
  

  

Abstract— This paper investigates on motion synchronization 

of a multiple axes system. An adaptive robust control scheme 

was used to synthesize the synchronization compensator with 

cross-coupling dynamics among axes. By using the adaptive 

robust strategies, the asymptotic convergence of both tracking 

and synchronization errors are achieved. The robust control 

scheme also guarantees the satisfaction of transient 

performance, tracking errors, and synchronization errors. 

Experimental results of a three-axis motion system that include 

system uncertainties are also illustrated to verify the 

effectiveness of the proposed approach. The results indicate the 

excellent transient and both tracking and synchronization 

accuracies. 

I. INTRODUCTION 

N industrial manufacturing systems, such as machine tools 

and plotters, one often encounters situations in which two 

or more axes need to be coordinated. With the increasing 

demand of manufacturing platforms with multiple 

positioning components, motion synchronization of multi-

axis movement has drawn much more attention recently. 

Such kind of synchronization requirements may be linear or 

rotary motions. The need for multi-axis synchronization 

arises whenever the axes must move together. In such kind of 

control applications, system performance depends more on 

the coordination of multiple motion actuators rather than 

individual motion actuators. For instance, the position 

coordination while moving may be required to avoid 

possible collision if some interlocking parts do exist in the 

system. These kinds of demands for improvements in system 

performance lead to the research activities in this area. 

Since 1980s, it has been known that the coordination 

performance can be improved by compensating the 

differences in dynamics of individual actuators [1]. 

Nevertheless, the early researches did not take the coupling 

among different axes into consideration and the controllers 

were still synthesized independently. The diminished 

dimensional accuracy in those systems due to the poor 

synchronization of relevant axes was recognized. Therefore, 

different research groups have proposed various 

coordinating schemes and cross-coupled controllers for 

multiple axes to improve the synchronization accuracy. A 

cross-coupled controller for dual-axis feed drive systems was 

introduced by Koren [2] for the synchronization motion of 

two independent motion axes in 1980. Based on the coupling 

between two different axes, other approaches [3-5] were also 

 
 

proposed to compensate the synchronization errors in 

different systems. To handle more general coordinated 

systems in motion control, Chiu and Tomizuka [6] 

formulated the coordination control of multiple motion axes 

in a geometrical framework for three dimensional curves. 

With this framework, different researchers started to 

porpoise various cross-coupled controllers that reduce the 

contour error of multiple motion axes in mechanical systems. 

Xiao et al. [7] proposed a generalized synchronization 

controller for multi-axis motion system by incorporating 

cross-coupling technology into optimal control architecture. 

Jeong and You [8] applied a cascaded control structure to 

compensate both acceleration and position. Thus, the 

robustness of speed of each axis against disturbances and 

synchronization errors can be guaranteed. In 2003, Sun [9] 

applied the adaptive control method into the position 

synchronization of multi-robot for assembly tasks. 

In this paper, we investigated the synchronization of a 

three actuator system. The loading of the individual axis 

changes under different operating conditions. As the inertia 

and viscous damping of the multi-axis motion system 

become time varying, controller with a fixed structure might 

not be able to provide the same performance under different 

operating condition. Especially, some system parameters 

vary while the multi-axis system is under operation. 

Therefore, it is necessary to develop a controller that is 

capable to deal with the changing parameters and still 

maintain the accuracy. The proposed adaptive robust 

controller (ARC) tries to reduce or eliminate possible 

uncertainties through a learning mechanism. By learning 

from the past information, uncertainties can be reduced and 

thus better performance can be expected.  

The organization of this paper is as following. The 

modeling process is introduced in the second section. The 

third section describes the compensator design with the 

coefficient adaption. In this section, the robustness of the 

controlled system is also considered. An adaptive robust 

controller is developed in this section. The fourth section 

compares the results of the two synthesized controllers with 

the nominal plant. The experimental results of the adaptive 

controller are also discussed. In the last section, a summary 

is concluded. 
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II. SETUP AND MODELING OF MOTOR DRIVE SYSTEM 

A. Experimental Setup 

To synchronize the movements of a multi-axis motion 

system, different components are usually connected with a 

mechanical coupling. However, with the mechanical 

coupling, the synchronization performance cannot be 

guaranteed due to the distortion, backlash, or other 

mechanical deflects. Therefore, virtual coupling with the 

assistance of synchronization controller becomes popular in 

the past decade.  

The schematic diagram of the experimental platform is 

shown in Figure 1. The multi-axis motion system includes 

three sub-systems, which are in charge of transporting a 

fabricating device, mechanical components, and a machining 

tool. Instead of synchronizing individual devices with 

mechanical couplings, e.g., gears, cams, and shafts, the 

position synchronization is realized by software algorithms. 

Each sub-system consists of a DC motor, which is driven by 

a current mode power amplifier. To setup the experimental 

platform, a Gateway Pentium III 700 MHz PC with 128 MB 

memory was used for data acquisition and implementation of 

the control algorithm. Two Measurement Computing DAS-

1602-16 I/O boards with a 12-bit resolution D/A unit were 

used to send out the command signals to the motor driver. 

The I/O boards were also used for acquiring the 

measurement of the angular velocity of the roller with a 16-

bit resolution of A/D. Angular position of each DC motor 

can be derived from individual rotary optical encoders 

mounted at the drive roller shaft. The resolution of each 

encoder is 4096 pulse/rev. The encoder is connected to a 

ComputerBoards PCI-QUAD04 encoder interface board. 

The data acquisition and control algorithm was developed 

using MATLAB Simulink. The Simulink model was 

compiled into executable binary code using an IBM 

ThinkPad Laptop with a 1.6 GHz PentiumM microprocessor 

and 2 GB memory. The real-time kernel supplied with the 

xPC Toolbox that comes with MATLAB R2008b is used. 

B. Modeling of Mechanical Components 

To design the controller for the experimental system, an 

accurate plant model is necessary. The nominal plant model 

can be obtained using well established system identification 

techniques. In this section, the experimental system was 

modeled by the block diagram shown in Figure 3. Table I 

summarizes the parameters of one of the individual plants. 

For simplicity, it was assumed that the analog current 

controller is well designed and that the current loop is fast 

enough so that the dynamics of the current loop can be 

ignored. If the saturation function is ignored, the transfer 

function from the motor current command to the linear 

displacement of individual motor system can be represented 

by the following transfer function:  

 

Figure 1.  Schematic diagram of experimental system. 
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Figure 2.  Schematic diagram of the motor systems.  
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In this case, the only parameters that need to be 

experimentally identified are K0 and τ. Due to the existence 

of nonlinear frictions, the parameters of the system 

identification of the experimental results change in a range of 

values for each of the parameters. These two parameters are 

the uncertainties of the system that need to be identified for 

accurate position control.  

TABLE I.  CHARACTERISTICS OF THE EXPERIMENTAL SYSTEM 

 

C. Non-linearity and System Restrictions 

The three motor systems were modeled as linear systems. 

While operating, there are several non-linear phenomenon 

need to be considered. They are: static friction and actuator 

saturations. As to the power saturation, the output voltage of 
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the adopted current amplifiers used to drive the motors 

saturate at ±45V. 

III. ADAPTIVE ROBUST CONTROLLER DESIGN  

A. System Representation of Nonlinear Terms 

Based on the system description, we know that the multi-

axis motion system exists with nonlinear friction 

uncertainties. Hence the problem formulation of individual 

axis can be rewritten as  

( ) ( )( )

1 1 2

2 2

,  ,

,T B T
f

x x x

BR K K K
x x v t F t

JR JR

θ

ρ

= =

+
= − + −

�

�

 (3) 

where v(t) is the control command that drives the motor to 

rotate. Ff(t) is the bounded input disturbance due to the 

friction term. In the representation the inertia J and friction 

coefficient B are variables with bounded ranges. Thus, the 

equation can be expressed as  

( ) ( )( )2
2 2

1 1

T
f

K
x x v t F t

φ ρ

φ φ
= − + −� , (4) 

where φ1 and φ2 are the new unknown but bounded 

parameters of individual axis. The unknown parameters lie in 

know bounded regions φ1 ∈ [φ1min, φ1max], φ2 ∈ [φ2min, φ2max], 

and Ff ∈ [Ffmin, Ffmax]. The objective of the controller design 

is to track the desired trajectory xd(t) and minimized the 

errors between the average output xavg(t) and the individual 

angular position. The initial values of φ1 and φ2 is determined 

by the nominal values of the system parameters identified. 

B. Adaptive Control Laws 

Define the tracking error to be the difference between the 

desired trajectory and the output angles as ei(t) = xd(t) – 

xi1(t), and the synchronization error eavg,i(t) = xavg(t) – xi1(t), 

where i denotes the i
th

 axis. By following the backstepping 

procedure of adaptive control, define 

, , ,i i p i i s i avg iZ e k e k e= + +� , (5) 

where kp,i and ks,i are the coefficient corresponding to 

tracking error and synchronization error of the i
th

 axis, 

respectively. Then, differentiating Z with respect to time 

leads to  

( ) ( )
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,2
2 , , ,

1 1
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By arranging the above equation, the control input v(t) can 

be specified as 

( )
( ) ( )2 2 1 , , , , ,

,

i i i i i d p i i s i i avg T i i f i

i

T i i
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The above control input essentially guarantees the 

stability and ensures that ei(t) approaches to zero 

asymptotically. However, it should be noted that by 

arranging the above equation, the controller still requires 

explicit knowledge of the plant parameters. Thus, the control 

law needs to be modified as 

( )
( ) ( )2 2 1 , , , , ,
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where 
1

ˆ
i

φ , 
2

ˆ
iφ , and 

,
ˆ

f iF
 

are time-varying parameters that 

estimate the system parameters φi1, φi2, and Ff,i, respectively. 

C. Stability and Parameter Estimation 

By substituting Eq. (7) into Eq. (5), the backstepping 

procedure becomes 
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1
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2 2 2
ˆ

i i i
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, , ,
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represent the estimation errors of the time varying 

parameters. Thus, if a Lyapunov function VL is defined as  

( )
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The Lyapunov function is positive definite due to the 

positive parameter φi1. The time derivative of the Lyapunov 

function then becomes  
2 0

L i i
V K Z= − ≤� . (11) 

The derivative of the Lyapunov function is negative definite 

if the adaption mechanism for adjusting parameters through 

learning the past information are  

( )1 1 , , ,
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, 3
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where γi1, γi2, and γi3 are all greater than zero. Since VL is a 

positive definite function and 
L

V�  is a negative definite one, it 

follows Barbalat’s lemma that Z is close to zero at infinite 

time. Therefore, ei(t) also decays to zero as time approaches 

infinite, which yields asymptotic tracking. The block 

diagram of the experimental setup is shown as Figure 3. 
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Figure 3.  Block diagram of experimental system.  
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D. Adaptive Robust Control 

Adaptive control has two major drawbacks: unknown 

transient performance and non-robustness. As the result, an 

adaptive controller may lead to large tracking error during 

the initial transient period or have a sluggish response. In 

addition, the parameters may be adjusted to beyond the 

known bounded regions. Therefore, the deterministic robust 

control (DRC) with the projections of parameter adaption 

needs to be applied to attenuate the effect the model 

uncertainty and improve the transient and steady-state 

performance. 

To include the adaptive robust law in the controller, the 

control command v(t) is modified to 

( ) ( )( )
a s

v t v t v t= + , (13) 

where va(t) is the original adaptive law governed by Eq. (7)

and vs(t) is the robust control effort. Apply the robust control 

effort to the backstepping procedure, Eq. (9) becomes 

The essence of DRC is that the robust control input vs,i 

can be synthesized to attenuate effects of model uncertainty 

coming from both parametric uncertainties and 

nonlinearities. Thus, those requirements can be represented 

by the following constraints: 
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• 
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where ε is a design parameter. Since φi1 is always positive, 

set the Lyapunov function to be 

2
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The derivative of the Lyapunov function yields 
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Thus, the stability of the adaptive law can be guaranteed. 

The resulting adaptation law can be modified as the 

following projection forms. They are 
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where the projection mapping proj(•) is defined as 
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As a result, the projection method guarantees that the 

estimated parameters stay in known bounded region all the 

time. It also ensures that asymptotic tracking as in adaptive 

control will not be lost. 

The control effort vs,i can be designed by using the 

technique of completion of squares, which makes the control 

input becomes 

,
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where ε = ε1 + ε2 + ε3 is the design parameter, and φi1m, φi2m, 

and Ff,im are the range of the bounded parameters, 

respectively. With the control command, the adaptive robust 

control can be rewritten as 

( )
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(20) 

with the adaptation mechanism. This type of controller 

combines the advantage of both the adaptive and robust 

control by using the adaption mechanism and further 

feedback controller vs to improve the overall performance. 

Thus, the tracking error is asymptotic convergent and 

bounded. 

IV. EXPERIMENTAL RESULTS 

A. Desired Trajectory 

Due to the inherent limitation of available power inputs 

of control efforts, the trajectory design plays an important 

role to achieve the tracking and position performance. In 

particular, the non-parametrical uncertainties due to the 

quantization of digital devices might lead to large tracking 

errors. Such kind of non-parametrical uncertainties can make 

a stable system an unstable one.  Therefore, to evaluate the 

performance of the proposed controller, each axis was set to 

move 30 mm. In order to minimize the overshoot, the desired 

trajectory was adjusted with a cycloidal increment as shown 

in Figure 6. Such a trajectory decreases the vibrant response 

during the transient.  
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Figure 4.  Desired tracking trajectory. 
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Figure 5.  Parameters adaption of adaptive controller in a single run. 
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Figure 6.  Parameter adaption of adaptive robust controller in a single run. 

B. Controller Parameters 

The controller parameters were designed by choosing ε1 

= 0.005, ε2 = 0.005, ε3 = 0.005, kp1 = 40, kp2 = 35, kp3 = 35, 

ks1 = 30, ks2 = 25, and ks3 = 25. Notice that the position of the 

movement was calculated from the measurement of the 

attached optical encoder measuring the angular positions. 

The controllers implemented need both position and velocity 

to be obtained at every instant of time. Because the velocity 

was not measured, an estimate of the velocity using the 

backward difference method was employed. Figure 5 and 

Figure 6 illustrate the adaption of the nine estimated 

parameters. Some of the parameters are not convergent with 

only the adaptive mechanism adopted. In some extreme 

cases or improper planned trajectory, the parameters might 

become divergent and yield some unstable performance due 

to the quantized implementation of digital devices. With the 

robust control scheme applied to the adaption laws, not only 

all the nine unknown parameters used in ARC converged to 

fixed values, but they were restricted within bounded 

regions.  

C. Experimental Results 

Figure 7 and 8 show the comparison of tracking and 

synchronization errors for the proposed trajectory using 

different control schemes. Both types of controllers 

demonstrate satisfactory performance. All the errors are 

bounded within ±0.4 mm.  

Figure 9 shows the control efforts of the two types of 

controllers. To restrict the parameters within given bounds, 

the control commands generated in ARC algorithm fluctuate 

more than only the adaptive mechanism is adopted. Notice 

that the control commands of the adaptive controller do not 

converge to 0 V for individual motors, which yield that the 

final tracking and synchronization errors of individual axes 

also do not converge to zero steadily. Instead, the positions 

fluctuate from time to time within a small range. With the 

current setup, both controllers provide adequate performance 

for tracking and synchronization. However, if inadequate 

tracking trajectory is applied to the system without 

considering the robustness, the coefficients of adaptive 

controller might drift and cause unstable outputs in some 

cases. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.2

0

0.2

0.4

T
ra

c
k

in
g

 E
rr

o
r 

(m
m

)

Time (sec)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

-0.1

0

0.1

0.2

S
y
n

c
h

ro
n

iz
a

ti
o

n
 E

rr
o

r 
(m

m
)

Time (sec)

 

 

Motor 1

Motor 2

Motor 3

Motor 1

Motor 2

Motor 3

 

Figure 7.  Performance of adaptive controller. 
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Figure 8.  Performance of the adaptive robust controller. 
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Figure 9.  Control efforts of AC and ARC 

Due to the friction, uncertainties, and other perturbations, 

the transient responses of individual movements cannot be 

the same. To verify the consistence and robustness of the 

proposed ARC controller, multiple trials of movement of the 

multi-axis motion system are required. Figure 10 illustrates 

the tracking and synchronization errors for ten trials of 30 

mm movements of the system compensated by the proposed 

ARC controller. The experimental results demonstrate that 

the maximum tracking error during transient is less than 0.4 

mm, and the maximum synchronization error is less than 0.2 

mm. Therefore, it is clear that the experimental results 

promise the system specification.  
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Figure 10.  Tracking and synchronization errors of 10 experimental trials of 

ARC controller. 

V. CONCLUSION 

In this paper, we have presented an adaptive robust 

control approach with trajectory design for a multi-axis 

motion system. The position advance was accomplished by 

not violating the hardware limitation. Not only does it use 

robust feedback control to guarantee transient performance, 

tracking accuracy, and synchronization accuracy but it also 

applies parameter adaptation to reduce model uncertainties 

and improve the performance with the design of robust 

control. Experimental results validated the proposed 

approach and demonstrated excellent transient and steady 

state performance even though the estimated velocity was 

used. Besides, the control performance can be always 

guaranteed during the controller design procedure.  
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