L7 = cos ϕd(kc)
rd

, L8 = sin ϕd(kc)
rd

and

ϕd(h) ≃ ϕd(k) + ϕ̇d(k)(h − k)Ts.

The debris constraint is deactivated once ϕd becomes equal

to ϕd(0) + π so that the constraint does not interfere with

the spacecraft motion after it passes the debris.

Thus, the model for the MPC finite horizon optimal control

problem is defined by (6), (9), (10), (25), d(k + 1) = d(k),
d(k) = [dx dy]T , and by (19), where now z1(k) = φd(k) +
ωdTs, z2(k) = φd(k). Constraint c is redundant in this case

and is removed from (10), resulting in

X̂(k + 1) = ÂX̂(k) + B̂Û(k), (26a)

Ŷ (k) = Ĉ(k)X̂(k) + D̂Û(k), (26b)

where the state vector is

X̂ =
(

δx δy δẋ δẏ dx dy rx ry zd1
zd2

)T

and where the constraint

Ŷ (k) ≥ Ŷmin, Ŷmin = ( 1 1 1 −β )T (27)

is imposed on the system output, representing the LOS

constraints and the soft-landing constraints with respect to

the platform, and the debris avoidance constraint.

The MPC problem cost function is

Ĵ = X̂(NJ)T
P̂ X̂(NJ) +

NJ−1
∑

j=0

X̂(j)T
Q̂X̂(j) + Û(j)T

R̂Û(j)

= ξ(NJ)T
Pξ(NJ)

+

NJ−1
∑

j=0

ξ(j)T
Qξ(j) + U(j)T

RU(j) + ρs(j)2.

(28)

The finite horizon optimal control is formulated similarly

to (14) using cost function (28), dynamics model (26), output

constraints (27), and input constraints (7).

We have simulated the debris avoidance maneuver with

rd = 3m, and the other parameters as the ones in Sec-

tion (IV). The debris is located at (20, 0) (in meters) and the

initial location for the spacecraft is at (δx0, δy0) = (50, 15)
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Fig. 8. Debris avoidance maneuver.

(in meters). The docking port is located at the origin of the

reference frame, and ωd = 7deg/s.

Fig. 8 compares the trajectory of the spacecraft when

there is no debris and when the spacecraft performs a

rendezvous while avoiding debris. The “x” symbol represents

the initial point of activation of the tangent line constraint.

The constraint is deactivated after the disk covering the

debris has rotated π radians.

VI. CONCLUSIONS

In this paper we have examined the problem of spacecraft

rendezvous and docking with a rotating/tumbling platform.

Linear-quadratic Model Predictive Control (MPC) has been

utilized to enforce thrust magnitude, LOS cone angle and

velocity of approach (soft-docking) constraints. We have

shown that predicting the motion of the docking port and

the changes in the LOS constraints permits to satisfactory

perform maneuvers initiated when the spacecraft is further

away from the platform and when the platform is rotating

at a higher rate. The prediction also helps to reduce the

fuel consumption. Finally, we have demonstrated that closely

related ideas can be used for debris avoidance during the

rendezvous maneuver.
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