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Abstract— In this paper, we present a probabilistic path
planning algorithm for tracking a moving ground target in
urban environments using UAVs in cooperation with UGVs.
The algorithm takes into account vision occlusions due to
obstacles in the environments. The target state is modeled
using the dynamic occupancy grid and the probability of the
target location is updated using Bayesian filtering. Based on
the probability of the target’s current and predicted locations,
the path planning algorithm is designed to generate paths
for a single UAV or UGV maximizing the sum of probability
of detection over a finite look-ahead. For target tracking
using multiple vehicle collaboration, a decentralized planning
algorithm using an auction scheme generates paths maximizing
the sum of joint probability of detection over the finite look-
ahead horizon. Simulation results show the proposed algorithm
is successful in solving the target tracking problem in urban
environments.

I. INTRODUCTION

Small unmanned air vehicles (UAVs) have recently found

applications in the task of tracking moving targets on the

ground. Many approaches to this topic have been presented

in the last few years [1]–[4]. The main advantages of target

tracking using UAVs are that they have a wide field of view

and can cover large areas quickly. However, sensors mounted

on UAVs are unable to localize the target on the ground

accurately due to the limitations on altitude and airspeed.

On the other hand, unmanned ground vehicles (UGVs) are

slower with limited field of view, but they are capable of

getting closer to targets and resolving their relative locations

with greater accuracy [5]. In addition, in a pursuit-evasion

scenario, a ground vehicle has the ability to ”capture“ a

target, whereas an aerial vehicle can only observe and inform.

Accordingly, the complimentary strength of air and ground

based sensors motivates the cooperative use of both UAVs

and UGVs for target tracking.

Some approaches to the target tracking problem using

both UAVs and UGVs have been proposed. Reference [6]

describes an information based approach to UAV/UGV coop-

erative tracking. This approach works well when the targets

are static, and when the environment is relatively free of

occlusions, allowing the efficient use of log-likelihood filters,

but it is ill-suited to tracking evasive targets in complicated

urban environments. Air and ground vehicle cooperation in
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a probabilistic pursuit-evasion framework is considered in

reference [7]. But this approach does not consider sensor

data fusion, complex terrain, or planning for occluded vision.

Reference [8] presents a control scheme that guides a team of

UGVs into a formation to effectively “corral” targets into a

specific region, while a team of UAVs fly over the formation

to detect targets. The approach assumes large teams of air and

ground robots, and does not consider the effect of occlusions,

non-navigable terrain, and data fusion.

This paper presents a probabilistic path planning algo-

rithm for tracking a moving target in urban environments

using both UAVs and UGVs. Urban terrain complicates the

tracking problems because the large number of buildings

and other obstacles occlude the line of sight between the

sensors and the target. The main contribution of the proposed

planning algorithm is to take into account the occlusions

due to obstacles. We model the target state using a dynamic

occupancy grid and use a second-order Markov chain model

to represent the target motion. The probability of the target

location is updated using Bayesian filtering. For designing

the planning algorithm, we define the probability of detection

given the locations of the sensor and the target using a

Gaussian function of the distance between the sensor and

the target. To include the effect of occlusions, the probability

of detection for the configurations where occlusions exist is

assigned as zero. Based on the probability of detection of

the target’s current and predicted future locations, we design

the path planning algorithm for independent target tracking

by a single vehicle (UAV or UGV). The algorithm generates

optimal paths maximizing the sum of probability of detection

over a finite look-ahead horizon. Optimal paths are found

using dynamic programming. For cooperative target tracking

using multiple UAVs and UGVs, we define the joint prob-

ability of detection and design a decentralized suboptimal

approach relying on an auction algorithm to generate optimal

paths maximizing the sum of joint probability of detection

over the finite look-ahead horizon. The advantage of this

approach is that it results in linear computational growth as

the number of vehicles increases.

This paper is organized as follows. Section II describes

the target state modeling and estimation using a dynamic

occupancy grid. In Section III, the path planning algorithm

for target tracking using a single UAV or UGV is introduced.

Section IV introduces the path planning algorithm for co-

operative target tracking using multiple UAVs and UGVs.

Simulation results are shown in Section V.
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Fig. 1. The dynamic target occupancy grid.

(a) t-2 (b) t-1 (c) t

Fig. 2. The target motion model. The target moves up from time step t−2
to t − 1. Accordingly, the target will be assumed to move up with a high
probability Pc at time step t. The probability 1−Pc will be equally divided
between the neighboring cells.

II. TARGET STATE MODELING AND ESTIMATION

In order to plan paths for UAV/UGV to track the target,

we must estimate the target state at each time step. In this

section, we describe the method for target state estimation

using a dynamic occupancy grid. A discrete probabilistic

model of the target motion is constructed to predict the

target location using a second-order Markov chain, and is

then combined with Bayes-filtered sensor measurements to

update the target location.

Using a dynamic occupancy grid is a classical approach

to address the problem of generating consistent maps from

noisy and uncertain measurement data [9]. The basic idea

is to represent the map as a spatial grid, where each oc-

cupancy cell has a random variable s associated with it.

The random variable s has two states, occupied and empty,

which correspond to the occupancy of that cell. We use a

dynamic occupancy grid to represent changing belief about

the target location. Fig. 1 shows the dynamic occupancy grid

of the target location. To calculate the probability that the

target will be in a given cell at time t we use data from

two previous time steps, which is a second order Markov

model, and assume that the target will most likely proceed

in its direction, as shown in Fig. 2. In the figure, the target

moves up from time step t − 2 to t − 1. Accordingly, the

target will be assumed to move up with a high probability

Pc at time t. The probability 1−Pc will be equally divided

between the neighboring cells, as shown in Fig. 2 (c). One

of the advantages of using a probabilistic model of the target

motion is that several potential target paths can be captured

simultaneously.

Let xT (t) represent the target state at time t and let

P(xT (t)) represent the posterior probability that the target is

at xT (t), which is used as the prior probability of the target

location at time t+1. The dynamic occupancy grid approach

utilizes Bayesian filtering to implement approximate poste-

rior estimation for each grid cell. Bayesian filtering consists

of two phases: prediction and update. The prediction phase

uses the target motion model given by P(xT (t + 1)|xT (t)),
which represents the probability that the target is at xT (t+1)
at time t+1 given its location at time t. As mentioned above,

we represent the target motion model using a second order

Markov chain. The predicted target probability at time t +1

before the new measurements are taken into account are then

given by

P̄(xT (t +1)) =
∫

P(xT (t +1)|xT (t))P(xT (t))dxT (t). (1)

When the position of the target is observed by a member

of the UAV/UGV team, the occupancy grid is updated to

reflect the new information. This update is the measurement

phase in the Bayesian filtering. The measurement model is

represented by P(zi|xT ) which is the probability of receiv-

ing the measurement zi from the ith observation platform

(UAV/UGV) given that the target is located at xT . The

posterior probability that the target is xT (T +1) at time step

t +1 is given by

P(xT (t +1)) = ηP(zi|xT )P̄(xT (t +1)), (2)

where η is a normalization factor. Eq. (1) and Eq. (2)

constitute the Bayesian filtering for updating the posterior

probability of the target location. We should note that if a

measurement is not received at every time step, then the

probability of the target location is updated using Eq. (1). The

measurement update in Eq. (2) occurs when a measurement

is received from any vehicle and may be applied multiple

times if measurements are received from multiple platforms

at the same time. At the beginning of an observation mission,

when the target has not been observed by any platforms,

the probability of the target location can be initialized as

a uniform distribution. However, if priori information is

known, then the probability map can be initialized using this

information.

III. PATH PLANNING FOR A SINGLE VEHICLE BASED ON

PREDICTED TARGET BEHAVIOR

Given the probability of the target’s current and probable

future locations computed using the procedure described in

the previous section, we design a path planning algorithm

for tracking of the target by a single vehicle (UAV or

UGV). The objective of the algorithm is to generate a

parameterized path over a finite look-ahead TL. Future paths

can be parameterized in a number of different ways including

a set of roll angles or a set of waypoints. To be general, let

Θi represent the path parameterization over the time horizon

[t, t + TL]. We use the notation xi(t,σ ,Θi) to represent the

predicted location of the ith sensor platform (UAV/UGV) at

time t +σ , given its current location at time t, and the path

parameterization Θi, where σ ∈ [0,TL].
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Fig. 3. The probability of detection when buildings occlude the line of
sight vector. The location of the target is at (0,0) and the location of the
sensor is varied.

Let Di represent the event that the target is detected by the

ith vehicle, and let P(Di|xi,xT ) represent the probability that

the target is detected by the ith vehicle when it is at xi and

the target is at xT . We assume that the sensor is gimbaled

and pointing toward the target. We represent P(Di|xi,xT ) as

a Gaussian function of the distance between the target and

the sensor:

P(Di|xi,xT ) = η exp(−
1

2
(xi − xT )

⊤Σ−1(xi − xT )), (3)

where Σ is the covariance and η is a normalization factor.

Please note that other non-Gaussian distribution functions

can be used to represent P(Di|xi,xT ) as well. The plan-

ning algorithm does not require the Gaussian distribution

assumption and we use the Gaussian distribution only as an

example. In this paper, we pay particular attention to the

problem of tracking a moving target in urban and cluttered

environments where occlusions due to buildings and other

terrain are prevalent. We assume that an elevation map of the

environment is available to the vehicles before the mission

begins. To include the effect of occlusions, we also include

the map as a dependence in the probability of detection where

P(Di|xi,xT ,m) is the probability that the target is detected by

the ith vehicle given that the ith vehicle is at xi, the target is

at xT , and the map is given by m. We then compute

P(Di|xi,xT ,m) = η

{

P(Di|xi,xT ) LOS is not occluded,
0 otherwise,

(4)

where again, η is a normalization factor. Figure 3 shows an

example probability of detection in an urban environment. In

this example, the target location xT is held constant at (0,0),

while the vehicle location xi is varied in one meter increments

on both axes. As shown, when a building occludes the line

of sight, the probability of detection is zero. Occlusions are

detected by testing each line of sight vector for intersections

with each building polygon in the map. Since we assume

that the map is known, P(Di|xi,xT ,m) can be precomputed

for each pair of xi and xT and stored in memory.

Using the law of total probability, the probability that the

target is detected when the ith vehicle is at xi is

P(Di|xi) =
∫

P(Di|xi,xT )P(xT )dxT . (5)

We are interested in maximizing the probability of detection

over the future time horizon [t, t + TL]. Using the path pa-

rameterization discussed above, we have that the probability

of detection at σ ∈ [0,TL] is given by

P(Di|xi(t,σ ,Θi)) = (6)
∫

P(Di|xi(t,σ ,Θi),xT (t +σ))P(xT (t +σ))dxT (t +σ).

For optimizing the path parameterization Θi, we propose a

return function, which measures the sum of probability of

detection over the look-ahead window and is given by

Ji(Θi) =
∫ TL

0
P(Di|xi(t,σ ,Θi))dσ . (7)

The myopic planning problem for a single vehicle is then to

find Θi to maximize Ji(Θi). The optimum path parameters

are then passed to the low level autopilot and followed for a

time less than or equal to TL.

For independent target tracking using a UAV, we param-

eterize the paths by roll angles since different roll angles

generate different paths. Let Φi = [−φmax,φmax] represent

the set of roll angles, where ±φmax is the positive/negative

maximal roll angle. To solve the optimization problem, we

discretize Φi as a finite set of roll angles represented by

Φid = {φ1,φ2, · · · ,φm}, where φ1 = −φmax and φm = φmax

and we also discretize the look-ahead window [0,TL] as Td =
{0,∆σ , · · · ,n∆σ}, ∆σ = TL/n, which is the n-step look-ahead

horizon. Let Θa
i ∈ Φid represent the path parameterization

over the n-step look-ahead horizon. For the n-step look-ahead

planning horizon, the cost function given by Eq. (7) becomes

Ji(Θ
a
i ) =

n

∑
j=0

P(Di|xi(t, j∆σ ,Θa
i )). (8)

To maximize the return function given by Eq. (8), we

recursively search a tree representing a set of potential paths

over the n-step look-ahead horizon. Each node in the tree

represents the UAV configuration at a certain stage and it

has multiple children, each of which represents the resulting

configuration at the next stage corresponding to a certain roll

angle.

The path planning algorithm for target tracking using

a single UAV can be described as follows. When the

UAV is at the configuration xi(t,0,Θ
a
i ) at time t, the al-

gorithm has already determined an optimal path τi(t) =
{xi(t,0,Θ

a
i ),xi(t,∆σ ,Θa

i ), · · · ,xi(t,n∆σ ,Θa
i )}. The UAV is

maneuvered towards xi(t,∆σ ,Θa
i ). During that period, the

algorithm first takes xi(t,∆σ ,Θa
i ) as the tree root and the

tree is pruned by only maintaining the branches with the

root at xi(t,∆σ ,Θa
i ). The tree is then extended by one stage

and the new tree is searched to find a new path τi(t +∆σ).
Once the UAV reaches xi(t,∆σ ,Θa

i ), the new path τi(t+∆σ)
has been generated. We repeat this process recursively so that
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(a) t (b) t +∆σ

Fig. 4. A two-step look-ahead path planning tree for the UAV, where
Td = {0,∆σ ,2∆σ} and Φid = {φ1,φ2,φ3}.

the UAV is always maneuvered to configurations where the

probability of detection is high.

Figure 4 shows a two-step look-ahead planning horizon

tree, where Td = {0,∆σ ,2∆σ} and Φid = {φ1,φ2,φ3}. When

the UAV is at the configuration xi(t,0,Θ
a
i ) at time t and

the path τi(t) = {xi(t,0,Θ
a
i ),xi(t,∆σ ,Θa

i ),xi(t,2∆σ ,Θa
i )} has

been found, as shown in Fig. 4(a). In Fig. 4(b), the UAV is

maneuvered to xi(t,∆σ ,Θa
i ) and the branches whose root is

not at xi(t,∆σ ,Θa
i ) are removed. The tree is then extended by

one step horizon and the new tree is searched to find a new

path τi(t+∆σ) = {xi(t+∆σ ,0,Θa
i ),xi(t+∆σ ,∆σ ,Θa

i ),xi(t+
∆σ ,2∆σ ,Θa

i )}. Once the UAV reaches xi(t,∆σ ,Θa
i ), the new

path τi(t + ∆σ) has been found. Given a tree, searching

the tree and finding a path can be solved efficiently using

dynamic programming [10].

For independent target tracking using a single UGV, we

decompose the roads into cells and construct a graph using

those cells since the UGV can only move along the roads.

Similarly, we discretize the look-ahead window [0,TL] as

the n-step look-ahead horizon Td = {0,∆σ , · · · ,n∆σ}, where

∆σ = TL/n. For each stage, the paths to the next stage are

parameterized by the waypoints, denoted by Θ
g
i , which are

the centers of the neighboring cells. The cost function to be

maximized for target tracking using a single UGV is given

by

Ji(Θ
g
i ) =

n

∑
j=0

P(Di|xi(t, j∆σ ,Θg
i )). (9)

Similarly, the n-step look-ahead planning horizon tree

is constructed. The connectivity of the graph determines

the extension of the tree. Figure 5 shows a two-step

look-ahead planning horizon tree, where the circles rep-

resent the nodes and the tree is extended based on

the connectivity of the graph. At time t, the UGV

is at the configuration xi(t,0,Θ
g
i ) and the path τi(t) =

{xi(t,0,Θ
g
i ),xi(t,∆σ ,Θg

i ),xi(t,2∆σ ,Θg
i )} has been found as

shown in Fig. 5(a). The UGV is maneuvered to xi(t,∆σ ,Θg
i )

and the branches whose root is not at xi(t,∆σ ,Θg
i ) are

removed, as shown in Fig. 5(b). The tree is then extended

by one stage and the new tree is searched to find a new

path τi(t+∆σ) using dynamic programming. Once the UGV

reaches xi(t,∆σ ,Θg
i ), the new path τi(t + ∆σ) = {xi(t +

∆σ ,0,Θg
i ),xi(t +∆σ ,∆σ ,Θg

i ),xi(t +∆σ ,2∆σ ,Θg
i )} has been

(a) t (b) t +∆σ

Fig. 5. A two-step look-ahead path planning tree for the UGV.

found.

IV. PATH PLANNING FOR MULTIPLE VEHICLE

COLLABORATION

The approach described in the previous section can easily

be extended to multiple vehicles. Let I be an index set of

vehicles and let xI be the combined state of all vehicles

whose index is in I. Let DI represent the event that at least

one vehicle in I can detect the target. The probability that at

least one of vehicles detects the target given xI and the target

location xT is denoted by P(DI |xI ,xT ). It can be shown using

standard probabilistic reasoning, that if the measurements

made by each vehicle are independent, then

P(DI |xI ,xT ) = 1−∏
i∈I

(1−P(Di|xi,xT )) . (10)

This formula is significant, because it shows that the joint

probability of detection can be computed by combining the

probability of detection for each vehicle. The probability that

at least one of vehicles detects the target given xI is denoted

by

P(DI |xI) =
∫

P(DI |xI ,xT )P(xT )dxT . (11)

Let ΘI be the combined path parameters for all vehicles

in the index set I. We can define the optimization criteria

similar to Eq. (7) that are over the index set I, where

J(ΘI) =
∫ TL

0
P(DI |xI(t,σ ,ΘI))dσ . (12)

The joint team optimization problem is to let I include all

UAVs and UGVs on the team, and to maximize the return

function J(ΘI) at each planning instant. Unfortunately, this

problem is NP-complete and so the computational time will

grow exponentially in the number of UAVs and UGVs. In

addition, solving the full joint optimization problem requires

a centralized implementation. To mitigate these problems,

we propose using a decentralized suboptimal approach that

relies on an auction algorithm. To best describe our approach,

we need some additional notation. Let I and K represent

two index sets where I
⋂

K = /0, and let J(ΘI |ΘK) represent

the return function defined by Eq. (12) but where the path

parameters for the vehicles in I are free to change and the

path parameters for the vehicles in K are fixed.

Consider that there are N vehicles in the groups. The

decentralized algorithm that we use consists of N steps. Let
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Θ
j
i represent the path parameterization for the ith vehicle at

the jth step of the algorithm. The first step of the algorithm

is for each vehicle to maximize J(Θ1
i ), i = 1, · · · ,N, and to

send the optimal myopic return to the other vehicles in the

network. If k1 is the index of the vehicle such that k1 =
argmax

i

(J(Θ1
i )), then the path of the (k1)

th vehicle over the

look-ahead window [0,TL] is parameterized by Θ1
k1

, and each

vehicle assigns K = k1. At the second step, the remaining

vehicles maximize J(Θ2
i |ΘK), i = 1, · · · ,k1 −1,k1 +1, · · · ,N

and send the resulting optimal value to the group. If k2 is

the index of the vehicle such that k2 = argmax
i

(J(Θ2
i |ΘK)),

then the path of the (k2)
th vehicle is parameterized by Θ2

k2
.

The (k2)
th vehicle is added to K such that K = {k1,k2}.

The process repeats until all vehicles {k1,k2, · · · ,kN} have

been assigned path parameters {Θ1
k1
,Θ2

k2
, · · · ,ΘN

kN
}. For the

N vehicles, N−1 auctions will be required. Let |Θi| represent

the cardinality of the set Θi. The advantage of this approach

is that rather than optimizing over |Θi|
N , the process requires

N optimizations over Θi parameters, resulting in linear

computational growth.

V. SIMULATION

The algorithm was tested using a simulation environment

developed in MATLAB/SIMULINK, as shown in Fig. 6,

where green blocks represent the buildings. A single UAV

and UGV were used to track a target cooperatively. A 49×49

occupancy grid, where the size of each cell is 5m × 5m,

was used to model the target state. The simulator uses six

state navigation equations for the aircraft and uses four

state navigation equations for the ground vehicle. Three-

step look-ahead horizon paths were planned for the UAV

and the UGV with the sample interval σ = 2s. The set of

roll angles for the UAV was {−30◦,−15◦,0◦,15◦,30◦}. The

camera mounted on the UAV was assumed to be gimballed

so that it was always pointed down and the field of view

of it was 40◦. An omnidirectional camera was used for the

UGV and the area it can observe was a square of 30m×30m.

The covariance of the detection probability was Σ = 20. The

parameter Pc was set at 0.9. In the simulation, the UAV

flew at an altitude of 120m. The target is initially placed

at North-East coordinate (75m,75m) and it will move among

the waypoints (75m,75m), (75m,-75m), (-75m,-75m) and (-

75m,75m) in turn. The motion model of the target is not

known by the UAV and the UGV.

Figure 6 shows the snapshots of the target occupancy grid

and the paths for the UAV and the UGV for cooperatively

tracking the target at different time steps. There exist 36

buildings in the environment, each of which is 40m high. The

algorithm assumes the target is initially located at the origin.

It then updates the target occupancy grid using Bayesian

filtering and plans the corresponding paths such that the

joint cost function is maximized. By doing so, the UAV and

the UGV can eventually detect the target at time t = 40s,

as shown in Fig. 6(c). Figure 7 shows the trajectories of
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Fig. 6. The snapshots of target occupancy grid and the paths of the UAV
and the UGV.
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(b) UGV target tracking

Fig. 7. The trajectories of the target, the UAV and the UGV.

the target, the UAV and the UGV. Figure 8 shows the cost

associated with the UAV, the UGV and their cooperation.

Based on the figure, the cost associated with the UAV shows

more oscillations than the cost associated with the UGV. This

is due to the fact that the UAV must always fly along its orbits

and cannot stop. The algorithm takes around 40s to detect

the target, as shown in the green area. The UAV and the

UGV then start to track the target. The straight horizontal

lines in the figure show the mean of the cost associated with

the UAV, the UGV and their cooperation before and after the

first detection.

To show the statistical performance of the algorithm,

we implemented the algorithm in the environments with

different building height and density. For each environment,

we executed 100 simulation runs. Each simulation run lasted

300s and different initial positions of the UAV and the UGV

were chosen based on a uniform distribution. We evaluated
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(a) The cost for the UAV (b) The cost for the UGV

(c) The joint cost

Fig. 8. The cost associated with the UAV, the UGV and their cooperation.
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Fig. 9. The change of Ts and ρ versus the building height.

two criteria: (a) the search time for the first detection denoted

by Ts, and (b) the time percentage of target loss by both the

UAV and the UGV (out of the field of view of both cameras

or occluded by buildings) denoted by ρ . Figure 9 shows the

change of average values of Ts and ρ over 100 simulations

versus the height of the buildings for the environment where

36 buildings exist. Figure 10 shows the change of average

values of Ts and ρ versus the density of the environment

where the building height is 100m. In the simulation, we

consider the environment where at most 36 buildings exist.

The density of the environment is assumed to be the ratio

of the number of existing buildings over 36. From the two

figures, Ts and ρ increase as the height of the buildings

and the density of the environment increase. This is because

that more occlusions will be generated as the height and the

density increase.

VI. CONCLUSIONS

We have presented a path planning algorithm for tracking

a moving target in urban environments using both UAVs

and UGVs. The algorithm takes into account occlusions

between the sensors and the target. We use the dynamic

occupancy grid to model the target state and use Bayesian

filtering to update the probability of the target location. For

target tracking by a single obstacle, we design the path

planning algorithm to generate paths maximizing the sum

0 20 40 60 80 100
30

40

50

60

70

80

Density

T
s
 (

s
)

(a) Density vs. Ts

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Density

ρ

(b) Density vs. ρ

Fig. 10. The change of Ts and ρ versus the density of the environment.

of probability of detection over a finite look-ahead horizon.

For target tracking using multiple vehicles, we designed the

decentralized path planning algorithm relying on an auction

algorithm to generate paths maximizing the sum of the joint

probability of detection over the finite horizon.

In this work, we assume that the terrain map is accurately

known and not changing in time. In the future, we will design

schemes for tracking targets in unknown environments. We

will also use higher order Markov chains to represent the

target motion. Flight experiments will also be conducted to

validate the planning algorithm.
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