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Abstract— This paper describes methods for doing high-
speed, low latency, coherent demodulation of signals for dy-
namic or AC mode in Atomic Force Microscopes (AFMs) [1].
These demodulation methods allow the system to extract signal
information in as little as one cycle of the fundamental oscil-
lation frequency. By having so little latency, the demodulator
minimizes the time delay in the servo loop for an AC mode
AFM. This in turn minimizes the negative phase effects of the
demodulation allowing for higher speed scanning. This part
of the paper describes the mixing and integration portion of
the demodulator. Part II [2] describes efficient methods for
extracting magnitude and phase in real time.

I. INTRODUCTION

Dynamic mode AFM, which involves an oscillation of the

cantilever in the proximity of the surface at a frequency close

to the resonant frequency of the cantilever is depicted in Fig-

ure 1. In non-contact mode, the amplitude of the oscillation

is slightly less than the nominal tip/surface distance so that

while there is interaction between the tip and surface, this

never enters into what would be considered contact. In the

most common form of dynamic mode, also known as AC

mode, or intermittent contact mode [3], [4], the amplitude

of the free oscillation is slightly larger than the nominal

tip/surface distance. When the tip comes into proximity with

the surface, the oscillation amplitude, phase, and frequency

are modulated. By detecting this modulation and closing

a feedback loop on the amplitude of the oscillation, this

amplitude can be maintained at a constant level (modulo

the bandwidth of the system). Typically, the control signal

represents the surface topography.

Dynamic mode imaging is done using cantilevers of var-

ious frequency ranges which are described in [5]. Often as

the cantilever resonant frequency goes up, they get stiffer

and have a higher Q. The higher Q provides greater ampli-

tude amplification of the drive signal and better frequency

discrimination for small shifts due to surface interaction.

However, the extra stiffness of the cantilever might damage

some materials, so there is a trade-off to be made on

increasing the cantilever resonance. Because dynamic mode

produces lower sheer forces on the sample than contact

mode, the imaging of biological samples, is often done using

this technique.

Although dynamic mode operation of AFMs is favored for

imaging of soft samples, this operation is hampered by its

slow speed. There are several reasons for this, as described

in [5]:
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• The Q factor of the cantilever affects the time response.

The cantilever is usually oscillated near its resonant

frequency to get reasonable deflection amplitudes with

low levels of input signal. Due to nonlinear interactions

with the surface, the tip oscillation amplitude responds

almost instantaneously to a step up in the surface.

However, when there is a step down in the surface

height, the response time of the cantilever oscillation

will be proportional to Q/ωo, where ωo is its resonant

frequency [6]. The flywheel action (which the author

likes to call the Wiley E. Coyote effect), also introduces

a limitation on the imaging speed without imaging

artifacts.

• In AC mode, information about the surface is only

available during the contact interval, which happens

once every period of the oscillation. Consequently, the

duty cycle of tip/surface interaction is considerably

reduced as compared with contact mode.

• The surface information of interest is typically at a

frequency well below that of the oscillation frequency

and must be extracted from the oscillatory return signal

via demodulation.

It is the role of the demodulator to extract surface infor-

mation from the return signal. Typically there is a trade-

off between the fidelity of the extracted information and

shortening the demodulation time. However, speeding up

dynamic mode operation depends upon having a high fidelity,

low latency demodulator. Consider driving the cantilever

with a sine wave:

d(t) = D0 sin(ω0t). (1)

The signal, s(t), from the optical sensor, is composed of

harmonics of sin(ω0t), i.e.

s(t) = A0 +

∞
∑

k=1

(Ak sin(kω0t) +Bk cos(kω0t)) . (2)

We can expect that if the drive signal is large enough and

the tip/surface interaction is set to be a small fraction of the

free space oscillation, then the majority of the signal will be

dominated by the first harmonic,

s(t) ≈ A1 sin(ω0t) +B1 cos(ω0t) = C1 sin(ω0t+ φ1). (3)

where

C1 =
√

A2
1 +B2

1 and φ1 = arctan
A1

B1
. (4)

Because dynamic mode typically operates near the can-

tilever resonance [7], there is a relationship between the
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Fig. 1. An AFM Control Block Diagram in dynamic mode.

amplitude shift, phase shift, and frequency shift seen due to

the surface/tip interaction. Thus, both the imaging and the Z-

axis servo loop can be driven by one of several demodulated

signals.

• Amplitude Modulation (AM): In this mode, the

change in the amplitude of the oscillation is detected

and used as the error signal for the feedback loop. The

speed of AM-AFM is often limited by the high Q-factor

of the cantilever.

• Phase Modulation (PM): In this mode, the change in

the phase difference between the cantilever drive and the

returned deflection signal is detected. While feedback

on the amplitude is easier to implement, the phase signal

can be used to measure other surface properties like

energy dissipation [8].

• Frequency Modulation (FM): In this mode, the

change in the oscillation frequency of the returned de-

flection signal is detected. FM-AFM typically requires

extremely high-Q cantilevers so that the frequency shift

can be detected. This has meant that FM-AFM is most

often done in a vacuum where the lack of air damping

makes the cantilever Q seem much larger.

Non-coherent, or non-synchronous demodulation, using an

analog RMS-to-DC circuit (or its digital equivalent) can ex-

tract the signal magnitude, but not the phase. Both magnitude

and phase can be extracted using a lock-in amplifier, which

is a synchronous device that mixes in-phase and quadrature

signals with the input signal and then integrates for a known

period of time. Typical external lock-in amplifiers are slow,

since tracking speed is often secondary to accuracy. Like

the RMS-to-DC circuit, they often integrate over at least

10 periods of the input signal. For example, the 36 ms

settling time of the AD736 [9] is 3,168 periods of the 88

kHz signal used in the examples of Section III. There has

been a push among AFM manufacturers to include digital

lock-in amplifiers in their AFM controllers. To be useful for

high speed control, however, these lock-in amplifiers need to

both have low latency and high fidelity. This is demonstrated

in this paper.

II. COHERENT DEMODULATION FOR AFMS
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Fig. 2. Coherent demodulation for AFM.

In coherent demodulation, the signal to be demodulated is

separately mixed with an in-phase and a quadrature (90◦ out

of phase) signal and then integrated. If

s(t) = C1 sin(ω0t+ φ1) + n(t), then (5)

I(t) = s(t) sin(ω0t) and (6)

Q(t) = s(t) cos(ω0t), (7)

where n(t) is the noise in s(t). The basic principle of

coherent demodulation is based on the idea that if one sets

the mixing signal to the same fundamental period as the

drive signal, T0 = 1
f0

= 2π
ω0

, and sets the integration period,

T equal to a positive integer number of those periods, MT0,

then most of the terms in the integrals drop out. In particular,
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we can set M as low as 1 and

1

MT0

∫ MT0

0

I(t)dt =

C1

2

(

cos(φ1)
1

MT0

∫ MT0

0

dt−

1

MT0

∫ MT0

0

cos(2ω0t+ φ1)dt

+
1

MT0

∫ MT0

0

n(t) sin(ω0t+ φ1)dt

)

. (8)

has the properties that the second term on the right hand

side goes to 0 for all positive M . The third term goes to 0
for increasing MT0 as long as n(t) is uncorrelated with the

mixing sinusoids.

Such precise control of the integration period is hard

to do in an analog circuit but completely doable in a

digital operation. A similar result for Q(t) is obtained from

integrating Equation 7 in a similar fashion.

As MTO gets large the contribution of n(t) goes to 0,

yielding the familiar relationships

1

MT0

∫ MT0

0

I(t)dt ≈
C1

2
cos(φ1) and (9)

1

MT0

∫ MT0

0

Q(t)dt ≈
C1

2
sin(φ1). (10)

A. Discrete Approximation of the Integral

There are several issue with standard methods of demod-

ulation. The first is that imperfections in the integration

approximation and noise in the signal require that MTO

be large, relative to the period of the frequency at which

demodulation is to take place. However, for control of high

speed systems in general, and AFMs in particular, this long

integration period results in extra delay in the system, and

this delay translates into negative phase which in turn limits

bandwidth. In order to minimize this latency, we need to

make the integral more accurate for short integration times

and minimize the noise, n(t), in the return signal.

The second is that for the reasons above we wish to use

digital methods. To be generally useful, a digital demodulator

needs to be functional over the entire frequency span of

cantilever resonant frequencies. To integrate a sampled signal

over an integer number of periods of oscillation of the signal,

NTS = MT0, (11)

where N are the number of samples in the integration, TS is

the sample period, M is the number of periods of oscillation,

and T0 is the period of oscillation. However, as the data

sample rate is rarely an integral multiple of the oscillation

frequency, it is difficult to make Equation 11 hold. Most

digital systems are run at a fixed sample rate, fS = 1
TS

. The

oscillation frequency, f0, in an AFM is set by the cantilever

oscillation frequency. That is to say, f0 might change slightly,

but fS will not.

The adjustments to T0 to make equality hold in Equa-

tion 11 can be kept small if N and M are made large. While

Sample Points

Signal

End of last full
period of signal

Last Sample
of Integration

Fig. 3. Integrating the partial sample of a sampled sinusoid.

this approach may be feasible for an offline measurement, or

for producing signal processing results that are not used in

the feedback loop, this method will add to latency in the

integral calculation. A more practical solution is to find the

minimum N such that

NTS ≤ MT0 ≤ (N + 1)TS . (12)

In the most common case when equality does not hold, the

last period of the integration is a partial one, as shown in

Figure 3. This will require N +1 samples where the first N
samples of the integral integrate over the complete sample

period and the last one is interpolated over a partial sample.

Digital quadrature is documented in many numerical

computation texts [10], [11]. Generally, the algorithms for

quadrature will make use of a polynomial fit over some

number of sample points to approximate the function. The

fit of a Lth order polynomial will involve L + 1 points.

In applications where latency (time delay) is not an issue,

one can achieve higher accuracy by conducting the integral

between samples k and k + 1 using samples on either side

of this interval.

For our problem, we want to minimize the latency of

the integral and for this the simplest discrete integral ap-

proximations are the forward and backward rectangular rule

approximations, and the trapezoidal rule approximation. Be-

cause of their small amount of delay, these are often used

in generating discrete equivalents of analog controllers [12].

The forward rectangular rule has a single period delay.

The backwards rectangular rule has zero delay. Finally, the

trapezoidal rule has a half sample period delay.

Standard practice in digital lock-in amplifiers is to use

one of the rectangular rule approximations and rely on using

many periods of oscillation to drive the error to 0. However,

by using a higher-order approximation and a partial sample

integral, we can cut the error down with far fewer periods

of integration.

B. Practical Implementation of the Discrete Integration

In this paper, a trapezoidal rule integration is used. This

seems to provide a reasonable compromise between minimiz-

ing latency and integration accuracy. consider the trapezoidal

rule implementation of our integral:

∫ xN

x0

y(t)dt ≈

N−1
∑

k=0

(

yk+1 + yk
2

)

TS , (13)
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where TS and N are defined as in Equation 12. Between N
and N +1, we will have a partial interval integral that must

be computed

∫ xk+TSh

xN

y(t)dt ≈

(

yN+1 + yN
2

)

hTS , (14)

where 0 ≤ h ≤ 1 and

h =
MT0 −NTS

TS

. (15)

Note that hTS is the integration time needed to complete

the M th period of oscillations at f0, so the fraction of a

sample period that this represents is given by h. Putting these

together and looking back in time rather than forward, we

get
∫ kTS

kTS−MT0

y(t)dt ≈ Sk where (16)

Sk

TS

=

N−1
∑

j=0

(

yk−j + yk−(j+1)

2

)

+

(

yk−N + yk−(N+1)

2

)

h.

(17)

We now need to focus on the properties of the sum, Sk

and how to compute this efficiently. We see that Sk can be

rewritten as

Sk

TS

=
yk
2

+

N−1
∑

j=0

yk−j +
yk−N

2
+ h

(

yk−N + yk−(N+1)

2

)

.

(18)

Equation 18 is very instructive because it shows us that

the integral can be simply constructed as a FIR filter. We

can factor out a single scale factor, TS

2 , and then we have

a main integral corresponding to the terms before the term

scaled by h and the fractional portion, scaled by h. It is also

instructive that very little about this formula is dependent

upon the sample interval, fS , and the oscillation frequency,

f0. Basically, a change in f0, fS , and/or the number of

periods in the integral, M , changes only N and h. For a

given M , T0, and TS , we pick N from Equation 12 and h
from Equation 15.

So, we see that this integration problem can be put in

the general form of an FIR filter, providing we can handle

the bookkeeping for the computation. At each time step, new

data comes into one side of the FIR and old data is discarded

from the other side. Actually doing this in real-time hardware

presents three issues:

• First, shifting all the values of y(j) back one step in time

can be expensive in terms of computation time. At each

time step, N values have to be shifted in their memory

locations so that they line up with the coefficients of

the filter at the next time step.

• Second, the longer the filter, the longer the number of

computations. Varying latency is a problem for feedback

systems and must be avoided.

• Third, any new frequency requires loading a new set of

N + 1 coefficients.

In wanting a method that is efficient in any possible

architecture, it is worth looking at an incremental or iterative

method, that is, a method that uses a running sum for the

integral and only makes adjustments to this running sum at

each time step.

Advancing Equation 18, forward one step in time, and

taking the difference with the current value yields

Sk+1 − Sk

=
TS

2

[

yk+1 − yk + 2

N−1
∑

j=1

yk+1−j − 2

N−1
∑

j=1

yk−j

+ yk−(N−1) − yk−N + h
(

yk−N − yk−(N+1)

)

]

(19)

which – through algebra that would result in extra page

charges – reduces to

∆Sk+1 = Sk+1 − Sk =
TS

2
[yk+1 + yk (20)

+yk−(N−1) − yk−N + h
(

yk−N − yk−(N+1)

)]

.

This is a wonderful result, because Equation 20 has a form

that uses a small, fixed number of terms. Even if higher-order

integration methods are used, this form would have a larger,

but fixed number of terms, independent of N . We need to

keep track of old values of the integral, but they are used

sparingly in the calculation. If we start with S0 = 0, then

we can compute Sk from

Sk = ∆Sk + Sk−1. (21)

In short, we have implemented a quadrature integration as

an FIR, and compute the values of that FIR recursively as if

it were an IIR. What keeps this an FIR is that at a later time

we subtract off exactly the same value that was added to the

cumulative sum. We still need to keep track of a potentially

large set of prior sample values. If we were to move each

sample back one time step in memory, this would create large

amounts of bookkeeping computations. Instead, we can use

circular addressing of a memory buffer of old sample values

as is often done in DSP calculations. New data is written

into the memory and old data is read out of it. The memory

addresses at which this happens are computed using circular

addressing, with the indices of these addresses moving at

each time step. Thus, the update of the memory buffer at any

one time step requires reading the oldest value in the filter

from memory and writing the newest value into memory.

This can be done as easily in a FPGA as in a processor and

is illustrated in Figure 4.

In Figure 4 we see that we can use a single large memory

block and put the filter in part of it. The use of a larger block

allows the filter length to be quite flexible, so that it is easy

for the user to change oscillation frequency or the number

of periods of oscillation that are needed for the calculation.

Changing these simply results in a change in the size of

the memory used in the block. We see here that for the N
chosen as above, we only have N + 2 words of memory

allocated for the filter. At any time k, a new sample will
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Fig. 4. Circular addressing of filter memory

be written at a memory location denoted by k, and an old

sample will be read from memory at location k − (N + 1).
When the next sample comes in it should go to the left of

sample k, but since our drawing shows this at the beginning

of the memory block, the writing index is chosen to be at

the end of the block, where the no longer useful data from

k− (N +1) is held. Thus, the sample from k+1 is written

there, while the index for reading decrements so as to point

to location k − N . We can see that this process can go on

easily, simply by initializing the indices in the right locations

and then moving them in synchrony together.

III. EXAMPLES
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Equations 20 and 21 are easy to implement simply in real-

time processors such as DSPs or FPGAs. In this section

are simulation examples to illustrate the behavior of the

integration portion of the demodulator. Similar results are

shown in Part II [2] to illustrate the extraction of magnitude

and phase from the integrated quantities.

An illustration of the convergence of the integrator is

shown in the simple Matlab simulation of Figure 5. The

input signal is at 88 kHz and is switched “on” and “off”

with the magnitude stepped up with each “on” period. The

demodulated magnitude is plotted on the same axis as the

input signal. As predicted by the analysis, the integrator
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Fig. 6. Output of ModelSim Simulation of FPGA based demodulator. The
oscillation frequency is 88 kHz. The normalized deflection amplitude is
0.25. There is a normalized offset of 0.2 in the signal level, and the phase
of the signal driving the deflection is 15

◦ ahead of that of the in-phase
(sine) mixing signal at the beginning of the simulation.
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Fig. 7. Floating point magnitude and phase extracted from the simulation
in Figure 6.

yields I and Q in 1 integration period (M = 1), which is

mapped to magnitude in the plot.

The demodulator architecture, implemented in FPGA

hardware, was simulated using ModelSim 6.6b [13], and

signals were normalized back to real numbers. The signals of

interest to this paper were saved to an ASCII file, which was

processed in Matlab. The last 20% of the data was used to

compute the steady state averages (µ) and standard deviations

(σ) of these signals. The means for the I and Q signal do not

mean much to the reader, but the small σ for these signals

does show the accuracy of the integrator. In the case of the

magnitude and phase µs and σs, the values can be compared

to the original inputs. Note that the σ value for phase is in
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Fig. 9. Floating point magnitude and phase extracted from the simulation
in Figure 8

degrees.

Figures 6 –9 show the results of the simulator when driven

with an 88 kHz signal, which had an amplitude of 0.25, an

offset of 0.2 and a phase advance (as compared to the in-

phase mixing signal) of 15◦ (in Figures 6 and 7) or a delay

of 30◦ (in Figures 8 and 9). The top plots of Figures 6 and 8

are zoomed in to better show the effects of noise on the

signal. The lower two plots show the results of the I and

Q branch integrations. The in-phase (I) and quadrature (Q)

branches converge quickly, although small imperfections in

the integration result in some ripple in these signals. Passing

these signals through the FIR filter described in Part II [2],

results in the removal of these effects. With no noise injected,

the standard deviation (σ) is minuscule. The rejection of

white noise while using a single integration period is small.

The rejection can be increased by integrating over multiple

oscillation periods, but at the cost of more latency.

While the simulation accurately simulates synthesizable

blocks of the FPGA, it can also simulate blocks that cannot

be put into logic. Thus, Figure 7 and 9 show real values of

magnitude and phase extracted from the integrator outputs.

Note that with no noise injected, the deviation (σ) of the

magnitude and phase from their steady state values (µ) is ex-

tremely small (and virtually non-existent after the application

of the FIR). The effect of signal noise, n(t), is diminished

despite the short integration time.

IV. CONCLUSIONS

This paper demonstrates a low latency, high accuracy, AC

mode demodulator that is applicable for high speed, real-time

applications. The algorithm implements classical coherent

demodulation theory in a clean and flexible structure with

minimal computational overhead. This part of the paper has

described the mixing and integration portion of the demod-

ulator. Part II [2] describes efficient methods for extracting

magnitude and phase in synthesizable blocks.
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