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Geometric Numerical Integration for
Complex Dynamics of Tethered Spacecraft

Taeyoung Lee*, Melvin Leok, and N. Harris McClamroch

Abstract— This paper presents an analytical model and a
geometric numerical integrator for a tethered spacecraft model
that is composed of two rigid bodies connected by an elastic
tether. This model includes important dynamic characteristics
of tethered spacecraft in orbit, namely the nonlinear coupling
between tether deformations, rotational dynamics of rigid
bodies, a reeling mechanism, and orbital dynamics. A geometric
numerical integrator, referred to as a Lie group variational in-
tegrator, is developed to numerically preserve the Hamiltonian
structure of the presented model and its Lie group configuration
manifold. The structure-preserving properties are particularly
useful for studying complex dynamics of a tethered spacecraft.
These properties are illustrated by numerical simulations.

I. INTRODUCTION

Tethered spacecraft are composed of multiple satellites
in orbit, that are connected by a thin, long cable. Their
dynamics involves nonlinear coupling effects between several
dynamic modes evolving on multiple length and time scales.
For example, the rotational dynamics of spacecraft is non-
trivially coupled to the tension of the tether, which is affected
by the reeling mechanism and orbital maneuver. Therefore,
it is important to accurately model tether dynamics, attitude
dynamics of spacecraft, reeling mechanisms, gravitational
force and the interaction between them.

Several analytic and numerical models have been devel-
oped for tethered spacecraft. However, due to the complex-
ities of tethered spacecraft, it is common practice to use
simplified models, such as point masses, or inextensible
tether models [1], [2], [3]. These simplified models allow for
rigorous mathematical analysis, but they may fail to predict
the behaviors of an actual tethered spacecraft accurately,
particularly given the fact that tethered spacecraft operations
are based on weak nonlinear effects over a long time pe-
riod. Recent numerical studies consider more sophisticated
tethered spacecraft models including a varying tether length.
But, in these models, rigid body dynamics is ignored [4],
[5], and the reeling mechanism is neglected [4], [6].

The goal of this paper is to develop a high-fidelity analyti-
cal model and numerical simulations for tethered spacecraft.
This is an extension of preliminary work that studied a string
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pendulum model with a reeling mechanism [7], [8]. The first
part of this paper provides a realistic and accurate analytical
tethered spacecraft model including tether deformations, at-
titude dynamics of rigid bodies, and a reeling mechanism.
We show that the governing equations of motion can be
developed using Hamilton’s principle.

The second part of this paper deals with a geometric
numerical integrator for tethered spacecraft. Geometric nu-
merical integration is concerned with developing numerical
integrators that preserve geometric features of a system, such
as invariants, symmetry, and reversibility [9]. A geometric
numerical integrator, referred to as a Lie group variational
integrator, has been developed for a Hamiltonian system on
an arbitrary Lie group in [10].

A tethered spacecraft is a Hamiltonian system, and its
configuration manifold is expressed as the product of the
Lie groups SO(3), SE(3), and the space of connected curve
segments on R3. This paper develops a Lie group variational
integrator for tethered spacecraft based on the results pre-
sented in [10]. The proposed geometric numerical integrator
preserves symplecticity and momentum maps, and exhibits
desirable energy conservation properties. It also respects the
Lie group structure of the configuration manifold, and avoids
the singularities and computational complexities associated
with the use of local coordinates. It can be used to study non-
local, large amplitude and deformation maneuvers of tethered
spacecraft accurately over a long time period.

II. TETHERED SPACECRAFT

We consider two rigid spacecraft connected by an elastic
tether. We assume that rigid spacecraft can freely translate
and rotate in a three-dimensional space, and the tether is
extensible and flexible. The bending stiffness of the tether is
not considered as the diameter of the tether is assumed to
be negligible compared to its length. The tether is connected
to a reeling drum in a base spacecraft, and the other end of
the tether is connected to a sub-spacecraft. The point where
the tether is attached to the spacecraft is displaced from the
center of mass so that the dynamics of the spacecraft is
coupled to the tether deformations and displacements. This
model is illustrated in Fig. 1.

We choose a global reference frame and two body-fixed
frames. The global reference frame is located at the center
of the Earth. The first body-fixed frame is located at the
center of mass of the base spacecraft, and the second the
body-fixed frame is located at the end of the tether where
the tether is attached to the sub-spacecraft. Since the tether
is extensible, we need to distinguish between the arc length
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(a) Reference configuration

for the stretched deformed configuration and the arc length

(b) Deformed configuration

Fig. 1. Tethered spacecraft model

for the unstretched reference configuration. Define

m € R
JERBXS
R €50(3)
QeR?
zeR3
deR

beR
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m, €R
J, =€ R3*3

LeR
5€10,1]

s(s,t) e R

Sp(t) € [bv L]

r(s,t) € R?
0(5) eR
LER

ms € R
Js €R

the mass of the base spacecraft

the inertia matrix of the base spacecraft
the rotation matrix from the first body-
fixed frame to the global reference frame
the angular velocity of the base spacecraft
represented in its body-fixed frame

the location of the center of mass of the
base spacecraft represented in the global
reference frame

the radius of the reeling drum

the length of the guideway

the vector from the center of mass of
the base spacecraft to the beginning of
the guideway represented in its body-fixed
frame, p = [d, 0, ).

the mass of the reeling drum

the inertia matrix of the reeling drum,
J, = kpd? for a matrix , € R3%3

the total unstretched length of the tether
the unstretched arc length of the tether
between the point at which the tether is
attached to the reeling drum an a material
point P on the tether

the stretched arc length of the tether to the
material point located at 5

the arc length of the tether between the
point at which the tether is attached to
the reeling drum and the beginning of the
guideway

the deformed location of a material point
P from the origin of the global reference
frame; r(sp,t) = z(t) + R(t)p

0= (sp—b—35)/d for5€0,s, —b]
The mass of the tether per unit unstretched
length

the mass of the sub-spacecraft

the inertia matrix of the sub-spacecraft

Rs(t)

Rs; € SO(3) the rotation matrix from the second body-
fixed frame to the global reference frame
the angular velocity of the sub-spacecraft
represented in its body-fixed frame

the vector from the point where the tether
is attached to the sub-spacecraft to the
center of mass of the sub-spacecraft rep-
resented in its body-fixed frame

control moment at the reeling drum

Q, e R3

ps € R?

ueR

A configuration of this system can be described by
the locations of material points of the tether, r(s,t) for
s € [0, L], the location of the base spacecraft, the attitude
of both spacecraft, and the length of the deployed por-
tion of the tether. So, the configuration manifold is G =
C*>([0,1],R?) x SE(3) x SO(3) x R, where C*°([0,1],R?)
denotes the space of smooth connected curve segments on
R3, SO(3) = {R € R¥*3|RTR = I,det[R] = 1}, and
SE(3) = R3®SO(3) [11].

Throughout this paper, we assume that: (i) the radius
of a reeling drum and the length of a guideway is small
compared to the length of a tether; (ii) the reeling drum
rotates about the second axis of the first body-fixed frame of
the base spacecraft; (iii) the deployed portion of the tether is
extensible, but the portion of the tether on the reel and the
guideway inside of the base spacecraft is inextensible; (iv)
the gravity is uniform over both spacecraft.

III. CONTINUOUS-TIME ANALYTICAL MODEL

In this section, we develop continuous-time equations of
motion for a tethered spacecraft using Hamilton’s variational
principle. The attitude kinematics equation of the base space-
craft and the sub-spacecraft is given by

R=RQO, R,=RQ,, (1)

where the hat map > : R? — s0(3) is defined by the condition
that 2y = x x y for any z,y € R3.

A. Lagrangian

Kinetic energy: The kinetic energy of the base space-
craft excluding the reeling drum is given by

Ty, zlmx'-ab+1(2-.](2. 2)

2 2
Under the assumption that the radius of a reeling drum is
much less than the length of the tether, the kinetic energy of
the reeling drum and the part of the tether inside of the base

spacecraft can be approximated by

1 A S 1.
Ty, = i(mr +@sp)d - &+ §psp312) + 552512). 3)
where ko = €3 - k. Let 7(3,t) be the partial derivative of
r(3,t) with respect to ¢. The kinetic energy of the deployed

portion of the tether is given by

L
1
1= [ S i) ds @
Sp
Let 5 € R? be the vector from the end of the tether to a
mass element of the sub-spacecraft represented with respect
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to its body-fixed frame. The location of the mass element in
the global reference frame is given by (L) + Rsp. Then,
the kinetic energy of the sub-spacecraft is given by

1 A 1
T, = §ms||¢(L)||2 +mgr(L) - RsQsps + 595 Q.
(5)

Here, we use the fact that fB pdm = p., and J; =
— [, P2dm. The total kinetic energy is given by T =
Tb1 + Tb2 + Ty + Ts.

Potential energy: By the assumption that the size of
reeling drum is small compared to the length of the tether, the
gravitational potential of the base spacecraft and the reeling
mechanism is approximated as follows

_ .GM

%:_(m+mr+ﬂsp)W7 (6)

where the gravitational constant and the mass of the Earth

are denoted by G and M, respectively.
The strain of the tether at a material point 7(3) is
As(3) — As

= lim ——~———— =4'(5) -1
€T AsDo As S -1

where () denote the partial derivative with respect to 5. The
tangent vector at the material point is given by

or(s) or(s) 0s ' (3)

e+ = = = .

! 0s Js 0s(s)  $(3)
Since this tangent vector has unit length, we have s'(5) =
||7’(3)||- Therefore, the strain can be written as € = ||7/(3)]| —

1. Using this, the elastic potential and the gravitational
potential of the deployed portion of the tether is given by

1t . ) L oM
V=1 / BA(Ir (3)]| - 1)2 ds / e
where F and A denote the Young’s modulus and the sectional
area of the tether.

The location of the center of mass of the sub-spacecraft
is 7(L) + Rsps in the global reference frame. Since we
assume that the gravity is uniform over the spacecraft, the
gravitational potential of the sub-spacecraft is given by

ds, (7)

GM
Ve=—msm———rs—r. (8)
(L) + Rsps||
From (2)-(8), the Lagrangian of the tethered spacecraft is
L=Ty + Ty + T+ T~ Vo~ Vi= Ve (9

B. Euler-Lagrange Equations

Let the action integral be & = f:of Ldt. According to
Hamilton’s principle, the variation of the action integral is
equal to the negative of the virtual work for fixed boundary
conditions, which yields Euler-Lagrange equations. To apply
this to the tethered spacecraft model, we need to carefully
address the following issues: (i) the domain of the integral
depends on the variable s,(t) at (4); (ii) the rotation matrices
R, R, that represents the attitudes lie in the nonlinear Lie
group SO(3); (iii) as the tether is assumed to be inextensible
in the guideway, and it is extensible outsize of the guideway,
there exists a discontinuity in strain at the guideway.

a) Time-Varying Domain: Due to (4), the variation

of the action integral d& includes the following term,

ttot ffp a7 (3) - 67(S) dsdt. Here, we cannot apply integration

by parts with respect to s, since the order of the integrals

cannot be interchanged due to the time dependency in the
variable s,(t). Instead, we use Green’s theorem [7],

o _ borlod _
7{7‘(3)-57"(5)6%2/)&0 /Sp(t)dt(r(s).ar(s))dgdt, (10)

where fc represents the counterclockwise line integral on the
boundary C of the region [to,ts] X [s,(¢), L]. The boundary
C is composed of four lines: (t = tp,5 € [sp(to),L]),
(t = t5.5 € [sp(tp). L), (t € [to,t5],5 = s,(t)). and
(t € [to,tf],5 = L). For the first two lines, 07(5) = 0
since t = tg,t¢. For the last line, d5 = 0 since 5 is fixed.
Thus, parameterizing the third line by ¢, we obtain

%7‘(3) -0r(s)ds = / ' 7(sp(t)) - or(sp(t)) $p(t) dt.
c

to

Substituting this into (10) and rearranging, we obtain

/t:f /L 7(5) - 07 (5) ddt

_ /ttf [/L () - 6r(3) d + (s,) - 6r(sp) 3

P

dt.

b) Variation of Rotation Matrices: The attitudes of
spacecraft are represented by the rotation matrix R, Ry €
SO(3). Therefore, the variation of the rotation matrix should
be consistent with the geometry of the special orthogonal
group. In [10], it is expressed as

Py

. d
de =

o de 1D

Rexpen = Ry,
e=0

€=

for n € R3. The key idea is expressing the variation of a
Lie group element in terms of a Lie algebra element. The
corresponding variation of the angular velocity is obtained
from the kinematics equation (1):

d

60 =—

SRR = G+ )

e=0

(12)

¢) Variational Principle with Discontinuity: Let (s, ),
and r(s,) be the material point of the tether just inside the
guideway, and the material point just outside the guideway,
respectively. Since the tether is inextensible inside the guide-
way, ||r'(s, )| = 1. Since the tether is extensible outside
the guideway, [|7/(s,})|| = 1 + ", where €' represents the
strain of the tether just outside the guideway. Due to this
discontinuity, the speed of the tether changes instantaneously
by the amount €™ |3,| at the guideway.
As a result, an additional term (), referred to as Carnot
energy loss term should be introduced in the variational
principle [5], [12]:

tr
(5@54—/ (Q +u/d)ds, —uey - ndt =0. (13)
¢

Lo
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—(m+mr+ﬁsp)i—GM(m+mr+ﬁsp)H B + 18 (=7 (s3)8p — RpQ) + F(sp) = 0, (14)
—JQ — QIO+ TsppRT (=1 (s)8p + & — RpQ) + pRT F(sp) — uez = 0, (15)
DU D, . 1. GM_ | GM
—(msp + K2)$p — S(E — RPQ) - (& — RPQ) + S - & — o — Flsp) -7 (sy) + == 0, (16)
2 2 Bt # Tl d

i (s) + F'(5) ﬁGMH:gH —0, (€Il r(sp) =+ Rp), a7

. A A : (L) + Rsps
—msT L + msRspst - msngzps - msRstps - GMm.s— - L) = 07 (18)

@) (D) + RopeP ¢
- ~ . A ~ L) + Rsps

— Q% — meps RT#(L) — QuJQ — GMmpsRT r_r(L)+ Rps 0, (19)

@) [(L) + RopalP

A”T (S)H L

where F(3) = T G

r'(S) denotes the tension of the tether.

The corresponding time rate of change of the total energy
is given by E = (Q + u/d)s,, where the first term Q3,
represents the energy dissipation rate due to the velocity and
strain discontinuity. The corresponding expression for () has
been developed in [7]:

Q = 7l (s~ 178 — S BA(IF (53] — 1.

d) Euler-Lagrange Equations: Using these results, and
the variational principle with discontinuity (13), we obtain
the Euler-Lagrange equations for the given tethered space-
craft model in (14)-(19). In (17), we require that r(s,) =
x + Rp for the continuity of the tether.

IV. LIE GROUP VARIATIONAL INTEGRATOR

The Euler-Lagrange equations developed in the previous
section provide an analytical model for a tethered spacecraft.
However, the standard finite difference approximations or
finite element approximations of those equations using a
general purpose numerical integrator may not preserve the
geometric properties of the system accurately [9].

Lie group variational integrators provide a system-
atic method of developing geometric numerical integra-
tors for Lagrangian/Hamiltonian systems evolving on a Lie
group [10]. As they are derived from a discrete analogue
of Hamilton’s principle, they preserve symplecticity and the
momentum map, and it exhibits good total energy behavior.
They also preserve the Lie group structure as they update a
group element using the group operation. These properties
are critical for accurate and efficient simulations of complex
dynamics of multibody systems [13]. In this section, we
develop a Lie group variational integrator for a tethered
spacecraft.

A. Discretized Tethered Spacecraft Model

Let h > 0 be a fixed time-step. The value of variables
at t = ty + kh is denoted by a subscript k. We discretize
the deployed portion of the tether using N identical line
elements. Since the unstretched length of the deployed
portion of the tether is L — s, , the unstretched length of
each element is [}, = Losp,

variables related to the a-th element. The natural coordinate
on the a-th element is defined by

— (a — 1)lk
Ik

Grale) = E5) 20)
for s € [sp, +(a—1)lk, Sp, +ali]. This varies between 0 and
1 on the a-th element. Let Sy, S; be shape functions given
by So(¢) =1—¢, and S1(¢) = ¢. These shape functions are
also referred to as tent functions.

Using this finite element model, the position vector (3, t)
of a material point in the a-th element is approximated as
follows:

Tk (§)

Therefore, a configuration of the presented discretized
tethered spacecraft at ¢ = kh + tg is described by g =
(xk; Ri; Spy; Thts - - - » T, N+1; s, ), and the corresponding
configuration manifold is G = R® x SO(3) x R x (R3)N+1 x
SO(3). This is a Lie group where the group acts on itself by
the diagonal action [11]: the group action on zy, Sp,, and

= So(Ck,a)Tk,a + S1(Ck,a)That1- 2D

Tk,q 1s addition, and the group action on Ry, R, is matrix
multiplication.

We define a discrete-time kinematics equation
using the group action as follows. Define f, =
(ALL‘}C;F]C;ASP,C;AT]CJ,..., AT}C’NJ’»];FS’C) € G such

that gx41 = gn fx:

(@t 15 R 15 Spiy s Tt 1,03 Rig1) =
(zx + Axg; RpF; Sp + ASp i Tha + ATk a5 R, F L)
(22)

Therefore, fi € G represents the relative update between two
integration steps. This ensures that the structure of the Lie
group configuration manifold is numerically preserved since
gk is updated by fi using the right Lie group action of G
on itself.

B. Discrete Lagrangian

A discrete Lagrangian Lg(gk, fx) : G x G — R is an
approximation of the Jacobi solution of the Hamilton—Jacobi
equation, which is given by the integral of the Lagrangian
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along the exact solution of the Euler-Lagrange equations over
a single time-step:

h .
Lalge. fu) ~ / L@, 5 ()3(0)) dr,

where g(t) : [0,h] — G satisfies Euler-Lagrange equations
with boundary conditions §(0) = gx, g(h) = grfr. The
resulting discrete-time Lagrangian system, referred to as
a variational integrator, approximates the Euler-Lagrange
equations to the same order of accuracy as the discrete
Lagrangian approximates the Jacobi solution [14].

We construct a discrete Lagrangian for the tethered space-
craft using the trapezoidal rule, which yield simpler expres-
sions for the resulting discrete equations while guaranteeing
second-order accuracy. From the attitude kinetics equations
(1), the angular velocity is approximated by

A 1 _p 1

Q ~ ERJC (Ri+1 — Ri) = E(
Define a non-standard inertia matrix J; = %tr[J JI—J. Using
the trace operation and the non-standard inertia matrix, the
rotational kinetic energy of the main spacecraft at (2) can
be written in terms of { as 10-J0= %tr[QJdQT]. Using
this, and (2), (3), the kinetic energy of the base spacecraft is
given by

Fp—1).

Thp =

7 2h2 (m + my. + [isp, ) Axy - Axy,

(Fispy + is) Asi, + ﬁn{(f — Fy)Ja], (23)

1
T oz
where we use properties of the trace operator: tr[AB] =
tr[BA] = tr[AT BT] for any matrices A, B € R3*3,
Next, we find the kinetic energy of the tether. Using the
chain rule, the partial derivative of r(5) given by (21) with
respect to ¢ is given by

. 1
Tr(s) = h{SO(Ck,a)ATk,a + S1(Crya) ATk at1
(L_S) (rka_rk:a+1) }
’ ’ As .
(L - SPA«) lk P

Substituting this into (4), the contribution of the a-th tether
element to the kinetic energy of the tether is given by

+

1 1
Tk,a 252 Mk A?"k a A’I"k a 2h2 MlgArk,a-l-l . Ark,a—i-l
1 1
57,2 Mk aAsm % M%2AT]C7,Z ATk a1
1
+ 35 M, 28 Asp, - ATp a1 + 3 M,;”}aAsm - Arg g,
(24)
where the inertia matrices are given by
1
M, = 3k, M} = M},
1_ (3N?+3N +1—6Na— 3a+ 3a?)
M}, =<l
k,a 3/’6 k N2 s
1_ 1_(14+3N —3a)
My? = il M, = i (Tka = That);

1_(243N —3a)
M31 e TR )

k,a 6M N
Similar to (23), from (5), the kinetic energy of the sub-
spacecraft is given by

(rk,a - Tk,a-i—l)-

1 1
Ths = =5ms A1 Ny1 - ATk N+1 + — 02 t](I — Fs,)Js,]

2h2
1
+ —QmsArk’NH - R, (Fs,, — I)ps.
From (23), (24), (25), the total kinetic energy of the dis-

25
5 (25)
cretized tethered spacecraft is given by

N
Ty =Ty + Z Tho + Tk s-

a=1

(26)

Similarly, from (6), (7), and (8), the total potential energy
is given by

_ 1
Vi = —GM(m + m, +uspk)m

1

75,0 + 7kt l

_ lk)2

N
+ > —2G Ml
a=1
1EA
2 l (Hrk:aJrl

1

— GMmy .
7k, N1+ Ry psll

27)

Using (26), (27), we choose the discrete Lagrangian of the
discretized tethered spacecraft as follows:

La, (gx, fr) = W (gk, fr) — ng+1(gk7fk)-

(28)

ng(gmfk) -

C. Discrete-time Euler-Lagrange Equations

We define the discrete action sum &y =
>r—i La, (gk, fr). According to the discrete Hamilton’s
principle, the variation of the action sum is equal to the
negative of the discrete virtual work. This yields discrete-
time Euler-Lagrange equations, which is referred to as a
variational integrator.

In [10], the following Lie group variational integrator has
been developed for Lagrangian systems on an arbitrary Lie
group:

T:Lfk—l'ka—1Ldk,—1 - Ad;'kjl : (T:L.fk : kaLdk) (29)

+ Tl Dy, La, +Ug, +Qq, =0,

Gk+1 = Gk frs (30

where TL : TG — TG is the tangent map of the left
translation, D¢ represents the derivative with respect to f,
and Ad* : G x g* — g* is co-Ad operator [11].

The virtual work due to the control input and the Carnot
energy loss are denoted by Uy, € ¢* and Qg € g%,
respectively, and they are chosen as
€1y

h
“Logr) = Euk&sk — huges - Mk,

Qdk : (gil(sgk) = -

Udk ) (g

2};2 (IAs2, /h? + EA)
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X (|rk2 — rrall — ) 08p,.  (32)

By substituting (28), (31), and (32) into (29) and (30), we
obtain a Lie group variational integrator for the given discrete
tethered spacecraft model. Due to page limits, we do not
present the detailed results in this paper. But, we demonstrate
their computational properties in the next section.

V. NUMERICAL EXAMPLE

Properties of the tethered spacecraft are chosen as

m =490kg, m, =10kg, ms= 150kg,
1 =120km, 7 =24.Tkg/km, FEA=659700N,
J = diag[5675.8, 5675.8, 6125 kgm?, p = [0.5,0.0, 1]m,
J, = diag[500, 500, 300] kgm?, p, = [0,0,1] m.

Initially, the base spacecraft is on a circular orbit with an
altitude of 300km, and the tether and the sub-spacecraft
are aligned along the radial direction. The initial unstretched
length of the deployed portion of the tether is 20 km, i.e.,
sp(0) = 100km. The initial velocity at each point of
the tether and the sub-spacecraft is chosen such that it
corresponds to the velocity of a circular orbit at their altitude.

We consider the following three cases. In the first case,
the reeling drum is fixed so that the length of the deployed
portion of the tether is fixed, i.e., 5, = 0. In the second case,
the reeling drum is free to rotate, and the tether is released by
gravity to 100 km. The third case is the same as the first case
except that the initial velocities of the base spacecraft and
the sub-spacecraft are perturbed by about 15% to generate a
tumbling motion. These are summarized with the time-step
and the simulation time as follows:

Description | h(s) | ty(s)
Case 1 | Fixed reeling drum 0.05 | 6000
Case 2 | Releasing the tether to 100km | 0.05 | 3848
Case 3 | Velocity perturbation of Case 1 | 0.01 | 500

Note that the orbital period of a point mass on the circular
orbit with the altitude of 300 km is 5410 seconds. For all
cases, the number of tether elements is N = 20.

The following figures illustrate simulation results for each
case. We consider a fictitious local vertical, local horizontal
(LVLH) frame that is attached to an imaginary spacecraft on
a circular orbit with an altitude of 300 km. For each figure,
we have the following subfigures: (a) the maneuvers of the
tethered spacecraft are illustrated with respect to the LVLH
frame. To represent the attitude dynamics of spacecraft, the
size of the spacecraft is increased by a factor of 100, and
the relative strain distribution of the tether at each instant
is represented by a color shading (animations illustrating
these maneuvers are also available at http://my.fit.
edu/ taeyoung). The remaining subfigures show: (b) the
energy transfer, (c) the computed total energy deviation
from its initial value, (d) the angular velocity of the base
spacecraft, and (e) the unstretched/stretched length of the
tether.

In the first case, we observe a pendulum-like motion
where the tether is taut and its stretch length is almost

close to the unstretched length. But, there exists a strain
wave that propagates along the tether, and nontrivial attitude
maneuvers for the base spacecraft and the sub-spacecraft.
The proposed Lie group variational integrator exhibit ex-
cellent conservation properties: the maximum relative total
energy deviation is 2.37 x 1078 % of its initial value, and
the maximum orthogonality error of rotation matrices is
max{ ||l — RTR||} = 1.32 x 10713,

In the second case, the tether is deployed by gravity
gradient effects, and due to the Carnot energy term discussed
in the previous section, the total energy increases slightly. As
the mass in the base spacecraft is transferred to the deployed
portion of the tether, there is a transfer of kinetic energy
between two parts, as seen in Fig. 3(a).

The third case at Fig. 4 is most challenging: there are in-
plane and out-of-plane tumbling maneuvers, while the tether
is stretched by 25%, and the attitude dynamics of space-
craft is nontrivially excited with a large angular velocity.
The proposed Lie group variational integrator computes the
complex dynamics of this tethered spacecraft accurately. The
maximum relative total energy deviation is 3.48 x 10™* %,
and the maximum orthogonality error of rotation matrices is
max{||/ — RTR||} = 8.03 x 1074
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Fig. 3 (continued).
(a) Snapshots observed at the LVLH frame (km) (The size of spacecraft is
increased by a factor of 100 to illustrate attitude dynamics.)
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Case 2: Circular orbit, Releasing tether
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Fig. 2. Case 1: Circular orbit, Fixed unstretched tether length
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(d) Angular velocity of the base space-

(a) Snapshots observed at the LVLH frame (km) (The size of spacecraft is craft O

increased by a factor of 100 to illustrate attitude dynamics.)

Fig. 3. Case 2: Circular orbit, Releasing tether
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(e) Unstretched length of the deployed
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Fig. 4. Case 3: Perturbed circular orbit, Fixed unstretched tether length



