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Abstract— This paper considers the problem of fixed wing
unmanned air vehicles following straight lines and orbits. To
account for ambient winds, we use a path following approach as
opposed to trajectory tracking. The unique feature of this paper
is that we explicitly account for roll angle constraints and flight
path angle constraints. The guidance laws are derived using the
theory of nested saturations.

I. INTRODUCTION

Many application of small and miniature UAVs require
that the vehicle traverse a particular inertially defined path.
For example, the UAV may be required to survey a series of
geographic features where the objective is to record images
of the features. In these applications, it is important that the
UAV be on the path, but the time parameterization of the path
is not critical. One approach to this problem is to impose a
time parameterization of the path and to pose the associated
trajectory tracking problem. However, this approach is not
well suited to small and miniature fixed wing UAVs since the
ambient wind can be a significant percentage of the airspeed
of the vehicle.

Fixed wing vehicles are typically designed to fly at a par-
ticular airspeed that maximizes the fuel efficiency. However
flying at a constant airspeed is not compatible with trajectory
tracking in wind. For example, consider the case where the
desired path is a circular orbit and there is a strong ambient
wind. If the time parameterization calls for a constant speed
with respect to the ground, then airspeed will need to increase
significantly when the vehicle is heading into the wind,
and will need to decrease significantly when the vehicle is
heading downwind. Not only do these large variations in the
airspeed destroy the fuel efficiency, they can also cause the
vehicle to stall in downwind conditions.

An alternative to trajectory tracking is path following
where the vehicle attempts to regulate is distance from the
geometric path, as opposed to regulate the error from a
time varying trajectory point. The path-following approach
is studied in [1], [2], where performance limits for reference-
tracking and path-following controllers are investigated and
the difference between them is highlighted. It is shown that
there is not a fundamental performance limitation for path
following for systems with unstable zero dynamics as there is
for reference tracking. Building on the work presented in [3]
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on maneuver modified trajectory tracking, [4] develops an
approach that combines the features of trajectory tracking
and path following for marine vehicles. Similarly, [5] devel-
ops an output maneuvering method composed of two tasks:
forcing the output to converge to the desired path and then
satisfying a desired speed assignment along the path. The
method is demonstrated using a marine vessel simulation.
Reference [6] presents a path following method for UAVs
that provides a constant line of sight between the UAV and
an observation target.

In this paper we will pose the path following problem
using the notion of a vector field. The application of vector
fields to UAV path following is discussed in [7], [8]. The
basic idea is to calculate a desired heading based on the
distance from the path. A nice extension of [7] is given
in [9] which derives general stability conditions for vector-
field based methods. The focus is entirely on orbits, but
elongated oval orbits and elliptical orbits can be produced.
The method in [9], which is based on Lyapunov techniques,
could be extended to straight lines.

The objective of this paper is to develop path following
strategies that explicitly account for roll angle and flight
path constraints. Previous work has primarily focused on
constant altitude maneuvers whereas in this paper we also
consider climb maneuver. Our focus will be on following
straight-line segments and circular orbits. Our motivation
for limiting the focus to these maneuvers is based on the
approach described in [10] where straight-line and circular
orbits are concatenated to create more sophisticated paths.
Straight-line path following is described in Section III, and
orbit following will be discussed in Section IV.

II. EQUATIONS OF MOTION

If pn and pe are the inertial North and East position of
the vehicle, and h is the altitude, then the kinematic model
of the vehicle is given by [10]

ṗn =Va cosψ cosγa +wn (1)
ṗe =Va sinψ cosγa +we (2)

ḣ =Va sinγa +wh, (3)

where Va is the airspeed, ψ is the heading angle measured
from North, γa is the air mass referenced flight path angle,
and wn, we, and wh are the North, East, and altitude com-
ponents of the wind. As explained in [10], using the wind
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triangle, an equivalent set of equations is given by

ṗn =V cos χ cosγ (4)
ṗe =V sin χ cosγ (5)

ḣ =V sinγ, (6)

where V is the ground speed, χ is the course angle (angle
of the ground track), and γ is the inertially referenced flight
path angle. The advantage of using this set of equations is
that wind does not show up explicitly in the equations and
that GPS sensors directly measure V , χ , and γ . The low
level autopilot will maintain a constant airspeed, and V is a
measured signal.

If we assume coordinated turn conditions, then the equa-
tion of motion for the course angle is given by

χ̇ =
g
V

tanφ , (7)

where g is the gravity constant. We assume in this paper that
the roll and pitch dynamics are much faster than the heading
and altitude dynamics respectively, which implies that the
roll and flight path angles can be considered as the control
variables. Therefore Equations (6) and (7) become

ḣ =V sinγ
c, (8)

χ̇ =
g
V

tanφ
c, (9)

where we will assume that the commanded roll angle is
limited by |φ c| ≤ φmax and that the commanded flight path
angle is limited by |γc| ≤ γmax < π/2.

III. STRAIGHT-LINE PATH FOLLOWING

For a straight line path, we will assume that the path is
described by two vectors in R3, namely

Pline(s, q̂) =
{

r ∈ R3 : r = s+αq̂,α ∈ R
}
,

where s=(sn,se,sd)
T is the inertially referenced origin of the

path, and q̂ = (qn,qe,qd)
T is a unit vector whose direction

indicates the desired direction of travel referenced to the
inertial frame. The desired course angle of the path is defined
by

χq̂
4
= tan−1 qe

qn
,

and the desired flight path angle of the path is defined by

γq̂
4
= tan−1

(
−qd√
q2

n +q2
e

)
.

Figure 1 shows the straight line path Pline(s, q̂), and the
position of the UAV p. The position of the UAV relative to
Pline is given by p̃ 4= p−s. The heading of the UAV relative
to Pline is given by χ̃ = χ − χq̂, where χq̂ is the inertial
heading of q̂ relative to North. To simplify the notation, we
express the lateral dynamics in the path frame, where it can
be shown that

˙̃px =V cos χ̃ cosγ (10)
˙̃py =V sin χ̃ cosγ, (11)

where p̃x is the projected distance along the path and p̃y is
the cross-track error.

Fig. 1. This figure shows the configuration of the UAV indicated by (p,χ),
and the configuration of the UAV relative to Pline indicated by (p̃, χ̃).

A. Lateral Guidance Law for Path Following

We will derive the guidance law for following a straight
path by decoupling the lateral and longitudinal motion. For
the lateral motion we assume that γ is a constant. The lateral
error dynamics are given by Equations (11) and (9).

Our approach is derived using the theory of nested sat-
urations [11], [12]. The objective is to drive p̃y and χ̃

to zero while simultaneously satisfying the constraint that
|φ c| ≤ φmax. The first step is to differentiate Equation (11)
to obtain

¨̃py = gcos χ̃ cosγ tanφ
c.

Define W1 =
1
2

˙̃p2
y and differentiate to obtain

Ẇ1 = ˙̃pygcos χ̃ cosγ tanφ
c, (12)

and choose

tanφ
c =−σM1

(
k1 ˙̃py +σM2(ζ )

gcos χ̃ cosγ

)
, (13)

where σMi is the saturation function

σMi(u)
4
=


Mi, if u > Mi

−Mi, if u <−Mi

u, otherwise
,

k1 > 0, and M1, M2, and ζ will be selected in the discussion
that follows. Substituting (13) into (12) gives

Ẇ1 =− ˙̃pygcos χ̃ cosγσM1

(
k1 ˙̃py +σM2(ζ )

gcos χ̃ cosγ

)
,

which is negative when
∣∣ ˙̃py
∣∣ > M2/k1. Therefore, by the

ultimate boundedness theorem [13], there exist a time T1
such that for all t ≥ T1 we have

∣∣ ˙̃py
∣∣ ≤ M2/k1. If we also

select M1 and M2 to satisfy

M1 ≥
2M2

gcos χ̃ cosγ
, (14)

then for all t ≥ T1, the signal in σM1(·) is not in saturation
and

Ẇ1 =−k1 ˙̃p2
y− ˙̃pyσM2(ζ ). (15)
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Define z
4
= k1 p̃y + ˙̃py, and W2 =

1
2 z2, and differentiate W2 to

obtain

Ẇ2 = k1z ˙̃py− zgcos χ̃ cosγσM1

(
k1 ˙̃py +σM2(ζ )

gcos χ̃ cosγ

)
.

If we let ζ = k2z where k2 > 0, then for all t ≥ T1 we have

Ẇ2 = k1z ˙̃py− k1z ˙̃py− zσM2(k2z)

=−zσM2(k2z),

which is negative definite. Therefore we are guaranteed that
z= k1 p̃y+ ˙̃py→ 0. Using the standard result on input-to-state
stability [13], Equation (15) guarantees that ˙̃py → 0. Since
both z = k1 p̃y+ ˙̃py and ˙̃py converge to zero, we can conclude
that p̃y→ 0.

To ensure that |φ |c ≤ φmax, set M1 = tanφmax. To satisfy
Equation (14) we also need to constrain χ̃ and γ . The
constraint on γ will be discussed in Section III-B. For χ̃

note that if φ c = φmax, then ˙̃χ = g/V tanφmax and χ̃ increases
monotonically. Similarly, if φ c = −φmax, then χ̃ decreases
monotonically. Therefore, if we can find χ̃max such that the
set Bχ̃max

4
= {|χ̃| ≤ χ̃max} is positively invariant, then we

could use the following strategy for straight line tracking:

φ
c =


φmax if χ̃ <−χ̃max

−φmax if χ̃ > χ̃max

−σM1

(
k1 ˙̃py+σM2(k2(k1 p̃y+ ˙̃py))

gcos χ̃ cosγ

)
otherwise

.

(16)
To find χ̃max, let W3 =

1
2 χ̃2 and differentiate to obtain

Ẇ3 =
g
V

χ̃ tanφ
c

=− g
V

χ̃σM1

(
k1

V
g

tan χ̃ +
σM2(k2z)

gcos χ̃ cosγ

)
. (17)

Equation (17) is negative if |k1V/g tan χ̃| >
|M2/(gcos χ̃ cosγ)| which, assuming that cos χ̃ > 0
and cosγ > 0, is true if

sin χ̃max =
M2

k1V cosγmax
, (18)

where γmax is a parameter that will be specified in the next
section.

Since M1 = tanφmax, Equation (14) implies that M2 must
be selected so that

M2 ≤
g
2

tanφmax cos χ̃ cosγ.

Therefore, we select M2 as

M2 =
g
2

tanφmax cos χ̃max cosγmax.

Substituting into Equation (18) we get

χ̃max = tan−1
(

g
2k1V

tanφmax

)
. (19)

Therefore we have the following theorem.
Theorem 3.1: If the commanded roll angle is given by

Equation (16), where
• k1 > 0, k2 > 0,

• χ̃max = tan−1 ((g/2k1V ) tanφmax),
• M1 = tanφmax,
• M2 =

g
2 tanφmax cos χ̃max cosγmax,

then
∣∣p̃y(t)

∣∣+ ∣∣ ˙̃p(t)
∣∣→ 0, and |φ c(t)| ≤ φmax.

B. Longitudinal Guidance Law for Path Following

In this section we develop a longitudinal guidance law for
tracking the altitude portion of the waypoint path, where the
longitudinal kinematics are given by Equation (8).

The desired altitude for the UAV is found by projecting its
current position relative to the waypoint path onto the North-
East plane, as shown in Figure 2 and finding the distance to
this point which is given by

L =
√

p̃2
x + p̃2

y .

The position on the waypoint path that, when projected onto

Fig. 2. The desired altitude along the waypoint path is found by projecting
the position error of the UAV onto the North-East plane. The length of the
projection L is used to find the point on the waypoint path that also projects
onto the North-East plane a distance L from s and using the altitude at that
point.

the North-East plane, also results in a distance L is given by

z = s+ q̂L tanγq̂.

The down component of this vector is used to obtain the
desired altitude as

hd =−sd−qdL tanγq̂. (20)

The time derivative of hd is given by

ḣd =−qd tanγq̂V
p̃x cos χ cosγ + p̃y sin χ cosγ√

p̃2
x + p̃2

y

. (21)

Define W4 =
1
2 (h−hd)2 and differentiate to obtain

Ẇ4 = (h−hd)(ḣ− ḣd)

= (h−hd)(V sinγ
c− ḣd).

If we select γc so that

V sinγ
c− ḣd =−σM3

(
k3(h−hd)

)
,

or in other words

γ
c = sin−1

(
ḣd−σM3

(
k3(h−hd)

)
V

)
, (22)
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then Ẇ4 =−(h−hd)σM3

(
k3(h−hd)

)
is negative definite.

To ensure that |γc| ≤ γmax, note that

∣∣∣ḣd
∣∣∣=
∣∣∣∣∣∣−qd tanγq̂V

p̃x cos χ cosγ + p̃y sin χ cosγ√
p̃2

x + p̃2
y

∣∣∣∣∣∣
=V

∣∣tanγq̂
∣∣ |p̃x|+

∣∣p̃y
∣∣√

p̃2
x + p̃2

y

=
√

2V
∣∣tanγq̂

∣∣ ,
where we have used the fact that ‖q̂‖= 1 implies that |qd | ≤
1, and the fact that ‖·‖1 ≤

√
2‖·‖2. Therefore∣∣∣∣∣ ḣd−σM3

(
k3(h−hd)

)
V

∣∣∣∣∣≤
∣∣ḣd
∣∣

V
+

M3

V

≤
√

2
∣∣tanγq̂

∣∣+ M3

V
.

If M3 is selected as

M3 =V sinγmax−
√

2V
∣∣tanγq̂

∣∣ , (23)

then from Equation (22) we have that |γc| ≤ γmax. To ensure
that M3 > 0 we require that γmax and γq̂ satisfy

sinγmax >
√

2
∣∣tanγq̂

∣∣ . (24)

Theorem 3.2 summarizes the results.
Theorem 3.2: If the flight path angle of the waypoint path

satisfies Equation (24), and if the commanded flight path
angle is given by Equation (22), where k3 > 0, ḣd is given
by Equation (21), and M3 is given by Equation (23), then
h→ hd and |γc(t)| ≤ γmax, for all t ≥ 0.

IV. ORBIT FOLLOWING

Alternatively, an orbital path is described by an inertially
referenced center c = (cn,ce,cd)

T , a radius ρ ∈ R, and a
direction λ ∈ {−1,1}, as

Porbit(c,ρ,λ ) ={
r ∈ R3 : r = c+λρ

(
cosϕ, sinϕ 0

)T
,ϕ ∈ [0,2π)

}
,

where λ = 1 signifies a clockwise orbit and λ =−1 signifies
a counterclockwise orbit.

The guidance strategy for orbit following is best derived
in polar coordinates. Let

d
4
=
√
(pn− cn)2 +(pe− ce)2

be the lateral distance from the desired center of the orbit to
the UAV, and let

ϕ
4
= tan−1

(
pe− ce

pn− cn

)
(25)

be the phase angle of the relative position, as shown in
Figure 3. Differentiating d and using Equations (4) and (5)

Fig. 3. Conversion from rectangular coordinates to polar coordinates for
orbit following.

gives

ḋ =
(pn− cn)ṗn +(pe− ce)ṗe

d

=
(pn− cn)V cos χ cosγ +(pe− ce)V sin χ cosγ

d
.

Using Equation (25) gives

ḋ =V cosγ
(pn− cn)cos χ +(pe− ce)sin χ

d

=V cosγ

(
pn− cn

d

)
(cos χ + sin χ tanϕ)

=V cosγ cosϕ (cos χ + sin χ tanϕ)

=V cosγ (cos χ cosϕ + sin χ sinϕ)

=V cosγ cos(χ−ϕ).

Similarly, differentiating Equation (25) and simplifying gives

ϕ̇ =
V cosγ

d
sin(χ−ϕ).

The orbital kinematics in polar coordinates are therefore
given by

ḋ =V cos(χ−ϕ)cosγ

ϕ̇ =
V
d

sin(χ−ϕ)cosγ

χ̇ =
g
V

tanφ
c.

As shown in Figure 4, for a clockwise orbit, the desired
course angle when the UAV is located on the orbit is given
by χd = ϕ+π/2. Similarly, for a counterclockwise orbit, the
desired angle is given by xd = ϕ−π/2. Therefore, in general
we have

xd = ϕ +λ
π

2
.

Defining the error variables d̃
4
= d−ρ and χ̃

4
= χ− χd , the

orbital kinematics can be restated as
˙̃d =−λV sin χ̃ cosγ (26)

˙̃χ =
g
V

tanφ
c−λ

V
d̃ +ρ

cos χ̃ cosγ. (27)
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Fig. 4. The desired angle when the UAV is on the orbit is given by χd .

The control objective is to drive d̃(t)→ 0, χ̃(t)→ 0, while
satisfying the input constraint |φ c(t)| ≤ φmax.

Our approach to developing the orbit following guidance
strategy is similar to the method followed in Section III-
A with the added complication that we must deal with the
inside of the orbit.

Following the exposition in Section III-A, differentiate
Equation (26) to obtain

¨̃d =−λV cos χ̃ cosγ ˙̃χ

=−λgV cosγ cos χ̃

(
g
V

tanφ
c−λ

V
d

cosγ cos χ̃

)
=−gcosγ cos χ̃

(
λ tanφ

c− V 2

g(d̃ +ρ)
cosγ cos χ̃

)
.

Define W5 =
1
2

˙̃d 2 and differentiate to obtain

Ẇ5 =− ˙̃dλgcosγ cos χ̃

(
tanφ

c−λ
V 2

g(d̃ +ρ)
cosγ cos χ̃

)
.

(28)
and choose φ c so that

φc = tan−1

[
λ

V 2

gd
cosγ cos χ̃ +λσM4

(
k4

˙̃d +σM5(ζ )

gcosγ cos χ̃

)]
,

(29)
where k4 > 0 is a control gain, and M4, M5, and ζ will be se-
lected in the following discussion. Substituting Equation (29)
into Equation (28) gives

Ẇ5 =− ˙̃dgcos χ̃ cosγσM4

(
k4

˙̃d +σM5(ζ )

gcosγ cos χ̃

)
,

which is negative when
∣∣∣ ˙̃d
∣∣∣ > M5/k4. Therefore, by the

ultimate boundedness theorem [13] there exists a time T3

such that for all t ≥ T3, we have
∣∣∣ ˙̃d
∣∣∣ ≤M5/k4. If we select

M4 and M5 to satisfy

M4 ≥
2M5

gcos χ̃ cosγ
, (30)

then for all t ≥ T3, the signal σM4 is not in saturation and

Ẇ5 =−k4
˙̃d2− ˙̃dσM5(ζ ). (31)

Define z2 = k4d̃ + ˙̃d and W6 = 1
2 z2

2, and differentiate W6 to
obtain

Ẇ6 = z2k4
˙̃d− z2gcosγ cos χ̃σM4

(
k4

˙̃d +σM5(ζ )

gcosγ cos χ̃

)
. (32)

If we let ζ = k5z2, where k5 > 0 is a control gain, then for
all t ≥ T3 we have

Ẇ6 =−z2σM5(k5z2),

which is negative definite. Therefore we are guaranteed that
z2 = k4d̃+ ˙̃d→ 0. Using the standard result on input-to-state
stability [13], Equation (31) guarantees that ˙̃d→ 0. We can
therefore conclude that d̃→ 0.

To satisfy the input saturation constraint, from Equa-
tion (29) we require that

tanφmax ≥
V 2

dg
|cosγ| |cos χ̃|+M4.

If we ensure that when Equation (29) holds, that d ≥ dmin
and that |χ̃| ≤ χ̃max, then a sufficient condition to avoid input
saturation is that

tanφmax ≥
V 2

dming
cosγmax cos χ̃max +M4.

Therefore, select

M4 = tanφmax−
V 2

dming
cosγmax cos χ̃max, (33)

where, to ensure that M4 > 0 we require that φmax, dmin, χ̃max
be selected so that

tanφmax >
V 2

dming
cosγmax cos χ̃max. (34)

To satisfy constraint (30) select M5 as

M5 =
1
2

M4gcos χ̃max cosγmax. (35)

From Equation (34) we see that the control strategy (29)
can only be active when |χ̃| ≤ χ̃max and d ≥ dmin. The basic
strategy will be to command a zero roll angle when d < dmin
and to saturate the roll angle at ±φmax when |χ̃| > χ̃max in
the direction that reduces |χ̃|. Therefore, let

φ
c =


0 if d < dmin

−λφmax if (d ≥ dmin) and (λ χ̃ ≥ χ̃max)

λφmax if (d ≥ dmin) and (−λ χ̃ ≥ χ̃max)

[Equation (29)] otherwise

.

(36)
The convergence result is summarized in the following

theorem
Theorem 4.1: If the commanded roll angle is given by

Equation (36) where
• k4 > 0,
• φmax, γmax, and χ̃max are positive and less than π/2,
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• 0 < dmin < ρ

• M4 is given by Equation (33)
• M5 is given by Equation (35)

then |φ c(t)| ≤ φmax, and (d, χ̃)→ (ρ,0).

V. CONCLUSION

This paper has considered the problem of following
straight-lines and orbits using fixed wing unmanned air
vehicles where the roll angle and flight path constraints are
explicitly taken into account. The guidance strategies are
derived using a kinematic model of the aircraft and using
the theory of nested saturations. The resulting strategies are
continuous and computationally simple.
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