
Fast Distributed Consensus with Chebyshev Polynomials

Eduardo Montijano, Juan I. Montijano, and Carlos Sagues

Abstract— Global observation of the environment is a key
component in sensor networks and multi-robot systems. Dis-
tributed consensus algorithms make all the nodes in the network
to achieve a common perception by local interactions between
direct neighbors. The convergence rate of these algorithms
depends on the network connectivity, which is related to the
second largest eigenvalue of the weighted adjacency matrix of
the communication graph. When the connectivity is small, a
large number of communication rounds is required to achieve
the consensus. In this paper we present a new distributed
consensus algorithm which uses the properties of Chebyshev
polynomials to significantly increase the convergence rate. The
algorithm is expressed in the form of a linear iteration and,
at each step, the nodes only require to transmit their current
state to their neighbors. The difference with respect to previous
approaches is that our algorithm is based on a second order
difference equation. We provide the analytical expression of
the convergence rate and we study in which conditions it is
faster than computing the powers of the weighted matrix. This
improvement reduces the number of messages between nodes,
saving both power and time to the networked system. We
evaluate our algorithm in a simulated environment showing
the benefits of our approach.

Index Terms - Distributed consensus, Convergence rate,

Chebyshev polynomials.

I. INTRODUCTION

Sensor networks and multi-robot systems are a current

topic of interest due to the amount of possibilities they can

offer to humankind. Global perception of the environment

is one of the key components in these systems. A common

estimation of the world can be computed by the network in a

distributed fashion using consensus algorithms [1]–[5]. The

previous algorithms have in common that they asymptotically

reach agreement on the observations of the nodes consider-

ing only local interactions. The number of communication

rounds required to reach the agreement depends on the

network connectivity, characterized by the second largest

eigenvalue of the weighted adjacency matrix associated to

the network. As the number of nodes in the network grows,

communications between different pairs become more diffi-

cult due to distance and power constraints, which implies less

connectivity and many iterations before achieving consensus.

This work was supported by the project DPI2009-08126 and grant
AP2007-03282 Ministerio de Educacion y Ciencia.

E. Montijano and C. Sagues are with Departamento de Informática
e Ingenierı́a de Sistemas - Instituto de Investigación en Ingenierı́a de
Aragón (I3A), Universidad de Zaragoza, Spain. emonti@unizar.es,
csagues@unizar.es

J.I. Montijano is with Departamento de Matemática Aplicada - Instituto
Universitario de Matemáticas y Aplicaciones (IUMA), Universidad de
Zaragoza, Spain. monti@unizar.es

In order to reduce the number of iterations, we present

a new discrete time consensus algorithm based on the dis-

tributed evaluation of Chebyshev polynomials [6] of the first

kind. The algorithm is expressed in the form of a linear

iteration using the weighted adjacency matrix and at each

step the nodes only require to transmit their current state

to their neighbors. The difference with respect to previous

approaches is that our algorithm is based on a second order

difference equation, using not only the current local status

but also the previous one. In this way the convergence rate is

increased by a significant factor. This improvement reduces

the number of messages between nodes, saving time and

energy.

The topic of fast convergence is not new to the research

community. The appropriate selection of the weights of the

adjacency matrix is discussed in [7]. That work provides the

optimal weights for the matrix, as well as good approxima-

tions that do not require any global knowledge about the

network topology. Our algorithm makes use of the same

matrices but in a second order difference equation requiring

less iterations to obtain the consensus value with the same

error tolerance. A multi-hop protocol is presented in [8]. By

sending additional information in the messages their solution

improves convergence rates. Compared to this approach, ours

has the advantage that it only requires to transmit one data

to the neighbors at each time instant.

Second order recurrences to speed up convergence are

used in [9], [10]. Both approaches use fixed gains in the

algorithms to mix the data whereas with our approach the

coefficients are updated at each iteration using the Chebyshev

polynomials recurrence. The use of polynomials to speed

up convergence has been treated in [11]–[13]. The approach

in [11] uses a polynomial of fixed degree with coefficients

computed assuming the network is known. A distributed al-

gorithm to compute the minimal polynomial of the adjacency

matrix is used in [12] and [13]. Once the polynomial is

known, the network can achieve the consensus in a number

of communication rounds upper bounded by the size of the

network. In small networks this solution works pretty well

and has the advantage of getting the exact solution, except

the rounding errors. However, as we show in the paper,

when the number of nodes grows, the rounding errors in

the evaluation of the polynomial can make the algorithm

unstable. In contrast with these approaches, our algorithm

presents asymptotic convergence but it is stable for any

number of nodes.

Finally, there are other approaches that present solutions to

achieve consensus in finite time. Continuous time solutions

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 5450

can be found in [14], [15]. These approaches are also non

linear, which makes them usually hard to be implemented

in discrete time systems. In these solutions the number of

iterations is also affected by the use of numerical integrators

because they depend on the number of steps taken by the

method. The approach in [16] proposes a link scheduling

that reaches the desired result in a finite number of steps.

In wireless networks, links are constrained by the distance

between the nodes, which implies that not all the pairs

of nodes will be able to communicate and there might be

situations in which this method cannot be used.

In the paper we provide the analytical expression of the

convergence rate of our algorithm and we study when it is

faster than algorithms based on the powers of the adjacency

matrix. Experiments with synthetic data show the benefits of

using our algorithm compared to other approaches. Along

the paper we will consider a fixed communication topology,

leaving the analysis of time varying networks for future

work.

The structure of the paper is the following: In section II we

review the consensus algorithms based on the weighted adja-

cency matrix and the minimal polynomial. In section III the

new consensus algorithm using Chebyshev polynomials is

described. Section IV analyzes the behavior of the algorithm

in a simulated setup. Finally in section V the conclusions of

the work are presented.

II. Distributed Consensus Algorithms

In the paper we consider a sensor network of N agents

labeled by i ∈ V = {1, . . . , N}. Communications between

the agents are defined according to an undirected graph G =
{V, E}, where E ⊂ V×V represents the edge set. In this way,

agents i and j can communicate if and only if (i, j) ∈ E . The

neighbors of one agent i ∈ V are the subset of agents that can

directly communicate with it; i.e., Ni = {j ∈ V | (i, j) ∈
E}. We assume that the communication graph is fixed and

connected, that is, there exists a path of one or more links

between any two agents in the network. For simplicity in

the notation we assume that each agent has an initial value

xi ∈ R, however, all the equations and algorithms along the

paper are valid for data of any arbitrary dimension. Defining

x̄ as the average of all the initial conditions, we say that

average consensus is achieved by the network when xi =
xj = x̄, ∀i, j ∈ V. In practice, average consensus will be

achieved when |xi − x̄| < tol for all i, for a prefixed error

tolerance tol.

The discrete time distributed consensus algorithm based

on the weighted adjacency matrix associated to the commu-

nication graph [1] is

xi(n+ 1) = aiixi(n) +
∑

j∈Ni

aijxj(n), (1)

with xi(0) = xi. The algorithm can also be expressed in

vectorial form as

x(n+ 1) = Ax(n), (2)

where x(n) = (x1(n), . . . , xN (n))T and A = [aij] ∈
R

N×N , is the weighted matrix, which satisfies:

Assumption 2.1 (Doubly Stochastic Weights): A is sym-

metric, row stochastic and compatible with the underlying

graph, G, i.e., it is such that aii > 0, aij = 0 if (i, j) 6∈ E ,
aij > 0 only if (i, j) ∈ E and A1 = 1.

Since the communication graph is connected, if A fulfills

assumption 2.1, then it has one eigenvalue λ1 = 1 with

associated right eigenvector 1 and algebraic multiplicity

equal to one. The rest of the eigenvalues, sorted in decreasing

order, satisfy 1 > λ2 ≥ . . . ≥ λN > −1. Without loss of

generality, let us suppose that all the eigenvalues are simple.

Any initial conditions x(0) can be expressed as a sum of

eigenvectors of A,

x(0) = v1 + . . .+ vN ,

where vi is an eigenvector associated to the eigenvalue λi.

It is clear that

x(n) = Anx(0) = v1 + λn
2v2 + . . .+ λn

NvN ,

and since |λi| < 1, i 6= 1, limn→∞ x(n) = v1 = γ1, with

γ = 1/N1T x(0), and average consensus is reached by all the

agents in the network. The convergence speed of (2) depends

on max(|λ2|, |λN |). When the size of the network is large

or the number of links is small this value is usually close to

one, which means that the algorithm requires many iterations

before obtaining a good approximation of the final solution.

To overcome this limitation, the algorithm proposed

in [12] computes a linear combination of the first N initial

values of x(n), n = 0, 1, . . . , N−1, that provides the desired

final solution. The combination is obtained from the minimal

polynomial of A. The minimal polynomial of A, pA(x), with

roots equal to the eigenvalues of A, is the polynomial with

minimum degree such that pA(A) = 0. The polynomial can

be decomposed into pA(x) = (x − 1)qA(x) because 1 is a

simple eigenvalue of A, and qA(1) = 1. The roots of qA(x)
are the rest of the eigenvalues of A. If the polynomial is

evaluated in A we have

qA(A)x(0) = α0x(0) + α1Ax(0) + . . .+ αN−1AN−1x(0)

= α0x(0) + α1x(1) + . . .+ αN−1x(N − 1)

= qA(1)v1 + qA(λ2)v2 + . . .+ qA(λN)vN = v1,
(3)

with αi the coefficients of the polynomial. Therefore, know-

ing the coefficients αi of qA(x), with N − 1 iterations the

final consensus is obtained.

In absence of rounding errors, the finite-time consensus

algorithm provides the exact solution in at most N − 1
iterations. However, when the number of agents is large or

the connectivity is small the coefficients of the polynomial

qA(x) can be very large, which makes the evaluation of qA(x)
numerically instable (see e.g. [17]) and the rounding errors

can invalidate the solution. Examples of this situation are

provided in section IV.

5451

III. Consensus Using Chebyshev Polynomials

Following the idea of [12] we would like to find polynomi-

als, pn(x), that can be evaluated in a distributed way satisfy-

ing that for all n > 0, pn(1) = 1 and maxx∈(−1,1) |pn(x)| <
1. The proposed polynomials must also have a stable evalu-

ation independently on the number of nodes in the network

or the connectivity. Let us note that eq. (2) can be written as

x(n) = wn(A)x(0) with wn(x) = xn, which evidently satis-

fies that maxx∈(−1,1) |wn(x)| < 1 and wn(1) = 1, ∀n > 0.
In addition, the proposed polynomial must satisfy pn(λi) →
0 when n → ∞ in a faster way than max(|λ2|, |λN |)n which

implies that x(n) = pn(A)x(0) ≃ v1 for smaller n than the

algorithm using eq. (2).

Our consensus algorithm is based on Chebyshev polyno-

mials of first kind. These polynomials are defined with the

recurrence:

T0(x) = 1
T1(x) = x
Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3,

(4)

Chebyshev Polynomials have the following properties:

• Tn(x) = cos(n arccosx) ≤ 1 for x ∈ [−1, 1]
• maxx∈[−1,1] |Tn(x)| = 1, Tn(1) = 1, Tn(−1) = (−1)n

and |Tn(x)| > 1 for all |x| > 1

Lemma 3.1: The direct expression of Tn(x) is character-

ized by

Tn(x) =
1 + τ2n

2τn
, τ = τ(x) = x−

√

x2 − 1. (5)

Looking at eq. (5), it is clear that if x > 1, then τ(x) < 1
and Tn(x) goes to infinity as n grows. On the other hand,

if |x| < 1, then τ(x) is a complex number with |τ(x)| = 1.
In this case |Tn(x)| ≤ 1, ∀n. Moreover, for a given n, by

the first property of Tn(x), in the interval x ∈ [−1, 1] there

are n + 1 points for which |Tn(x)| = 1. This implies that

Tn(x) is not smaller than 1 for all x ∈ (−1, 1) and we can

not ensure convergence to the desired result if we use this

polynomial for the consensus process.

We overcome this limitation by doing a linear transfor-

mation that brings some interval [λm, λM] to [−1, 1]. In

this way, given two real coefficients λm, λM , satisfying

1 > λM > λm > −1, we define the polynomial

pn(x) =
Tn(cx− d)

Tn(c− d)
, (6)

with

c =
2

λM − λm

, d =
λM + λm

λM − λm

, (7)

which has the following properties:

• if x ∈ [λm, λM], then cx− d ∈ [−1, 1]
• pn(1) = 1 and pn(λM + λm − 1) = (−1)n

• maxx∈(λM+λm−1,1) |pn(x)| < 1
• |pn(x)| > 1 for all x 6∈ [λM + λm − 1, 1]
• The polynomials pn(x) satisfy the recurrence

pn+1(x) = 2
Tn(c− d)

Tn+1(c− d)
(cx− d)pn(x)−

−
Tn−1(c− d)

Tn+1(c− d)
pn−1(x)

(8)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

w
4
(x

),
 T

4
(x

),
 p

4
(x

)

x
4

T
4
(x)

p
4
(x)

1/T
4
(c−d)

λ
m λ

M

Fig. 1. Plot of the polynomials wn(x), Tn(x) and pn(x). In the figure
n = 4, λm = −0.95 and λM = 0.95.

Figure 1 shows a plot of wn(x), Tn(x) and pn(x), for n = 4,
in the interval [−1, 1]. Note that Tn(x) cannot be used in the

consensus process because at some points it does not reduce

the error. On the other hand, pn(x) satisfies the conditions

required to achieve consensus. It is also interesting to note

that pn(x) has closer values to zero than wn(x) in points

close to −1 and 1, which means that the error associated to

eigenvalues in that regions will be reduced faster.

The recurrence relation for pn(x) allows us to define the

new consensus rule x(n) = pn(A)x(0) by

x(1) =
1

T1(c− d)
(cAx(0)− dx(0)),

x(n+ 1) = 2
Tn(c− d)

Tn+1(c− d)
(cAx(n)− dx(n))−

−
Tn−1(c− d)

Tn+1(c− d)
x(n− 1).

(9)

This consensus rule allows a stable computation of succes-

sive iterations in a distributed way only by transmitting the

current state to the neighbors, as in (2). The only additional

information required in the algorithm are λm and λM . Before

stating the main properties of the new algorithm we introduce

an auxiliary result to proof the convergence:

Lemma 3.2: Given x1 > 1, for any x2 such that |x2| < x1

it holds that

lim
n→∞

Tn(x2)

Tn(x1)
= 0. (10)

Theorem 3.1 (Convergence of the algorithm): For any A

fulfilling Assumption 2.1 and parameters λm and λM such

that 1 > λM > λm > −1 and λN > λm + λM − 1, the

recurrence in eq. (9) converges to the average of the initial

conditions, limn→∞ x(n) = v1. Besides,

• The convergence rate is given by

‖x(n)−v1‖2 ≤ max
λi 6=1

|Tn(cλi − d)|

Tn(c− d)
‖x(0)−v1‖2. (11)

• If all the eigenvalues of A, apart from λ1, are in the

interval [λm, λM], then

‖x(n)− v1‖2 ≤
1

Tn(c− d)
‖x(0)− v1‖2. (12)

5452

Proof. Let Q = A− 1
N

11T , whose eigenvalues are λ1 = 0,
with v1 its corresponding eigenvector, and λ2, . . . , λN with

the same eigenvectors as A. Since v1 = 1
N

1T x(0)1, then
1
N

11T (x(0)− v1) = 0. Taking this into account it is easy to

see that

Ak(x(0)− v1) = Qk(x(0)− v1), ∀k ∈ N, (13)

and therefore pn(A)(x(0)− v1) = pn(Q)(x(0)− v1).

Also Av1 = v1 and pn(1) = 1, then pn(A)v1 = v1 and

‖x(n)− v1‖2 = ‖pn(A)(x(0)− v1)‖2 =

‖pn(Q)(x(0)− v1)‖2 ≤ ‖pn(Q)‖2‖x(0)− v1‖2.
(14)

In addition, Q is symmetric, and so is pn(Q), which implies

that its spectral norm coincides with the spectral radius,

‖pn(Q)‖2 = ρ(pn(Q)) = max
i 6=1

|pn(λi)| = max
i 6=1

|Tn(cλi − d)|

Tn(c− d)
.

(15)

For any x ∈ (λM +λm−1, 1) we have that |cx−d| < c−d,
then for all the eigenvalues of A but λ1, |cλi − d| < c− d.
Finally, noting that c− d is strictly larger than 1, by Lemma

3.2 pn(λi) → 0 for all i 6= 1, which proves the convergence

of the algorithm.

Now, if λi ∈ [λm, λM] for all i 6= 1, |cλi − d| ≤ 1 and

max
i 6=1

|pn(λi)| ≤ 1/Tn(c− d). (16)

Note that the conditions in Theorem 3.1 are easy to fulfill

without the necessity of knowing the eigenvalues of the

matrix A. A safe choice of parameters is −λm = λM , 0 <
λM < 1, which always satisfies the required conditions. It

is also convenient to choose λM ≃ 1 to ensure that all the

eigenvalues are contained in [λm, λM]. Further discussion on

the selection of the parameters is given in Section IV. We

show now when the new algorithm achieves the consensus

faster than approaches based on the powers of the adjacency

matrix.

Theorem 3.2 (Faster convergence than An): For any ma-

trix A satisfying Assumption 2.1, let λ = max(|λ2|, |λN |)
be the convergence rate in (2). For any

0 < λM <
2λ

λ2 + 1
, and λm = −λM , (17)

pn(λ) goes to zero faster than λn when n goes to infinity.

Therefore the algorithm in eq. (9) converges faster to the

average than the one in eq. (2).

Proof. By eq. (7) we have that

c− d = 1/λM , cλ− d = λ/λM (18)

To prove the faster convergence of our algorithm we show

that the quotient between λn and pn(λ) goes to infinity with

n. That is

lim
n→∞

λn

pn(λ)
= lim

n→∞

λnTn(c− d)

Tn(cλ− d)
= ∞. (19)

Using Lemma 3.1 we substitute the value of Tn(c − d)
and Tn(cλ− d)

λn

pn(λ)
= λn τ(cλ− d)n

τ(c− d)n
1 + τ(c− d)2n

1 + τ(cλ− d)2n
, (20)

where τ is the function in eq. (5). The second term of (20)

goes to one as n goes to infinity. This means that, in order

to fulfill (19) it must hold that

lim
n→∞

(

λτ(cλ− d)

τ(c− d)

)n

= ∞ ⇔

∣

∣

∣

∣

λτ(cλ− d)

τ(c− d)

∣

∣

∣

∣

> 1. (21)

Replacing τ for its value and doing some calculations using

the radical conjugates we obtain

λτ(cλ− d)

τ(c− d)
= λ

1 +
√

1− λ2
M

λ+
√

λ2 − λ2
M

. (22)

Using (22) we obtain that (21) is equivalent to

λ2
M (1− λ2) > 0, if λM ≤ λ

λM (−1− λ2) + 2λ > 0, otherwise
(23)

which by (17) is always true, and therefore, the proof is

complete.

The last issue we analyze is the selection of λm and λM

to maximize the convergence speed in the situation in which

all the eigenvalues are included in the interval [λm, λM].
Proposition 3.1 (Choice of the parameters): The best

values for λm and λM such that [λN , λ2] ⊆ [λm, λM]
coincide with the minimum and maximum eigenvalues of

A, excluding λ1, that is

λM = λ2, and λm = λN (24)

Proof. The convergence speed is determined by how fast

Tn(c − d)−1 goes to zero. Since Tn(x) is increasing for

x > 1, the larger c− d is, the faster the convergence speed.

Now

c− d =
2− λM − λm

λM − λm

, (25)

which is decreasing for λM . Therefore, the optimal value of

λM is λ2, because we still require that [λN , λ2] ⊆ [λm, λM].
Once λM is fixed we can take the derivative of (25) with

respect to λm

∂(c− d)

∂λm

=
2− 2λM

(λM − λm)2
, (26)

which is always positive, and then c − d is an increasing

function for λm. Therefore the optimum value of λm will

be the maximum one, and this yields to λm = λN .
To conclude this section, Algorithm 1 shows a possible im-

plementation of the algorithm. The implementation is quite

similar to that of (1), so that current distributed applications

using that algorithm can upgrade to our approach without

much effort, obtaining the benefits of a faster convergence.

IV. Simulations

We have also analyzed our algorithm in a simulated

environment. Several Monte Carlo experiments have been

designed to study the convergence of the method and the

influence of the parameters λm and λM in the algorithm.

5453

Algorithm 1 Consensus Algorithm - Agent i

Require: xi(0), MaxIt ∈ N, λm, λM , aij , j ∈ Ni

• A = [aij] satisfies assumption 2.1

• 1 > λM > λm > −1, equal for all i ∈ V
• λN > λm + λM − 1

Ensure: x
(2)
i → x̄ = 1/N1T x(0) when MaxIt → ∞

1: – Initialization

2: c = 2/(λM − λm); d = (λM + λm)/(λM − λm);

3: a(0) = 1; x
(0)
i = xi(0);

4: a(1) = c− d;

5: – First Communication Round

x
(1)
i =

1

a(1)
(c

∑

j∈Ni

aijx
(0)
j + (c aii − d)x

(0)
i);

6: repeat

7: a(2) = 2(c− d)a(1) − a(0);
8: – Communication Between Neighbors

x
(2)
i = 2

a(1)

a(2)
(c

∑

j∈Ni

aijx
(1)
j +(c aii−d)x

(1)
i)−

a(0)

a(2)
x
(0)
i ;

9: – Update Parameters

10: a(0) = a(1); x
(0)
i = x

(1)
i ;

11: a(1) = a(2); x
(1)
i = x

(2)
i ;

12: until MaxIt

A. Numerical instability of the minimal polynomial

Before the evaluation of our algorithm, we show the

numerical instability of the methods based on the minimal

polynomial of A [12] for a sufficiently large network, like

the one in Figure 2 (a), which has 35 nodes. The matrix

A has been computed using the “local degree weights” [7].

The minimal polynomial has been computed directly from A

to show that, even with an exact polynomial, the numerical

errors can make the algorithm fail. We have generated

random initial conditions in the interval (0, 10) for each node

and we have used (3) to evaluate the polynomial. In Fig. 2

(b) we show the values of xi(N) for the different nodes. The

numerical errors in the evaluation of the minimal polynomial

disturb the final results. On the other hand, in Fig. 2 (c)

we have plotted the evolution of pn(A)x(0). In this case the

evaluation is stable and converges to the average of the initial

measurements (black dashed line). Moreover, for a tolerance

error of 10−3 the algorithm requires less than N iterations

to converge.

B. Evaluation of the convergence speed of our algorithm

Let us now evaluate how our algorithm behaves compared

to the powers of the weighted adjacency matrix. In this

experiment we have analyzed 100 random networks of 50

nodes. For each network the nodes have been randomly

positioned in a square of 200 × 200 meters. Two nodes

communicate if they are at a distance lower than 20 meters.

The networks are also forced to be connected so that the

algorithms converge. After that 100 different random initial

values have been generated in the interval (0, 1)N , giving a

total of 10000 trials to test the different algorithms.

For each communication network we have computed 3

different weighted adjacency matrices. The first one, Ald,
uses the “local degree weights”, the second one, Abc, uses

the “best constant factor” and the third one, Aos, computes an

approximation of the “optimal symmetric weights”. For more

information about these matrices we refer the reader to [7].

We have analyzed the convergence speed of the powers of

these matrices and the speed of our algorithm using the same

matrices, pn(Ald), pn(Abc) and pn(Aos). In each case we

have assigned the parameters λM = λ2 and λm = λN to

the algorithm. We have measured the average number of

iterations required to obtain an error, e = ‖x(n) − v1‖2,
smaller than a given tolerance.

Table I shows the results of the experiment. For any

tolerance error our algorithm reaches the desired precision

in far less iterations than (2). Using the same matrix, our

algorithm obtains the same results reducing by one order

of magnitude the number of iterations (e.g., for Ald and a

tolerance error of e < 10−3, (2) requires 823.8 iterations

and pn(Ald) only requires 57.5). Another interesting detail

is that our algorithm converges faster using the “local degree

weights”, Ald, than the other two matrices, even though the

second largest eigenvalue of the other two matrices is smaller.

This behavior is caused because the interval that contains

all the eigenvalues of Ald is smaller than the intervals that

contain the eigenvalues of Abc and Aos (an example can be

found in [7]). As a consequence, c − d is larger and the

algorithm converges faster. This is indeed very convenient

because the “local degree weights” can be easily computed

without global information, whereas the other two require

the knowledge of the topology.

TABLE I

NUMBER OF ITERATIONS FOR DIFFERENT ALGORITHMS

Method\Tolerance 10−2 10−3 10−4 10−5

An

ld
467.3 823.8 1191.0 1555.5

An

bc
408.8 679.1 950.7 1222.7

An
os 369.7 593.9 820.0 1046.8

pn(Ald) 40.9 57.5 74.0 90.5

pn(Abc) 51.2 82.5 117.1 152.9

pn(Aos) 55.4 93.7 134.8 176.5

C. Dependence on the parameters λM and λm

We have evaluated above the convergence speed of the new

algorithm only considering the best parameters that include

all the eigenvalues of the matrix. However, in most situations

the nodes will have no knowledge about these eigenvalues.

In this subsection we analyze the convergence rates of the

algorithm when it is run using different parameters. We have

only evaluated the algorithm with Ald.
The results of the experiment are in Table II. The exper-

iment has considered again 100 different networks and for

each one 100 different initial conditions. The table shows the

average number of iterations required to have an error lower

5454

5 10 15 20 25 30 35

−10

−5

0

5

10

15

20

25

30

Node (i)

F
in

a
l
v
a

lu
e

 x
i(
N

)

Final values of the minimal polynomial

0 5 10 15 20 25 30
0

2

4

6

8

10

Iterations (n)

p
n
(A

)x
(0

)

Evolution of the consensus value

(a) (b) (c)

Fig. 2. Numerical errors in the evaluation of the minimal polynomial lead to errors in the final estimation. (a) Communication network of 35 nodes. (b)
Estimations of the 35 nodes of the network evaluating the minimal polynomial in a distributed way. The red dashed line shows the average of the initial
conditions and the bars are the values of the final estimations. The rounding errors make the algorithm fail. (c) Evolution of the distributed evaluation of
pn(A)x(0). In this case the algorithm is stable and all the nodes’ values converge to the real average (black dashed line). Moreover, for a tolerance error
of 10−3 the algorithm requires less than N iterations to converge.

than 10−3. The number of iterations is in all the cases larger

than in Table I (57.5) but anyway, the results are in most

cases still far better than those using (2). The only problem

appears when λM + λm − 1 > λN because the algorithm

diverges. We have set a maximum of 1500 iterations to avoid

the locks that appear in such situations.

Another advantage of using Ald is that usually its smallest

eigenvalue, λN , is a negative value close to zero (in our simu-

lations it has never valued less than -0.5). The second largest

eigenvalue depends on how many nodes has the network and

the number of links, but in general this eigenvalue is close to

one. Therefore by choosing λm = −0.5 and λM ≃ 1 there is

a great chance to obtain a good convergence rate and almost

no risk of divergence, see for example the cell in the second

row and sixth column of Table II.

TABLE II

NUMBER OF ITERATIONS USING SUB-OPTIMAL PARAMETERS

λm\λM 0.2 0.5 0.8 0.9 0.95 0.999

-0.2 582.2 474.7 334.3 208.6 ≥1500 ≥1500

-0.5 638.0 520.1 366.3 228.5 157.7 153.7

-0.8 689.1 561.9 395.7 246.9 170.3 165.4

-0.9 718.1 585.5 412.3 257.2 177.5 172.6

-0.95 727.5 593.1 417.7 260.6 179.8 174.9

-0.999 736.6 600.5 423.0 263.8 182.1 177.5

V. Conclusions

We have presented a new distributed consensus algo-

rithm using Chebyshev polynomials. The proposed algorithm

significantly reduces the number of communication rounds

required by the network to achieve the consensus. We have

provided a theoretical analysis of the convergence speed and

the properties of the algorithm. We have also evaluated our

method with an extensive set of simulations. Both theoretical

and empirical analysis show the goodness of our proposal. In

addition, we have shown that the evaluation of the minimal

polynomial in large networks can be badly affected by

numerical errors. Further research trying to extend our results

to time varying networks and the distributed selection of the

parameters in the algorithm is in progress.

Acknowledgments

The authors would like the reviewers for their insightful

comments to improve the quality of the paper.

REFERENCES

[1] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic

Networks. Applied Mathematics Series. Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[2] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE

Transactions on Automatic Control, 48(6):988–1001, 2003.
[3] M. Zhu and S. Martı́nez. Discrete-time dynamic average consensus.

Automatica, 46(2):322–329, 2010.
[4] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Mur-

ray. Asynchronous distributed averaging on communication networks.
IEEE/ACM Transactions on Networking, 15(3):512–520, 2007.

[5] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor
fusion based on average consensus. In International Conference on

Information Processing in Sensor Networks, pages 63–70, 2005.
[6] J.C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman

and Hall, 2002.
[7] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging.

Systems and Control Letters, 53:65–78, 2004.
[8] Z. Jin and R.M. Murray. Multi-hop relay protocols for fast consensus

seeking. In IEEE Int. Conference on Decision and Control, pages
1001 – 1006, 2006.

[9] B. Oreshkin, M. Coates, and M. Rabbat. Optimization and analysis
of distributed averaging with short node memory. IEEE Transactions

on Signal Processing, 58(5):2850–2865, May 2010.
[10] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First- and second-

order diffusive methods for rapid, coarse, distributed load balancing.
Theory of Computing Systems, 31(4):331–354, 1998.

[11] E. Kokiopoulou and P. Frossard. Polynomial filtering for fast con-
vergence in distributed consensus. IEEE Transactions on Signal

Processing, 57(1):342354, 2009.
[12] S. Sundaram and C. N. Hadjicostis. Finite-time distributed consen-

sus in graphs with time-invariant topologies. In American Control

Conference, pages 711–716, New York, 2007.
[13] Y. Yuan, G. Stan, L. Shi, and J. Gonçalves. Decentralised final value

theorem for discrete-time lti systems with application to minimal-
time distributed consensus. In IEEE Int. Conference on Decision and

Control, pages 2664–2669, 2009.
[14] F. Jiang and L. Wang. Finite-time information consensus for multi-

agent systems with fixed and switching topologies. Physica D,
238:1550–1560, 2009.

[15] J. Cortés. Finite-time convergent gradient flows with applications to
network consensus. Automatica, 42(11):1993–2000, 2006.

[16] C.K. Ko and X. Gao. On matrix factorization and finite-time average-
consensus. In IEEE Int. Conference on Decision and Control, pages
5798–5803, 2009.

[17] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2002.

5455

