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Abstract— This paper studies the multivariable model ref-
erence adaptive control (MRAC) design for aircraft systems
under simultaneous actuator failures and airframe damage.
A modeling study of the aircraft under failure and damage
conditions is conducted, which captures the key characteristics
of the aircraft dynamics under such hazardous conditions.
The key design conditions for the multivariable MRAC design
are studied for nominal and post-hazard aircraft systems, and
the invariance of these essential conditions is concluded under
realistic failure and damage conditions. A multivariable MRAC
scheme is developed to ensure stability and asymptotic output
tracking for the aircraft in the presence of uncertain actuator
failures and airframe damage. Simulation results are presented
to demonstrate the application of the proposed adaptive control
scheme to the NASA Generic Transport Model (GTM).

Keywords: Actuator failure, airframe damage, adaptive

control, output feedback, output tracking.

I. INTRODUCTION

The research of adaptive aircraft control under adverse

conditions has remained an important topic in the past

decades. Adaptive control methodologies are capable of

autonomously adjusting the controller parameters to maintain

satisfactory performance when unforeseen changes in the

system dynamics occur. These unique features provide the

potential to improve flight safety when hazards such as

actuator failures and airframe damage occur.

Adaptive control of aircraft systems under actuator failures

has remained a major focus for the past decades and various

adaptive control designs for actuator failure compensation

have been proposed (for instance, [1], [2], [3], [8], [10]).

A challenge of successful actuator failure compensation is

uncertainties of the failures, including their onset time in-

stants, failure patterns, and magnitudes. An adaptive control

design is able to employ the built-in redundant actuators to

achieve control objectives while rejecting the disturbances

caused by out-of-control actuators. The challenge of aircraft

control under damage conditions is that the system dynamics

will be subject to uncertain changes, which may lead to large

parametric variations and dynamic coupling. A non-adaptive

controller may not be able to ensure satisfactory tracking

performance or stability under such conditions. The adaptive

control is capable of compensating for large parametric
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uncertainties while ensuring stability and tracking. Several

adaptive control designs for the modeling and control of

damaged aircraft have been proposed, such as those in [4],

[5], [6], and others.

A topic that is of both theoretical and practical importance

is the adaptive control of simultaneous airframe damage

and actuator failures. Actuator failures may appear with the

airframe damage frequently. With such damage and failure

scenarios, both parametric and failure uncertainties as well

as dynamic coupling will be present in the system. In this

paper we will study the multivariable MRAC design using

output feedback for output tracking (OFOT) for the aircraft

under both failure and damage conditions. The modeling of

aircraft under both failures and damage will be studied. Case

studies are conducted to investigate two key conditions for

the multivariable MRAC design, i.e., infinity zero structure

and the signs of the leading principal minors of the high

frequency gain matrix, for aircraft under both failures and

damage. The proposed adaptive control scheme can ensure

closed-loop stability and asymptotic output tracking in the

presence of uncertain failures and damage. This linearization-

based control design is further applied to the nonlinear

NASA Generic Transport Model (GTM) to demonstrate its

efficacy for improving flight safety in the presence of failure

and damage conditions.

The paper is organized as follows. In Section II, MRAC

of aircraft under failures and damage is formulated. Section

III provides a generic linearized aircraft model to investigate

the invariance properties of an aircraft model with failure and

damage conditions. In Section IV, the multivariable MRAC

scheme is developed. Simulation results of the linearized and

nonlinear NASA GTM are presented in Section V.

II. PROBLEM STATEMENT

Consider a linear system with structural damage and lock-

in-place actuator failures described as

ẋ(t) = Ax(t) +Bu(t) + f0, y(t) = Cx(t)

u(t) = (Im − σ)v(t) + σū, (1)

where x(t) ∈ Rn, y(t) ∈ RM , u(t) ∈ Rm are state,

output, and input vector signals with m > M (actuation

redundancy), v(t) ∈ Rm is a commanded control input

vector signal, ū ∈ Rm is an unknown constant failure

vector. We assume that, within a time interval [tk−1, tk),
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with t0 = 0, tN = ∞, and tk, k = 2, . . . , N − 1, being

unknown due to the uncertainties of damage and failures,

the damage and failure pattern is fixed, such that A =
Ak, B = Bk, C = Ck, f0 = f0k with Ak, Bk, Ck,

and f0k being unknown constant parameters, and σ =
σk = diag{σkf1, σkf2, . . . , σkfm}, with σkfj = 1 if the

jth actuator fails or σkfj = 0 otherwise, j = 1, . . . ,m.

Therefore, within each time interval [tk−1, tk), the model

(1) can represent a specific damage and failure scenario.

The linear system (1) with the dynamics offset f0 is

motivated from linearization of a nonlinear aircraft system.

Aircraft application. The nonlinear aircraft system with

damage and failures can be denoted as

ẋ(t) = f(x(t), u(t)), y(t) = Cx(t),

u(t) = (Im − σ)v(t) + σū, (2)

where the structures of f(x, u) are different before and after

damage and the parameter σ changes due to different actuator

failure patterns. To compensate the damage and failures, we

apply a linearization-based control design to the nonlinear

aircraft system. Since there exist uncertainties for the system

with damage, the equilibrium point is not available. We

linearize the system at a chosen operating point (x0, u0),
which may not be an equilibrium:

∆ẋ = A∆x +B∆u+ f0, ∆y = C∆x,

∆u = (Im − σ)∆v + σ∆ū, (3)

where f0 = f(x0, u0) is a dynamics offset which may not

be 0, ∆x = x − x0, ∆u = u − u0, ∆v = v − u0, ∆ū =
ū−u0, and A,B, f0, σ are piecewise constant parameters due

to different damage and failure patterns. After we develop

the control law ∆v for the linearized system (3), we can

apply v = ∆v+u0 to the nonlinear system (2) to assess the

linearization-based adaptive control design.

Actuation redundancy and grouping. Redundant ac-

tuators are widely employed in the aircraft flight control

systems. For example, an aircraft has a group of two rudder

segments and a group of four elevator segments. We divide

the m actuators into M groups: u(t) = [uT1 , u
T
2 , . . . , u

T
M ]T ,

where ui = [ui1, ui2, . . . , uini
]T with i = 1, 2, . . . ,M and

m = n1 + n2 + · · · + nM . Assuming that the actuators in

each group have the same physical characteristics, we can

apply a proportional actuation scheme.

Proportional actuation scheme. For the ith group of

actuators with the lock-in-place failures:

ui = vi+diag{σfi1 , . . . , σfini
}(ūi−vi), i = 1, . . . ,M, (4)

with the commanded control input vi = [vi1, . . . , vini
]T and

the failure constant ūi = [ūi1, . . . , ūini
]T , a proportional ac-

tuation scheme is used: vij(t) = αijvi0(t) for i = 1, . . . ,M
and j = 1, . . . , ni. Then, there exists H ∈ Rm×M to achieve

v(t) = Hv0(t), (5)

where v0(t) = [v10, v20, . . . , vM0]
T ∈ RM and H =

diag{H1, H2, . . . , HM} with Hi = [αi1, αi2, . . . , αini
]T for

i = 1, . . . ,M . Applying (5) to the system (1), we have

y(t)=G(s)(Im−σ)H [v0](t)+G(s)σ[ū](t)+Gf0(s)[hf ](t) (6)

where G(s) = C(sIn−A)
−1B, Gf0(s) = C(sIn−A)

−1f0,

and hf (t) is a unit step function. We denote Gij(s), i =
1, . . . ,M, j = 1, . . . , ni, as the column vectors of G(s)
corresponding to the control inputs uij . Suppose that, within

each time interval [tk−1, tk), k = 1, 2, . . . , N , there are pki
failed actuators in the ith group of actuators, that is

uij= ūij, i∈{1, . . . ,M}, j∈{ji1, . . . , jipki
}⊂{1, . . . , ni}.

To compensate the damage and actuator failures, we need

to assume that there is at least one working actuator in

each group for the damage and failure condition within

[tk−1, tk), k = 1, 2, . . . , N , such that 0 ≤ pki < ni and the

columns of B matrix corresponding to the healthy actuators

in each group are not 0 (since a column of B with all entries

being 0 means that the corresponding actuator is lost caused

by airframe damage). The system (6) can be described as

y(t) = Ga(s)[v0](t) + ȳ(t), where (7)

Ga(s)=




∑

j 6=j11,...,j1pk1

G1j(s), . . . ,
∑

j 6=jM1,...,jMpkM

GMj(s)



 ,

ȳ(t)=
∑

i=1,...,M

∑

j=ji1,...,jipki

Gij(s)[ūij ](t)+Gf0(s)[hf ](t).

Control objective. The control objective is to design an

output feedback control law v0(t) = [v10, v20, . . . , vM0]
T for

the system (7) to make all the closed-loop signals bounded

and the output y(t) track a given reference signal ym(t)
generated from a reference model system

ym(t) =Wm(s)[r](t), (8)

where Wm(s) ∈ RM×M is a stable transfer matrix and

r(t) ∈ RM is a bounded reference input signal.

Assumptions. To proceed the control design, for

all damage and failure patterns (A,B,C, f0, σ) =
(Ak, Bk, Ck, f0k, σk), k = 1, 2, . . . , N , we assume: (A1)

Ga(s) has full rank and all zeros of Ga(s) have negative real

parts; (A2) an upper bound ν̄0 of the observability indices

of all Ga(s) is known; (A3) for Ga(s) = P−1
l (s)Zla(s),

G(s)σ = P−1
l (s)Zlb(s), and Gf0(s) = P−1

l (s)Zf (s), the

transfer function matrices Z−1
la (s)Zlb(s) and Z−1

la (s)Zf (s)
are proper; (A4) there is a known modified left interactor

matrix ξm(s) for all Ga(s), which is invariant for all the

damage and failure patterns, and Wm(s) = ξ−1
m (s); (A5)

all leading principal minors ∆i, i = 1, 2 . . . ,M , of the

high frequency gain matrix Kpa = limt→∞ ξm(s)Ga(s) are

nonzero and the signs are known and invariant for all the

damage and failure patterns.

Next, we will present a generic linearized aircraft model

to investigate the invariance of the interactor matrix (A4) and

signs of the high frequency gain matrix (A5).
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III. SYSTEM INVARIANCE OF AN AIRCRAFT MODEL

The nonlinear aircraft system with damage and actuator

failures is denoted as (2), where the state signal is x =
[ub, wb, qb, θ, vb, rb, pb, φ, ψ]

T and the output signal is chosen

as y = [θ, ψ]T with ub, vb, wb being the body-axis velocity

components, pb, qb, rb being the body-axis components of

the angular velocity, θ, φ, ψ being the Euler pitch, roll, and

yaw angle of the aircraft body axes with respect to the

reference axes. For control of the aircraft system (2), we

only manipulate elevators and rudders, while fixing the other

control inputs (ailerons, throttles, etc.) as the operating point

values. Hence, the control signal with redundancy is given

as u = [δel1 , δel2 , δer1 , δer2 , δru , δrl ]
T , where δel1 and δel2

are the left two elevator segment deflections, δer1 and δer2
are the right two elevator segment deflections, and δru and

δrl are the upper and lower rudder segment deflections.

A. Linearization of the Nonlinear Aircraft Model

We choose a wings-level flight condition (x0, u0), where

x0 = [ud0, wd0, 0, θ0, 0, 0, 0, 0, ψ0]
T , as the operating condi-

tion for the nonlinear aircraft system (2) with damage and

failures, which may not be an equilibrium point due to the

structural uncertainty. Then, the linearized system of (2) is

given as (3), where A = ∂f
∂x

∣∣∣
(x0,u0)

, B = ∂f
∂u

∣∣∣
(x0,u0)

, and

C =

[
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1

]
. (9)

Applying the actuation scheme ∆v = H∆v0 to the elevator

group and the rudder group, we obtain the system with

damage and failures as

∆y(t) = Ga(s)[∆v0](t) + ∆ȳ(t), (10)

where Ga(s) = C(sI − A)−1Ba with Ba = [Ba1, Ba2] =
B(I −σ)H ∈ R9×2. Based on the generic nonlinear aircraft

models before and after damage given in [5] and [7], we

will derive the structures of A and Ba for the following four

damage and failure cases:

(A,Ba) for the nominal case. A and B are decoupled:

A=

[
A

(4×4)
1 0(4×5)

0(5×4) A
(5×5)
4

]
, B=




B
(3×4)
1 0(3×2)

0(1×4) 0(1×2)

0(3×4) B
(3×2)
4

0(2×4) 0(2×2)


, (11)

A1=




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 1 0


, A4=




a55 a56 a57 a58 0
a65 a66 a67 a68 0
a75 a76 a77 a78 0
0 tan θ0 1 0 0
0 1/ cos θ0 0 0 0



.

Since no failures happen (σ = 0), we have Ba = BH .

(A,Ba) for the failure but no damage case. When there

is no damage, the matrices A and B are given as (11). We

assume that there are qe healthy elevators with 0 < qe ≤ 4
and qr healthy rudders with 0 < qr ≤ 2, that is

Ba=B(I−σ)H, σ=diag{σe1 , σe2 , σe3 , σe4 , σr1 , σr2} (12)

where σei = 0 with i ∈ {j1, . . . , jqe} ⊆ {1, 2, 3, 4} and

σei = 1 otherwise, and σri = 0 with i ∈ {l1, lqr} ⊆ {1, 2}
and σri = 1 otherwise.

(A,Ba) for the damage but no failure case. When dam-

age occurs, the longitudinal and lateral-directional dynamics

are coupled. The parameters A and B become to be

A=

[
A

(4×4)
d1 A

(4×5)
d2

A
(5×4)
d3 A

(5×5)
d4

]
, B=




B
(3×4)
d1 B

(3×2)
d2

0(1×4) 0(1×2)

B
(3×4)
d3 B

(3×2)
d4

0(2×4) 0(2×2)


, (13)

Ad1
=




ad11
ad12

ad13
ad14

ad21
ad22

ad23
ad24

ad31
ad32

ad33
ad34

0 0 1 0


Ad2

=




ad15
ad16

ad17
ad18

0
ad25

ad26
ad27

ad28
0

ad35
ad36

ad37
ad38

0
0 0 0 0 0




Ad3
=




ad51
ad52

ad53
ad54

ad61
ad62

ad63
ad64

ad71
ad72

ad73
ad74

0 0 0 0
0 0 0 0



Ad4

=




ad55
ad56

ad57
ad58

0
ad65

ad66
ad67

ad68
0

ad75
ad76

ad77
ad78

0
0 ad86

1 0 0
0 1

cosθ0
0 0 0



.

Since no failure occurs, it follows that Ba = BH .

(A,Ba) for the both damage and failure case. In this

case, the remaining actuators after damage still suffer from

the lock-in-place failures. Since damage occurs, A and B
become to be the damaged values (13). To compensate the

damage and failures, we assume that there are qe healthy

elevators with 0 < qe ≤ 4 and qr healthy rudders with 0 <
qr ≤ 2. The healthy actuator in this case means that it is not

totally lost due to damage (so that the corresponding column

of B matrix is not 0) and does not suffer from the lock-

in-place failure. With such an actuator failure and damage

pattern, parameter Ba is given as

Ba=B(I−σ)H, σ=diag{σe1 , σe2 , σe3 , σe4 , σr1 , σr2} (14)

where σei = 0 with i ∈ {j1, . . . , jqe} ⊆ {1, 2, 3, 4} and

σei = 1 otherwise, and σri = 0 with i ∈ {l1, lqr} ⊆ {1, 2}
and σri = 1 otherwise.

Then, we can investigate the two invariance properties for

Ga(s) based on the structures of A and Ba.

B. Invariance of Infinity Zero Structures

To determine the infinity zero structure for the system,

we need to study the relative degrees for the entries of the

transfer matrix Ga(s), which can be calculated as

Ga(s) =
1

α(s)
(En−1s

n−1+En−2s
n−2+· · ·+E1s+E0),(15)

α(s) = det (sI −A) , sn + αn−1s
n−1 + · · ·+ α1s+ α0,

En−1 = CBa, En−2 = CABa + αn−1CBa, . . . ,

E0 = CAn−1Ba + αn−1CA
n−2Ba + · · ·+ α1CBa.

For the aircraft systems with simultaneous damage and actu-

ator failures, we will consider the following two scenarios:

• actuator failures occur before damage happens;

• damage occurs before failures happen.
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We first obtain the infinity zero structure for the no damage

and no failure case, i.e. the nominal case.

Infinity zero structure of the nominal case. The param-

eters A and B are given as (11) and Ba = BH . With the

matrix C given as (9), we have coefficients for Ga(s) as

En−1=0, En−2=diag{

4∑

i=1

b3ei,
1

cos θ0
(b6r1+b6r2)}. (16)

Therefore, we can choose an interactor matrix for Ga(s)
as ξm(s) = diag{(s + 1)2, (s + 1)2}, so that the

high frequency gain matrix can be obtained as Kpa =
lims→∞ ξm(s)Ga(s) = CABa. Since the parameters

b3e1, . . . , b3e4, b6r1, and b6r2 are the control gains from

elevators to pitch acceleration and rudders to yaw accel-

eration, the signs of these parameters can be obtained:

b3e1, . . . , b3e4 < 0, b6r1 < 0, and bbr2 < 0. The operating

point is chosen as θ0 ∈ (−π/2, π/2). That is the signs of the

leading principal minors are sign(∆1) = −1, sign(∆2) = 1.

Case I: failures occur before damage happens. When

failures occur, the matrix A is still the nominal value given in

(11), but the matrix Ba changes to (12) with certain failure

patterns. En−1 and En−2 for Ga(s) are calculated as

En−1=0, En−2=diag{
∑

i=j1,...,jqe

b3ei,
1

cos θ0

∑

i=l1, lqr

b6ri}.

Therefore, we can choose ξm(s) as ξm(s) = diag{(s +
1)2, (s+1)2}, so thatKpa = lims→∞ ξm(s)Ga(s) = CABa.

Since there is no damage, the parameters b3ei < 0, i ∈
{j1, . . . , jqe} and b6ri < 0, i ∈ {l1, lqr}, it follows that

sign(∆1) = −1, sign(∆2) = 1.

After damage happens, the aircraft suffers from the simul-

taneous failures and damage condition. The matrices A and

Ba become to be the damaged values (13) and (14), while

the failure patterns {j1, . . . , jqe} and {l1, lqr} for Ba do not

change. The coefficients are calculated as En−1 = 0 and

En−2 =

[ ∑
i=j1,...,jqe

bd3ei
∑

i=l1, lqr
bd3ri

1
cos θ0

∑
i=j1,...,jqe

bd6ei
1

cos θ0

∑
i=l1, lqr

bd6ri

]
.

Therefore, the interactor matrix can still be ξm(s) =
diag{(s+ 1)2, (s+ 1)2}, and Kpa = En−2. When the shift

of center of gravity caused by damage is small, the signs of

parameters in Ba may not change and the coupled terms in

Kpa may not be large enough to have impact on the sign of

the second leading principal minor, which will be assessed by

simulation studies. That is sign(∆1) = −1, sign(∆2) = 1.

Case II: damage occurs before failures happen. When

damage occurs first, the matrices A and B change to the

damaged values given as (13) and Ba = BH . So, we have

the coefficients En−1 = 0 and En−2 = CABa. Similar to

the case I, we can choose ξm(s) as ξm(s) = diag{(s +
1)2, (s + 1)2}, and Kpa = CABa. If the shift of center

of gravity is small, from the structure of CABa, we have

sign(∆1) = −1, sign(∆2) = 1.

Then, after failures happen, some of the remaining ac-

tuators are locked. So the matrix Ba with certain failure

patterns {j1, . . . , jqe} and {l1, lqr} becomes to be (14). The

coefficients are calculated as En−1 = 0 and En−2 = CABa.

Similar to the analysis in case I, we can conclude that the

interactor matrix is ξm(s) = diag{(s + 1)2, (s + 1)2}, and

the signs are invariant: sign(∆1) = −1, sign(∆2) = 1 when

the shift of center of gravity caused by damage is small.

Summary. For these two patterns, the interactor matrix

ξm(s) is invariant and the signs of Kpa are invariant if the

shift of center of gravity (due to damage) is small.

IV. ADAPTIVE CONTROL SCHEME

In this section, we will develop an adaptive control scheme

for (7) to achieve the desired output tracking performance.

Output feedback controller structure. We choose an

output feedback controller for (7) as

v0(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t)

+Θ20(t)y(t) + Θ3(t)r(t) + Θ4(t), (17)

where ω1(t) = F (s)[v0](t), ω2 = F (s)[y](t), F (s) =
A0(s)
Λ(s) , A0(s) = [I, sI, . . . , sν̄0−2I]T , Λ(s) is a monic stable

polynomial of degree ν̄0 − 1, with the upper bound ν̄0
of the observability indices of Ga(s), and Θ1(t), Θ2(t),
Θ20(t), Θ3(t), and Θ4(t) are the estimates of some nominal

plant-model matching parameters Θ∗
1, Θ∗

2, Θ∗
20, and Θ∗

4. In

particular, the term Θ4(t) is for compensation of the actuator

failures and the unknown offset f0 due to the damage.

Plant-model matching. To derive adaptive laws for (17),

we need to ensure there exist Θ∗
1, Θ∗

2, Θ∗
20, Θ∗

3 and Θ∗
4 to

achieve plant-model matching condition.

Lemma 1: There exist parameters Θ∗
1, Θ∗

2, Θ∗
20, Θ∗

3 and Θ∗
4,

such that, when Θ1(t) = Θ∗
1, Θ2(t) = Θ∗

2, Θ20(t) = Θ∗
20,

Θ3(t) = Θ∗
3, and Θ4(t) = Θ∗

4, the controller (17) ensures

closed-loop signal boundedness and limt→∞(y − ym) = 0.

Proof: Applying the nominal controller

v∗0(t)=Θ∗T
1 ω1(t)+Θ∗T

2 ω2(t)+Θ∗
20y(t)+Θ∗

3r(t)+Θ∗
4 (18)

to the system (7), we obtain

y(t) = Ga(s)[v
∗
0 ](t) + ȳ(t). (19)

Substituting (19) into (18), it follows that

v∗0(t) = (I −Θ∗T
1 F (s)−Θ∗T

2 F (s)Ga(s)−Θ∗
20Ga(s))

−1

×(Θ∗T
2 F (s)[ȳ](t) + Θ∗

20ȳ(t) + Θ∗
3r(t) + Θ∗

4). (20)

There exist Θ∗
1,Θ

∗
2,Θ

∗
20, and Θ∗

3 = K−1
pa [9], such that

I −Θ∗T
1 F (s)−Θ∗T

2 F (s)Ga(s)−Θ∗
20Ga(s)

= Θ∗
3W

−1
m (s)Ga(s). (21)

Substituting (20) in (19) and from (21), we have

y(t)=Wm(s)[r](t)+Wm(s)Kpa(Θ
∗T
2 F (s)[ȳ](t)+Θ∗

20ȳ(t)

+Θ∗
3ξm(s)[ȳ](t) + Θ∗

4)

,Wm(s)[r](t) + fp(t). (22)
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From the reference (8), we have e(t)=y(t)−ym(t) as

e(t) =Wm(s)Kpa[
Λ(s)I −Θ∗T

1 A0(s)

Λ(s)
Z−1
la (s)Zlb(s)[ū]

+
Λ(s)I −Θ∗T

1 A0(s)

Λ(s)
Z−1
la (s)Zf (s)[hf ]+Θ

∗
4](t).

From (A5) where Z−1
la Zlb(s) and Z−1

la Zf (s) are proper,

it can be concluded that
Λ(s)I−Θ∗T

1
A0(s)

Λ(s) Z−1
la (s)Zlb(s) and

Λ(s)I−Θ∗T
1

A0(s)
Λ(s) Z−1

la (s)Zf (s) are proper. Since ū(t) and

hf (t) are step functions, Wm(s) and Λ(s) are stable, and

Ga(s) is minimum phase, there exists a Θ∗
4 to ensure that

limt→∞ e(t) = limt→∞ fp(t) = 0. ∇

Since the parameters are unknown due to uncertain dam-

age and failures, the adaptive control law (17) is employed.

Tracking error equation. Operating both sides of (21) on

v0(t) and from the system transfer function (7), we obtain

v0(t) = Θ∗T
1 ω1(t) + Θ∗T

2 ω2(t) + Θ∗
20y(t)−Θ∗T

2 F (s)[ȳ](t)

−Θ∗
20ȳ(t) + Θ∗

3ξm(s)[y](t)−Θ∗
3ξm(s)[ȳ](t). (23)

Substituting (17) in (23), we obtain the tracking error as

e(t) = y(t)− ym(t) =Wm(s)Kpa[Θ̃
Tω](t) + fp(t), (24)

where Θ̃ = Θ − Θ∗, Θ = [ΘT
1 ,Θ

T
2 ,Θ20,Θ3,Θ4]

T , Θ∗ =
[Θ∗T

1 ,Θ∗T
2 ,Θ∗

20,Θ
∗
3,Θ

∗
4]

T , and ω = [ωT
1 , ω

T
2 , y

T , rT , 1]T .

To deal with the uncertainty of Kpa, we use its LDS

decomposition Kpa = LsDsS, where S = ST >
0, Ls is a unit lower triangular matrix, and Ds =
diag{sign[∆1]γ1, . . . , sign[

∆M

∆M−1

]γM} with arbitrarily cho-

sen γi > 0, i = 1, . . . ,M [9]. Since the signs of the leading

principal minors ∆i, i = 1, 2, . . . ,M , are invariant, we can

choose a uniform Ds for the possible damage and failure

patterns as a gain matrix which will be used in the adaptive

laws. Ignoring the decaying term fp, and substituting the

LDS decompensation in (24) and operating both sides of

(24) by h(s)IM , where h(s) = 1/fh(s) with fh(s) being a

stable and monic polynomial of degree equals to the degree

of ξm(s), we have

L−1
s ξm(s)h(s)[e](t) = Ds S h(s)[Θ̃

Tω](t). (25)

To parameterize the unknown matrix Ls, we introduce Θ∗
0 =

L−1
s − I = {θ∗ij}, where θ∗ij = 0 for i = 1, 2, . . . ,M and

j ≥ i. Then we have

ē(t)+[0,θ∗T2 η2(t), . . . ,θ
∗T
M ηM (t)]T=DsSh(s)[Θ̃

Tω](t), (26)

where ē(t)= ξm(s)h(s)[e](t)= [ē1(t), . . . , ēM (t)]T , ηi(t)=
[ē1(t), . . . , ēi−1(t)]

T , θ∗i =[θ∗i1, . . . , θ
∗
ii−1]

T ,i=2, . . . ,M .

Estimation error. We introduce an estimation error signal

ǫ(t)=[0, θT2 (t)η2(t), . . . , θ
T
M (t)ηM (t)]T+Ψ(t)ξ(t)+ē(t),

(27)

where θi(t), i = 2, 3, . . . ,M are the estimates of θ∗i , and

Ψ(t) is the estimate of Ψ∗ = DsS, and

ξ(t)=ΘT (t)ζ(t)−h(s)[ΘTω](t), ζ(t)=h(s)[ω](t). (28)

From (26)–(28), we can derive that

ǫ(t) = [0, θ̃T2 (t)η2(t), θ̃
T
3 (t)η3(t), . . . , θ̃

T
M (t)ηM (t)]T

+Ds SΘ̃
T (t)ζ(t) + Ψ̃(t)ξ(t), (29)

where θ̃i(t)=θi(t)−θ
∗
i , i = 2, 3, . . . ,M and Ψ̃(t)=Ψ(t)−Ψ∗.

Adaptive laws. With the estimation error model (29), we

choose the adaptive laws

θ̇i(t) = −
Γθiǫi(t)ηi(t)

m2(t)
, i = 2, 3, . . . ,M (30)

Θ̇T (t) = −
Dsǫ(t)ζ

T (t)

m2(t)
, Ψ̇(t) = −

Γǫ(t)ξT (t)

m2(t)
, (31)

where the signal ǫ(t) = [ǫ1(t), ǫ2(t), . . . , ǫM (t)]T is com-

puted from (27), Γθi = ΓT
θi > 0, i = 2, 3, . . . ,M , and

Γ = ΓT > 0 are adaptation gain matrices, and

m(t) = (1 + ζT (t)ζ(t) + ξT (t)ξ(t) +

M∑

i=2

ηTi (t)ηi(t))
1/2.

Stability analysis. The adaptive laws (30)–(31) ensure that

θi(t) ∈ L∞, i = 2, 3, . . . ,M , Θ(t) ∈ L∞, Ψ(t) ∈ L∞,
ǫ(t)
m(t) ∈ L2 ∩L∞, θ̇i(t) ∈ L2 ∩L∞, i = 2, 3, . . . ,M , Θ̇(t) ∈

L2 ∩ L∞, and Ψ̇(t) ∈ L2 ∩ L∞. The proof of these results

is standard by using the positive definite function

V =
1

2
(

m∑

i=2

θ̃Ti Γ
−1
θi θ̃i + tr[Ψ̃TΓ−1Ψ̃] + tr[Θ̃SΘ̃T ]). (32)

Based on these properties, we can prove the following

desired closed-loop system properties.

Theorem 1: The multivariable MRAC scheme with the output

feedback control law (17) updated by the adaptive laws (30)–

(31), when applied to the plant (7), guarantees the closed-

loop signal boundedness and asymptotic output tracking:

limt→∞(y(t)− ym(t)) = 0, for any initial conditions.

The first step of the proof of this theorem is to express

a filtered version of the plant output y(t) in a feedback

framework which has a small gain due to the L2 properties of

Θ̇(t), θ̇i(t), and
ǫ(t)
m(t) . This step leads to the closed-loop sig-

nal boundedness. The asymptotic tracking property follows

from the complete parametrization of the error equation (27),

the L2 properties, and the signal boundedness.

V. AIRCRAFT FLIGHT CONTROL APPLICATION

In this section, we will apply the above MRAC design

to a linearized NASA generic transport model (GTM) with

damage and actuator failures. Then, it will be applied to the

nonlinear GTM to assess the effectiveness of the proposed

linearization-based control design.

Failure and damage patterns. In this study, we will

consider the following two damage and failure patterns:

• lock-in-place failures of δel1 , δer2 , δru occur first, then

damage with a loss of the two left elevators happens;

• damage with a loss of the two left elevators happens

first, then failures of the actuators δer2 and δru happen.
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Simulation results for linearized GTM. Applying the

adaptive control law ∆v0(t) given as (17) to the linearized

system (10), we have the following results.

Fig. 1 shows the first damage and failure pattern: after 300
seconds, δel1 = 3deg, δer2 = −6deg, and δru = 4deg; then

after 600 seconds, the entire two left elevators are lost from

the stabilizer. From Fig. 1 , we can see that ∆y = [∆θ,∆ψ]T

(solid) tracks the reference ∆ym = [∆θm,∆ψm]T (dotted)

after the damage and the failures occur. The second damage
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Output ∆θ (deg) and reference ∆θ
m

(deg)  vs. time (sec)

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20
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m

(deg)  vs. time (sec)

Fig. 1. Aircraft outputs (solid) vs. reference outputs (dotted) (Case I).

and failure pattern is shown in Fig. 2: after 300 seconds,

the two left elevator segments are lost from the stabilizer;

then after 600 seconds, the right inside elevator is locked

at δer2 = −6deg, and after 650 seconds, the upper rudder

is locked at δru = 4deg. From Fig. 2, we can see that ∆y
(solid) tracks the reference ∆ym (dotted).

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

Output ∆θ (deg) and reference ∆θ
m

(deg)  vs. time (sec)

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30

Output ∆ψ (deg) and reference ∆ψ
m

(deg)  vs. time (sec)

Fig. 2. Aircraft outputs (solid) vs. reference outputs (dotted) (Case II).

Simulation results for GTM. We have obtained the

control law ∆v = H∆v0(t) for the linearized system (3),

then we apply v(t) = ∆v+ u0 to the nonlinear GTM (2) to

assess the effectiveness of this linearization-based design.

Fig. 3 shows the simulation result for a damage and failure

pattern: after 200 seconds, δel1 = 2deg and δru = −2deg;

then after 500 seconds, the entire left elevators are lost

from the stabilizer. From Fig. 3, we can see that the GTM

output perturbation ∆y(t) (solid) tracks the reference output

signal ∆ym(t) (dotted). Thus, we can conclude that this

linearization-based design is applicable for the nonlinear

GTM with damage and actuator failures around a small

neighborhood of the operating point (x0, u0).

VI. CONCLUSIONS

In this paper, the modeling and control of aircraft under

simultaneous failure and damage conditions have been stud-
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Fig. 3. Aircraft outputs (solid) vs. reference outputs (dotted).

ied. An extensive generic analysis of the linearized aircraft

models under failures and damage has been conducted. It

has been shown that two essential conditions for multi-

variable MRAC designs, namely, the interactor matrix and

the signs of leading principal minors of the high frequency

gain matrix, can remain invariant under realistic failure and

damage conditions. A multivariable MRAC scheme has been

developed for the aircraft under the hazardous conditions,

without the need of explicit detection of actuator failures

and structure damage. The stability analysis has shown that

the proposed MRAC scheme is capable of ensuring closed-

loop stability and asymptotic output tracking in the presence

of uncertain failures and damage. Simulation studies of the

linearized GTM and the nonlinear GTM have been conducted

to show the effectiveness of the proposed MRAC scheme.

Further research of this topic includes the multivariable

MRAC design when the infinity zero structure or the control

direction is altered by the damage.
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