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Abstract— An adaptive feedforward controller based on a
filtered-x recursive least square (FX-RLS) algorithm and a non-
adaptive feedforward controller based on a zero-phase-error
tracking control (ZPETC) technique have been designed to
augment a collective pitch proportional-integral (PI) feedback
controller for wind turbine rotor speed regulation and com-
ponent load reduction when the turbine is operating in above
rated wind speed. The feedforward controllers use wind speed
measurements provided by a commercial light detection and
ranging (LIDAR) system. Simulations show that augmenting the
baseline PI feedback control with ZPETC feedforward control
improves the blade loads but worsens the tower loads. The
FX-RLS feedforward algorithm gives better performance than
both the baseline PI feedback and the ZPETC feedforward in
both tower (fore-aft and side-to-side) and blade (flapwise and
edgewise) bending moment mitigation, even with a realistic 1 Hz
LIDAR data update rate.

I. INTRODUCTION

Many advanced control techniques for wind turbine fatigue
load alleviation have been developed recently. Most are
linear non-adaptive feedback control techniques, such as
proportional-integral (PI) control, full-state feedback con-
trol, disturbance accommodating control (DAC), and linear
quadratic regulators (LQR) [1], [2]. These linear controllers
are usually designed for one specific operating point, so
performance may degrade when the wind turbine operates
away from that operating point. However, wind turbines
are highly nonlinear, so nonlinear and adaptive techniques
may further improve performance. Gain scheduling tech-
niques such as [3] can improve operation over a range of
operating points but have limitations in implementation [4].
Until very recently, high-bandwidth accurate wind speed
measurements for use in wind turbine control were not
realistically obtainable, though averages over tens of minutes
or longer were sometimes achievable. Recent advances in
light detection and ranging (LIDAR) systems and significant
decreases in unit prices have led to interest in using them
to obtain real-time measurements of wind speed or direction
inputs local to individual wind turbines [5], opening a new
area of research in the area of feedforward wind turbine
control. PI feedback controller have been augmented with
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various collective pitch and individual pitch feedforward
controllers using gain-scheduled model-inverse and gain-
scheduled shaped compensator, showing promising results
[6]. However, these linear feedforward controllers may not
reject disturbances effectively over the entire range of wind
turbine operating points.

Adaptive control has the potential to overcome some of
the drawbacks of linear time-invariant control, in this case
because the control law can be updated at every time step
according to the wind input conditions and information from
the turbine. Adaptive feedforward control can help distur-
bance rejection and vibration suppression for aircraft [7],
and similar techniques may be beneficial for wind turbines
when combined with LIDAR. Ultimately it is hoped that
these advanced control strategies will reduce the cost of wind
energy, either by extending the lifetime of a wind turbine or
by allowing it to be built more inexpensively initially.

In this paper, we describe an adaptive filtered-x recursive
least square (FX-RLS) feedforward controller developed for
use in conjunction with a LIDAR with various assumed
capabilities (from currently available commercially to what
might be available in a few years). For comparison, we also
describe and simulate a zero-phase-error tracking control
(ZPETC) [8] feedforward controller. According to the sim-
ulation results, in the presence of the wind speed preview
measurements enabled by the LIDAR sensor, the FX-RLS
controller performs better than the baseline feedback-only
and the ZPETC feedforward controllers in both structural
load reduction and rotor speed tracking when the wind
turbine is operating in region 3, the operational regime during
which the turbine limits power and the wind speed is above
rated.

The remainder of this paper is organized as follows.
Section II presents the wind turbine model and its control
structure. Section III describes the simulated wind turbine
model, LIDAR code model, and turbulent wind field respec-
tively. Section IV introduces the design of non-adaptive and
adaptive feedforward controllers. Section V gives the simu-
lation results compared with a PI feedback only controller.
Finally, concluding remarks are given in Section VI.

II. TURBINE DESCRIPTION

The turbine modeled for this research is the 600 kW, three-
bladed, horizontal-axis controls advanced research turbine
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(CART3) at the National Renewable Energy Laboratory’s
(NREL) National Wind Technology Center. CART3 is ca-
pable of full range variable speed operation and full-span
individual blade pitch [9]. CART3 has a hub height of
34.7 m, a rotor diameter of 40 m, a rated generator torque
of 3524 kN*m, a rated rotor speed of 41.7 rpm, a rated rotor
power of 667 kW, and a maximum pitch rate of 18 deg/sec.
Though CART3 is smaller than modern utiliy-scale turbines,
this simulation study was performed in preparation for field
tests on this turbine.

Though the details of modern utility-scale turbine control
algorithms are proprietary and closely protected by industry,
until recently most were straightforward PI-based collective
blade pitch feedback controllers. These controllers typically
operate on an input signal such as the error in rotor speed
(or power) when the turbine is operating above rated wind
speed. More details about the PI feedback-only collective
pitch controller and used as a baseline controller in this study
is given in [10]. Our research augments the feedback only
strategy with a feedfoward path, as shown in Fig. 1, as will
be described in Section IV.

Fig. 1. Combined PI feedback and feedforward control [6].

III. SIMULATION DESCRIPTION

In this section, we introduce the simulation environment
used in this research, which includes the CART3 turbine
model, the LIDAR device model, and the turbulent wind
fields used in the simulation tests.

A. Simulated turbine model

All simulations are performed using a full non-linear
turbine model provided by the FAST software [11]. FAST
can be used to model two and three bladed horizontal-
axis wind turbines. FAST allows many degrees of freedom
(DOFs) to be turned on or off; in our research, we enabled
the following 16 DOFs: generator (1 DOF), drive train
(1 DOF), 1st and 2nd blade flapwise mode (2×3 DOFs),
1st blade edgewise mode (1×3 DOFs), 1st and 2nd tower
fore-aft mode (2 DOFs), 1st and 2nd tower side-to-side mode
(2 DOFs) and yaw (1 DOF). The default FAST tool does not
include a pitch actuator model, but one can be incorporated
into the simulation within the Simulink environment. To
avoid unattainable pitch rate control signals, used a 1st-order
low-pass filter (LPF) with 60 rad/s corner frequency. FAST
can also be used to linearize the turbine at various operating
points to obtain models useful for control design.

B. LIDAR code

The feedforward controllers require wind speed measure-
ments upwind of the turbine. In this research, we model a
continuous wave (CW) coherent Doppler LIDAR mounted in
a turbine hub, which allows it to scan a circle in front of the
turbine. These LIDAR measurements have been incorporated
into FAST as described in [12]. By setting the preview
time for the wind speed measurement in the simulation,
the LIDAR code can provide measurements at a certain
distance, a function of wind speed, in front of the entire
rotor. In initial simulations the LIDAR simulator provides
perfect measurements at up to 100 Hz, which is the sampling
rate of the wind turbine controller. However, our research
also examines the effects of slower, more realistic LIDAR
measurement rates down to 1 Hz.

C. Simulated Wind file

A TurbSim-generated [13] wind input file is used as
turbulent wind field for the simulations shown in this paper,
with a hub height mean wind speed of 18 m/s, a vertical
stability parameter RiTL of 0.043, a vertical power law
shear exponent αD of 0.125, and a mean friction velocity of
0.688 m/s. TurbSim is a stochastic, full-field, turbulent wind
simulator developed by NREL. It uses a statistical model
to numerically simulate the time series of three component
wind speed vectors at points in a two-dimensional vertical
rectangular grid. Turbsim wind conditions march forward in
a frozen field toward the turbine; that is, the wind fields do
not evolve with time.

IV. FEEDFORWARD CONTROL DESIGN

In this section, we describe two feedforward control strate-
gies investigated in this research. The ZPETC algorithm is a
model-inverse-based non-adaptive feedforward control, while
the FX-RLS algorithm is adaptive. Both of the feedfoward
controllers augment the same PI feedback collective pitch
baseline controller when wind speed is above rated.

A. ZPETC Controller

To design the ZPETC feedforward controller, the first step
is to obtain a linear model of wind turbine around a specific
operating point, which we select at wind speed u0 = 18 m/s,
rotor speed Ω0 = 41.7 rpm, and pitch angle β0 = 12.8 degree.
The wind turbine is linearized with five degrees of freedom
enabled, including the first flapwise blade mode for all
three blades and the drive train and generator DOFs. Two
transfer functions are obtained to represent the linearized
relationships between the pitch angle β and rotor speed error
Ωe (PΩeβ) and the wind speed u and Ωe (PΩeu), as shown in
Fig. 2. The linear model-inverse feedforward controller F in
Fig. 2 is used to cancel the effect of turbulence in wind speed
u on deviations from the rotor speed error Ωe. According to
Fig. 2, we have

Ωe =
PΩeβ · F · u+ PΩeu · u

1 − PΩeβ · FB
. (1)
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Fig. 2. Combined collective feedback and model-inverse-based feedforward
control with linearized wind turbine model. Ωe denotes the rotor speed error.
The sum of the collective pitch command generated by the feedforward
controller (F ) and the baseline feedback controller (FB) is the input to the
linearized turbine model.

Since the desired rotor speed error (Ωe(desired)) is zero, we
can solve for the feedforward controller F by setting the
numerator of (1) equal to zero. Then, we have

F = −P−1
Ωeβ

· PΩeu. (2)

If PΩeβ contains non-minimum phase zeros, the resulting
F is unstable. To avoid this situation, a stable model-inverse
approximation is used instead. In this research, we apply the
ZPETC model-inverse technique [14] to get a stable substi-
tute for the true inverse that can be used in the feedforward
controller. The bode plots of the transfer functions PΩeβ ,
PΩeu and F are shown in Fig. 3, where a 100 Hz sample rate
is used. Making the controller causal, the ZPETC requires

Fig. 3. Bode plots of transfer functions PΩeβ , PΩeu and ZPETC-based
feedforward controller Fzpetc.

an additional delay of one sample period. Thus, the LIDAR
code must provide one sample period preview to cancel this
delay, making the phase of this controller match the ideal
case exactly.

B. FX-RLS Controller

The LIDAR sensor enables online adjustments to the FX-
RLS control law at every time step. In Fig. 4, assume that a
perfect wind speed measurement x can be obtained via the

Fig. 4. FX-RLS feedforward control strategy. Two signals are fed into the
feedforward controller: the rotor speed error Ωe(n, ~θ) and the wind speed
measurement upstream to the turbine x(n) obtained from LIDAR sensor.

LIDAR beam sensor, that is, x = u. Then, the rotor speed
error signal can be expressed by

Ωe(n, ~θ) = y(n) + d(n, ~θ), (3)

where n is discrete time step coefficient, ~θ contains the
adaptive feedforward controller parameters, and

d(n, ~θ) = PΩeβ · (F (n, ~θ) · x(n) + FB · Ωe(n, ~θ)),

= F (n, ~θ) · PΩeβ · x(n) + PΩeβ · FB · Ωe(n, ~θ).

Following the procedure in [15], let

˜x(n) := ˜PΩeβ · x(n),

where ˜PΩeβ is an approximation of PΩeβ . Thus, the error
(3) can be approximated by

Ωe(n, ~θ) ≈
y(n) + F (n, ~θ) · ˜x(n)

1 − PΩeβ · FB
. (4)

The first control goal is to minimize the rotor speed error
signal Ωe(n, ~θ) in region 3, that is to find the minimized rotor
speed error by adapting the parameters ~θ of the feedforward
controller (5). A secondary goal is load reduction. Also, the
denominator of (4) is not a function of ~θ or n, so the feedback
control loop does not affect the optimization problem that
determines the adaptive feedforward controller F (n, ~θ):

min
θ

1

N

N∑
n=1

Ω2
e(n, θ) (5)

We have selected a finite impulse response (FIR) filter for
F (n, ~θ) because of its inherent stability, which is particularly
useful for an adaptive control approach [16]. The RLS
algorithm computes the coefficients of the FIR adaptive feed-
forward controller at each time step. The choice of the RLS
algorithm’s initial conditions influences the performance of
the FX-RLS feedforward control strategy, especially early
in the simulation and when there is inadequate persistent
excitation.

The number of coefficients in the adaptive FIR feedfor-
ward controller is selected to obtain the desired preview
time based on the LIDAR sampling frequency. We start
with LIDAR measurements 70 m in front the hub, which
corresponds to 3.9 sec of preview if the wind speed is 18 m/s.
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Fig. 5. The magnitude bode plots of the closed loop transfer function
TΩeu from the wind speed input u to rotor speed error Ωe with the
two feedforward control techniques (Fzpetc and FFX−RLS ) designed to
mitigate the effect of wind speed disturbances on the rotor speed error.

To construct the RLS algorithm, an approximation of
the dynamics ˜PΩeβ is required to create the filtered signal

˜x(n). In [15] and [17], both offline and online system
identification techniques for filtered least mean square (FX-
LMS) algorithm are applied to obtain this estimation, where
an external signal is injected into the system as the excitation
signal. In this research, we have studied both offline and
online system identification and we use another FIR filter to
represent the dynamics of ˜PΩeβ . The offline values of the
FIR filter for representing the dynamics of ˜PΩeβ are simply
the steady state coefficient values for one online case test.
Because the ˜PΩeβ is only an approximation, we have also
experimented with a simple fixed gain instead of a FIR filter.
This gain was selected from the offline filter coefficients to
be 0.3163e-006.

Using offline identification for the ˜PΩeβ , we can find a
steady state approximation to the FX-RLS-based feedforward
controller. The magnitude bode plots of the closed loop
transfer functions TΩeu obtained from the two feedforward
control techniques (Fzpetc and FFX−RLS) combined with
PI feedback are shown in Fig 5, where TΩeu maps the wind
input u to rotor speed error Ωe. The steady state FX-RLS
feedforward controller rejects the wind disturbance better
than the ZPETC feedforward controller.

V. SIMULATION RESULTS

Our first simulations assume that a perfect wind measure-
ment is obtained from the LIDAR at 100 Hz. Then, we
study the effects of different LIDAR data update rates and
preview times in the FX-RLS feedforward control. Controller
effectiveness is based on damage equivalent loads (DELs),
which are calculated using another NREL code according
to a rainflow counting algorithm [18]. We examine the
tower base fore-aft and side-to-side bending moments, blade
flapwise and edgewise bending moments at the blade roots,
averaged generator power, rotor speed root mean square
(RMS) value, pitch rate RMS value, and pitch angle RMS
value.

Fig. 6. Turbulent wind field used in simulation. ”Wind Vxi” refers to the
wind speed in the prevailing direction, ”Wind Vyi” refers to the wind speed
perpendicular to ”Wind Vxi” but parallel to the ground, and ”Wind Vzi” is
the vertical wind speed.

We note that it is desirable to reduce the tower and blade
bending moments, to increase or hold constant the generator
power, and to hold constant the rotor speed. Pitch rate is
expected to rise as more control actuation is required, but
should not rise excessively. Pitch angle should remain within
normal operational bounds, which for the CART3 is between
about 0-20 deg.

A. Results for 100 Hz LIDAR sampling rate

For the 100 Hz perfect LIDAR measurement case, the
FX-RLS feedforward controller uses 1 sec preview time, so
the PΩeβ estimate is a 100 coefficients FIR filter obtained
from online system identification. The ZPETC feedforward
controller uses one sample period preview time to match the
ideal case exactly. The two collective pitch feedforward con-
trollers augment the PI feedback collective pitch controller in
a simulation using the turbulent wind field shown in Fig. 6.

The DEL results shown in Fig. 7 are compared to the
baseline PI feedback only controller. Simulations run using a
LPF to emulate the pitch actuator dynamics with the ZPETC
controller showed increased loads compared to simulations
with no LPF. Therefore, no LPF is used for either the ZPETC
or FX-RLS feedforward controllers in this subsection of
results. Fig. 7 shows that the FX-RLS controller outperforms
the ZPETC controller with regard to rotor speed tracking
and structural load mitigation on the tower and blades. The
ZPETC feedforward controller decreases the blade flapwise
and edgewise bending moments 7% or less, but worsens the
tower fore-aft bending moments and pitch rate by 67.8% and
1971%, respectively, compared with the PI feedback baseline
controller.

B. Results for lower LIDAR sampling rates

We next evaluate the FX-RLS strategy with more realistic
LIDAR update rates and imperfect wind measurements.
Based on the LIDAR unit installed on CART3 at NWTC,
we selected 1 Hz and 5 Hz LIDAR update rates and preview
times of 1 sec and 4 sec as shown in Table I. The same
turbulent wind field is used. Results comparing the FX-RLS
algorithm with the baseline in this section include a LPF to
emulate the pitch actuator dynamics.
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Fig. 7. A comparison of DELs for tower and blade bending moment,
averaged generator power, rotor speed RMS value, pitch rate RMS value,
and pitch angle RMS value for the ZPETC and FX-RLS feedforward
controllers in turbulent wind field, assuming a perfect wind measurements
from the 100 Hz LIDAR, compared with the PI feedback baseline controller.

TABLE I
SIMULATED LIDAR UPDATE RATES AND PREVIEW TIME

Using 1 Hz and 5 Hz LIDAR update rates, we were unable
to obtain any satisfactory results when using online system
identification for approximating PΩeβ , possibly due to the
time-varying nature of the wind input and lower LIDAR
sampling rate. Therefore, offline system identification is
used. For the 4 sec preview time and 1 Hz LIDAR update
rate, using a simple constant scalar gain for the estimation
of PΩeβ is also considered.

Some of the results using 1 Hz and 5 Hz LIDAR update
rates and 1 sec and 4 sec preview times are shown in Fig. 8
and Fig. 9. Between 470 sec and 475 sec, the baseline
controller allows a large rotor speed overshoot, while the
FX-RLS feedforward algorithm mitigates the overshoot by
starting to pitch the blades prior to the gust hitting the
turbine. Structural loads are also reduced, but the generator
power dips.

The overall improvement based on the FX-RLS feedfor-
ward controller compared to the baseline with turbulent wind
input and Table I cases is shown in the DELs in Fig. 10.
The FX-RLS controller decreases both the tower and blade
bending moments for all LIDAR measurement rates and
preview times shown. According to Fig. 10, with the realistic
1 Hz LIDAR update rate and 4 sec preview time, using offline
identification for PΩeβ estimate, the tower fore-aft and the
blade flapwise bending moment can be reduced by almost
12.1% and 15.2%, respectively. When one scalar constant
gain is used to estimate PΩeβ , the results are improved

Fig. 8. Time series comparisons of rotor speed, blade pitch angle, low
speed shaft torque, and generator power for the cases listed in Table I
with turbulent wind input. The FX-RLS feedforward controller improves
performance compared to the baseline.

Fig. 9. Time series comparisons of tower fore-aft and side-to-side bending
moment and blade flapwise and edgewise bending moment for the cases
listed in Table I with turbulent wind input. Performance for the FX-RLS
controller is improved compared to the baseline.

compared to the offline case, with the tower fore-aft bending
reduced by a magnitude of 20.6% and the blade flapwise
bending by 15.1%. Only a 3.8% increase in pitch rate is
necessary to achieve these benefits.

VI. CONCLUSION AND FUTURE WORK

In this paper we have described a FX-RLS and a ZPETC
feedforward collective blade pitch controller, both of which
are combined with a baseline PI feedback controller and
designed for structure load mitigation and rotor speed reg-
ulation when wind turbine is operating above rated wind
speed. Feedforward control is enabled by a LIDAR, and

1914



Fig. 10. A comparison of DELs for tower and blade bending moments,
averaged generator power, rotor speed RMS value, pitch rate RMS value,
and pitch angle RMS value for the FX-RLS feedforward control with
different LIDAR update rates and preview time shown in Table I using
a realistic turbulent wind input. Compared to the PI feedback only baseline,
loads are generally reduced with some tradeoff in blade pitch rate but
minimal power loss.

different LIDAR data update rates are used in evaluating
these feedforward controllers.

Assuming an accurate and fast LIDAR wind measurement
can be obtained, the FX-RLS algorithm-based adaptive feed-
forward control performed better than the ZPETC model-
inverse-based non-adaptive feedforward control. The FX-
RLS controller was able to improve the tower and blade
bending moments, and pitch rate without much drop in power
production. However, the ZPETC controller improved the
blade bending moments but worsened the tower loads and
pitch rate significantly.

The FX-RLS feedforward controller gave promising per-
formance when realistic 1 Hz and 5 Hz LIDAR update rates
were used, as well. For the case most closely resembling
expected field conditions at the NWTC, the adaptive feedfor-
ward was able to improve the tower fore-aft bending moment
by 20.6% and blade flapwise bending moment by 15.2%.
The power production decreased by less than 0.3% and an
increase in pitch rate of less than 4%.

Future work will include a more realistic LIDAR model,
different types of LIDAR units, and the use of LIDAR-
enabled feedforward control when the wind turbine is op-
erating below rated wind speed.
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