
  

  

Abstract—A distributed supervisory controller is proposed to 
achieve battery component swapping modularity (CSM) for a 
plug-in hybrid electric vehicle (PHEV). The CSM permits to 
distribute a part of the controller to the battery module such 
that the PHEV can use a range of batteries while providing 
optimal fuel economy. A feedback based controller is proposed 
to facilitate battery CSM design. The control strategy is to 
optimize fuel economy and driving performance in terms of 
wheel power tracking error, while smoothing engine power and 
sustaining battery state of charge. The distributed controller 
with battery CSM is obtained by solving a bi-level optimization 
problem via the augmented lagrangian decomposition method. 
The simulation results demonstrate that battery CSM can be 
achieved without compromising fuel economy. 

 
I. INTRODUCTION 

lug-in hybrid electric vehicles (PHEVs) enable  the 
transportation sector to access lower-cost, cleaner, and 
renewable energy from the electric grid [1].  One main 

barrier to the commercialization of PHEVs is the cost of the 
batteries.  Increasing the battery energy capacity from 20 to 
40 miles of all electric range provides an extra 15% 
reduction in fuel consumption, but it also nearly doubles the 
incremental cost [2]. It is thus beneficial to investigate the 
design of the PHEV which enables different batteries to be 
applied to the same vehicle. As battery technology advances, 
the vehicle can be easily upgraded with newer batteries (e.g., 
batteries with higher energy capacity). 
    From the perspective of component swapping modularity 
(CSM) [3], the battery component is swappable if: (1) the 
vehicle configurations before and after battery change 
operate at their corresponding optimal performance, (2) re-
work in terms of software and controller calibration is 
limited to the battery component only, when battery change 
occurs. With CSM, the battery becomes a “plug and play” 
component. The interest in plug and play control has been 
steadily increasing, e.g. [4].  Opportunities to implement 
plug and play control systems are emerging in systems 
consisting of smart components connected by bi-directional 
communication networks [5]. 

Two design methods have been proposed to realize CSM 
in control systems. The 3-step method, which yields the 
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distributed controllers with CSM by matching with a pre-
computed centralized controller, has been developed and 
applied to automotive problems in [3, 6-8]. The direct 
method proposed in [9] generates the distributed controllers 
by solving a bi-level optimization problem. The direct 
method is applicable to nonlinear, as well as linear, 
controllers and can improve CSM compared to the 3-step 
method [9]. In this paper, to achieve battery CSM, a bi-level 
optimization problem is solved using the augmented 
lagrangian decomposition (ALD) method [10]. The ALD 
method is more complex, but provides more design freedom 
for each inner stage problem, compared to the direct method. 

Current supervisory controllers for PHEVs all have 
centralized architectures, see [11]. A typical PHEV operates 
in a charge depleting (CD) mode before the battery state of 
charge (SoC) decreases to a certain value, then it switches to 
a charge sustaining (CS) mode. In the CD mode, the battery 
provides the propulsion energy, while the engine is used to 
satisfy the transient load demand beyond the power capacity 
of the battery.  In the CS mode, the PHEV operates similarly 
to a conventional series hybrid electric vehicle, and the 
battery assists the engine in transients. In this paper, we treat 
the CD mode control strategy as given, and focus on CS 
mode control for battery CSM design. 

The control strategies proposed for HEVs can be applied 
to the CS mode controller design for PHEVs. Examples of 
such strategies include rule based [12], and optimization 
based control, (e.g., equivalent consumption minimization 
strategy [13], stochastic and deterministic dynamic 
programming [14, 15]). Feedback–based controllers have 
also been developed for load following while smoothing 
engine power  [16]. The feedback controller synthesized 
from model predictive control to smooth engine power was 
experimentally evaluated and showed improved fuel 
economy compared to two baseline strategies [17]. 

In this paper, a novel feedback-based controller for the CS 
mode is proposed to facilitate battery CSM design. The 
controller gains are generated over the EPA US06 cycle to 
minimize fuel consumption and vehicle power tracking 
error, while sustaining battery state of charge. Then, part of 
the centralized controller is distributed into the battery 
module such that only the controller gains distributed into 
the battery module are dependent on the battery parameters. 
The distributed controller gains, which enable battery CSM, 
are obtained by solving a bi-level optimization problem 
numerically using the ALD method. The simulation results 
demonstrate that battery CSM in PHEVs can be achieved 
without compromising fuel economy. 
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    The paper is organized as follows: Section II presents the 
vehicle model used in this analysis. Section III explains the 
centralized supervisory controller. Section IV presents the 
distributed supervisory controller which enables battery 
CSM. Section VI gives the conclusions.  
 

II. VEHICLE MODEL 

The control-oriented vehicle model is presented in this 
section. The model inputs are the wheel power command, 
Pw,cmd, and the reference battery SoC, socr. The system 
outputs are the actual wheel power delivered, Pw, 
accumulated engine fuel consumption, fuel, and actual 
battery SoC, soc. A diagram of a series PHEV is illustrated 
in Fig. 1. The supervisory controller generates the engine 
/generator power command and the battery power command.  
The wheels are driven by the electric motor. The battery is 
being charged, when the battery power Pb is negative. 

 

 
SC – supervisory controller 
EGU – internal combustion engine and generator unit 
BAT – battery 
EM – electric machine 
z – feedback state vector 

Fig. 1. Diagram of the hybrid electric vehicle. 
 

    The key component sizes of the nominal vehicle 
configuration are listed in TABLE I. This PHEV is 
representative of current designs, such as the 2011 Chevrolet 
Volt.  In the sequel, the controller will be designed for CSM 
of four batteries with different energy capacity (and different 
all electric range capability) for the same vehicle. 
 

TABLE I 
NOMINAL VEHICLE CONFIGURATION 

PHEV All Electric Range (AER) (mile) 30 
Engine Engine Power (kW) 50 
Generator Generator Power (kW) 50 
Battery Battery  Capacity (kWh) 12 
 Battery Maximum Power (kW) 110 
Motor Motor Power (kW) 110 
Vehicle Vehicle Weight (kg) 1680 

 
The engine is modeled as a static fuel consumption map 

as shown in Fig. 2 [18]. Given a required power level, there 
is usually a unique pair of engine torque and speed which 
achieves minimum fuel consumption. The optimal operating 
points line (OOP-Line) is defined as the curve on which the 
fuel consumption is minimized for each power level [16]. 

The motor and generator are modeled using a constant 
mean efficiency 0.85m gη η= = , to linearize the powertrain 
system.  

 
Fig. 2. Engine fuel consumption map (g/W/h). 

  
    The battery efficiency is assumed to be 0.9bη = . The 
battery is modeled as an integrator with parameter Bs [17]. 

,s b cmd
d soc B P

dt
Δ

= −   (1) 

where rsoc soc socΔ = − .  
Here we

 
consider four candidate batteries for CSM design. 

As a benchmark comparison, in the Chevrolet Volt, the 
energy capacity of the Lithium-ion battery is 16 kWh, which 
can provide about 40 mile all electric range with a battery 
weight of 175 kg. Four batteries with similar characteristics 
are scaled to have the parameters in TABLE II. Note that as 
Bs increases, the all-electric range, battery energy capacity 
and battery weight decreases. 

    
 

TABLE II 
BATTERY PARAMETERS 

# Battery number 1 2 3 4 
AER (mile) All-electric range 60 45 30 15 
Eb (kWh) Battery energy capacity 24 18 12 6 
Bs (e-5) Battery Parameter 1.29 1.71 2.57 5.14 
Wb (kg) Battery weight 263 197 131 66 

 
III. CENTRALIZED SUPERVISORY CONTROLLER 

    The control strategy ensures gradual operation of the 
engine along the steady-state OOP Line while sustaining the 
battery charge. The goal for gradual (i.e. slow varying) 
operation of the engine is based on the perspective that 
aggressive engine transients and engine operation away from 
the OOP-Line may degrade fuel economy and emissions [16, 
17]. In this paper, we only consider the power flows in this 
system. Lower level controllers, which realize the power 
demand from the components, are not considered. 

A. Feedback-based controller  
The vehicle model is augmented with two integrators to 

regulate the battery SoC and to eliminate wheel power 
tracking error during steady state. The resulting three states 
of the closed loop system are: 

                       1 rz soc soc soc= Δ = −  (2) 

             2 ( ) ( )rz soc dt soc soc dt= Δ = −∫ ∫  (3) 

                     3 ,( )w cmd e bz P P P dt= − −∫  (4) 
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where z1 represents the deviation of battery SoC, soc, from 
the reference value, socr; z2 represents the integral error of 
battery SoC; and z3 represents the integral wheel power 
tracking error. The actual wheel power, Pw, equals the 
summation of the engine power Pe and the battery power Pb. 

The control algorithm includes state feedback, feed-
forward control and information exchange between the 
engine power command and the battery power command. 
 

, 1 , ,e cmd w cmd e b cmdP n P k P= + +1K z  (5) 

 , 2 2 , ,b cmd w cmd b e cmdP n P k P= + +K z  (6) 

where z = [z1 z2 z3]T  is the state vector; K1 = [k1 k2 k3] and K2 
= [k4 k5 k6] are state feedback gain vectors; n1 and n2 are 
feed-forward gains; ke and kb are controller gains that 
represent the information exchange. 

The regulation of battery SoC should be slow to allow the 
battery to augment the engine in transients, while the wheel 
power tracking should be fast and accurate for good driving 
performance and safety. In order to achieve different 
convergence rates for different states, we employ eigen-
structure assignment [19] to decouple the state z3 from the 
other two states, z1 and z2, which are related to battery SoC. 
For desired closed loop poles p1, p2 and p3, we obtain 
equations (7) relating the controller gains and the poles: 
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(7) 

The six feedback gains are uniquely determined by the 
desired closed loop poles for a specific vehicle configuration 
with battery parameter Bs. Note that k6 equals 0, k4 and k5 are 
determined by k1 and k2, respectively. Therefore, we have 
three independent feedback gains, k1, k2 and k3 to optimize. 

B. Optimization of the controller gains 
The aggressive driving cycle of EPA US06 (see Fig. 3) is 

chosen to generate the controller gains through optimization. 
  

 
Fig. 3.  EPA US06 driving cycle 
 

Since we do not consider regenerative braking in this 
paper, the wheel power command for the vehicle to follow 
the US06 cycle is saturated to non-negative values and we 

use this saturaed profile (see Fig. 4 for an example) for the 
controller gain optimization.  

 

 
Fig. 4. The saturated non-negative wheel power command for the vehicle 
with battery 3 (Bs = 2.57e-5) to follow US06 cycle. 
 

The cost function J includes three terms: engine fuel 
consumption, equivalent fuel consumption from the battery 
at the end of driving cycle, and accumulated vehicle power 
tracking error. 

,0 0
( ) ( ) ( )f fT T

ice eqf r f w cmd wJ m t dt K soc soc P t P t dtα= + − + −∫ ∫  
(8) 

where: ( )icem t represents the engine fuel consumption; socf  = 
soc(Tf) is the battery SoC at the end of the driving cycle;  
Keqf is the equivalent fuel consumption factor from external 
charge [20]; and α is the penalty weight to drive the power 
tracking error to zero.  

The design variables are the controller gains: k1, k2, k3, n1, 
n2, ke and kb. The feedback gains k4, k5 and k6 are calculated 
from k1, k2 and k3 using equations (7). 

The constraints include: 1) stability of the closed loop 
system with the linear controller, which is enforced by the 
closed loop pole locations; 2) upper and lower power limits 
of the engine; 3) limit on engine power rate of change for 
gradual operation; 4) upper and lower power limits of the 
battery; 5) upper and lower limits on battery SoC; 6) upper 
and lower bounds on battery SoC at the end of the driving 
cycle to enforce charge sustainability.  

In order to check the battery charge sustainability, we set 
the initial SoC in the simulation as the reference SoC, socr. 
Since SoC varies between 0 and 1, a smaller battery needs to 
have a larger socr to satisfy the required battery energy 
availability requirement for the CS mode [21]. 

The design results are presented in TABLE III.  
 

TABLE III 
SIMULATION RESULTS WITH CENTRALIZED CONTROL 

Bs (e-5) MPG errp,max socdev,p 

1.29 27.58 2.16e-7 -2% 

1.71 28.17 8.10e-8 -2% 

2.57 28.78 4.65e-8 -2% 

5.14 29.40 3.61e-6 -2% 
 
The fuel economy, considering both fuel consumption 

from the engine and equivalent fuel consumption from the 
battery at the end of the driving cycle, are evaluated in miles 
per gallon (MPG). The driving performance is evaluated 
using the maximum power tracking error errP,max in kW. The 

955



  

battery charge sustaining performance, socdev,p, is evaluated by 
the deviation of the final SoC from the reference SoC: 

, 100%f r
dev p

r

soc soc
soc

soc
−

= ⋅  
 

(9) 

In the charge sustaining control, MPG increases as the 
battery size decreases due to the decrease in battery weight. 
But a larger battery can provide higher fuel economy 
through extended all-electric range. Therefore, a larger 
battery will still provide higher overall MPG considering 
both all-electric range and charge sustaining range [2]. 

An example power split between the engine and the 
battery for the vehicle with battery 3 (Bs = 2.57e-5) to follow 
the saturated US06 cycle is shown in Fig. 5. The engine 
essentially delivers the moving average of the wheel power 
command, while the battery provides the transients. 

 
Fig. 5. An example power split between the engine and the battery for the 
vehicle with battery 3 (Bs = 2.57e-5) over the saturated US06 cycle. 
 
    Fig. 6 shows the battery SoC trajectories for each vehicle 
configuration with the four considered batteries to follow the 
saturated US06 cycle.  

 
Fig. 6. Battery SoC profiles for each vehicle configuration with different 
batteries over the saturated US06 cycle. 

IV. DISTRIBUTED CONTROLLER FOR BATTERY CSM 

A distributed supervisory controller for the PHEV is 
introduced in Fig. 7. The controller is distributed into two 
parts: the vehicle system controller (VSC), which is fixed 
with the vehicle, and the battery control unit (BCU), which 
resides in the battery module and thus is swappable along 
with the battery. Such an implementation assumes that the 
battery is a smart component, which has an on-board 
microcontroller to perform control functions and to 
communicate with the VSC over a network, see the dashed 
line in Fig. 7. Other implementations are also possible, e.g., 
the VSC and the BCU can be physically distributed to the 
same module and the BCU software and calibration portions 
can be “reflashed’’ when the battery changes.   

 

 
Fig. 7. Diagram of the vehicle components showing the distributed 
supervisory controller (compared to the centralized controller in Fig. 1). 
 

A. Controller distribution architecture 
The controller distribution between the VSC and the BCU 

addresses the tradeoff between performance (generally 
highest when the controller is entirely within the BCU) and 
simplicity of the BCU implementation (desirable in terms of 
computing and calibration effort). While controller 
simplicity can be measured in a variety of ways, here we 
relate controller simplicity to controller order and the 
number of gains.  

The supervisory controller is distributed as follows: 
Control functions in the VSC: 

          3 ,( )w cmd wz P P dt= −∫   

          , 3 3 1 , ,e cmd w cmd e b cmd beP k z n P k P P= + + +  (10) 

          6 3 2 , ,eb w cmd b e cmdP k z n P k P= + +  (11) 

Control functions in the BCU: 

            1 rz soc soc soc= Δ = −
 

 

            2 ( ) ( )rz soc dt soc soc dt= Δ = −∫ ∫  
 

            , 4 1 5 2b cmd ebP k z k z P= + +
 

(12) 

             1 1 2 2beP k z k z= +
 

(13) 

Note that the SoC related calculations are confined to the 
battery module. The signal paths on the network between the 
VSC and the BCU are detailed in Fig. 8.  
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Fig. 8. The signal paths on the network between the VSC and the BCU. 
 

When the battery changes, only the controller gains, k1, k2, 
k4 and k5, in the BCU, need to be changed, while the 
controller gains k3, k6, n1, n2, ke and kb, in the VSC remain 
the same. The different design freedom of the controller 
gains necessitates a bi-level optimization formulation to 
obtain the optimal controller gains. 

B. Optimization of the distributed controller gains 
    Consider n possible batteries, n = 4 in our case as given in 
TABLE II. We denote the controller gains in the VSC as xs, 
and the vector of the controller gains in the BCU as xm,i, for 
each vehicle configuration with battery parameter Bs,i, i  
{1, …, n}. We introduce auxiliary variables xs,i, to serve as 
local copies of the shared controller gains xs for the vehicle 
configuration with battery parameter Bs,i. The design 
variables xs and xs,i are forced to be equal by the consistency 
constraint 1 1( 1): n m n mR R+ ⋅ ⋅c , which is defined as ,1( , ,s sc x x  

,2 ,, ..., )s s nx x = 1 2[ , , ..., ]T T T T
nc c c = 0, with ,( , )i s s ic x x  = ,s s i−x x , 

where 1m
i R∈c is the vector of consistency constraints for the 

vehicle configuration with battery parameter Bs,i, and m1 is 
the dimension of xs. 

 The consistency constraints are relaxed by an augmented 
lagrangian penalty function 1: n mR Rφ ⋅ . 

             

2
,2

1
( ) ( ( , ))

n
T

i i s s i
i

φ φ
=

= + = ∑c v c w c c x x   (14) 

with the penalty function for each system configuration with 
component parameter Bs,i, 1: m

i R Rφ defined by: 

       

2

, , , 2
( ( , )) ( ) ( )T

i i s s i i s s i i s s iφ = − + −c x x v x x w x x   (15) 

where 1
1 2[ , , ..., ] n mT T T T

n R ⋅= ∈v v v v is the vector of Lagrange 
multiplier estimates for the consistency constraints; 
and 1

1 2[ , , ..., ] n mT T T T
n R ⋅= ∈w w w w is the vector of penalty 

weights. The symbol ◦ represents the Hadamard product: an 
entry-wise vector multiplication. 

    The outer stage optimization minimizes the penalty 
function with respect to the controller gains in the VSC, xs: 

            ,1
( ) ( ( , ))n

i i s s ii
φ φ

=
= ∑c c x x  (16) 

    Note that the outer stage problem has no constraints. It 
can be solved analytically: 

,
* 1 1

1

1( )
2arg min ( )

( )s

n n

i i s i i
i i

s n

i i
i

φ = =

=

−
= =
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∑
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w w x v
x c

w w
 

 

(17) 

In the inner stage optimization for each battery 
application with Bs,i, the objective function includes two 
terms, the cost function J as defined in equation (8), and the 
penalty function as defined in equation (15).  

, , , ,min ( , , ) ( ( , )s i m i s i i i s s iJ B φ+x x c x x  

The design variables of each inner stage optimization are 
the auxiliary variables, xs,i and the controller gains in the 
BCU, xm,i. The relaxation errors between xs,i and xs are driven 
to zero by the penalty function. The constraints for each 
battery application are the same as described in Section III. 
The inner stage problems can be solved using nonlinear 
programming methods.  

The flowchart of the solution algorithm is illustrated in 
Fig. 9. The design variables of the outer stage, xs, are fixed 
parameters for each of the inner stage problems. At each 
iteration, a new estimate of xs is generated and each of the 
inner stage problems is solved using xs as a parameter. By 
appropriate selection of the penalty weights v and w, the 
penalty function can be driven to zero for consistency of

 
xs 

and xs,i. The method of multipliers is used to update the 
penalty weights [22]. At each iteration of the outer stage 
problem, v and w are updated to reduce the relaxation error. 
This procedure is repeated until a feasible solution that 
satisfies the consistency constraints c < ε, for each inner 
stage optimization is found, or until the maximum number of 
function evaluations is reached, where ε is the error 
tolerance. 

 

 

Fig. 9. Flowchart of the solution algorithm. 
 
A good initial guess is important for this bi-level 

optimization problem, and the design results from the 
centralized controller can be employed.  
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    The resulting controller gains in the VSC are:  3 1[ , , ,ek n k  

2 , ]bn k =  [1.82, 0.01, 0.06, 1.23, 0.05] . The VSC is the same 
for different battery applications. 

The controller gains in the BCU for each battery are listed 
in TABLE IV. The performance metric for the distributed 
controller are also listed in TABLE IV. 

 
TABLE IV 

SIMULATION RESULTS WITH DISTRIBUTED CONTROL 

Bs (e-5) k1 k2 MPG  errp,max socdev,p 

1.29 917.42 1.59 27.58 6.18e-4 -2% 

1.71 1000 1.34 28.16 6.02e-4 -2% 

2.57 466.87 0.93 28.78 5.82e-4 -2% 

5.14 222.23 0.50 29.40 5.54e-4 -2% 
 

     The driving performance in terms of wheel power 
tracking error and battery charge sustaining are satisfied 
with either centralized control or distributed control, as 
shown in TABLEs III and IV. Note that the distributed 
controller achieves battery CSM without sacrificing fuel 
economy versus the centralized control case. At the same 
time, the BCU is reasonably simple and can be implemented 
with a modest on-board microcontroller in the battery 
module. As the controller functionality related to the battery 
SoC are confined to the BCU, the estimation of battery SoC 
(not considered in this paper) can be confined to the BCU as 
well,  making the battery module  functionally independent 
both in hardware and software (i.e., control algorithms). 

V. SUMMARY AND CONCLUSIONS 

In this paper, we proposed a method for distributed 
controller design to achieve battery CSM in PHEVs. This 
method generates the distributed controller gains by solving 
a bi-level optimization problem using the augmented 
lagrangian decomposition method. The simulation results 
indicate that battery CSM can be achieved without 
compromising fuel economy compared to the centralized 
control case. With the proposed distributed controller, the 
battery module can be swapped without redesign or 
recalibration of the system level controller. In other words, 
the battery module becomes a plug and play component, and 
the system performance is automatically configured to be 
optimal for each battery application. 
    The above results and conclusions are based on a PHEV 
model and controller that do not include regenerative 
braking. The extension of the designs to include regenerative 
braking will be reported in future publications. 
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