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Abstract— In this paper we develop a Kalman filter based
adaptive controller for multivariable uncertain systems with
loop transfer recovery of an associated reference system. This
approach increases the level of confidence of adaptive control
systems by providing a means for preserving stability margins
even under uncertainty and failures. In addition, it results in an
optimization based time-varying adaptation gain. An example
is provided to illustrate the efficacy of the proposed approach.

I. INTRODUCTION

Direct adaptive controllers require less modeling infor-
mation than robust controllers and can address system un-
certainties and system failures. These controllers directly
adapt controller parameters in response to system variations
for the purpose of canceling the effect of modeling un-
certainty, without necessarily estimating the parameters of
the unknown system. This property distinguishes them from
adaptive controllers which employ an estimation algorithm to
estimate the unknown system parameters, and employ a con-
troller that depends on the estimated parameters. This paper
presents a direct Kalman filter based adaptive controller for
multivariable uncertain systems with loop transfer recovery
of an associated reference system.

In the recent years, there have been a number of efforts
focused on improving direct adaptive controllers [1]–[12].
These approaches impose constraints on the weights to
improve an existing adaptive law, and are commonly referred
to as composite adaptation [13]. In general, the gradient
of a norm of the error in the constraints produces terms
that are used to modify an existing direct adaptive control
law. However, using a gradient method can result in slow
parameter convergence towards a local minimum [14]. In
addition, gradient based modification terms have a fixed
adaptation gain that often has to be chosen high to obtain sat-
isfactory results. However, this choice can interact negatively
with unmodeled dynamics and amplify the effect of sensor
noise. A Kalman filter modification approach to adaptive
control has been proposed to overcome these problems in
Refs. 7 and 8 that approximately enforces constraints on the
weights. When compared with gradient based modification
terms, this approach to modification improves both adaptive
stabilization and command following. The Kalman filter
based adaptive control proposed in this paper is an extension
of the previous work in that we not only enforce constraints
on the weights, but also optimize the adaptation gain.

From the perspective of verification and validation of
adaptive control systems, there is a need to address two
problems. The first problem is to design an adaptive con-
troller so that the closed-loop system can guarantee stabiliza-
tion and command following while maintaining the stability
margins of the reference system. The second problem is to
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preserve the reference system margins to the degree possible
even under uncertainty and failures. While the aspect of
stabilization and command following can be dealt with in a
nonlinear setting by employing Lyapunov stability analysis,
issues related to margins can be addressed using the adaptive
loop recovery (ALR) modification term proposed in Ref. 5.
By employing ALR modification, the loop transfer properties
of a reference system associated with a nominal control
design are preserved in an adaptive system. As a result, this
term increases the level of confidence one has in the use of
adaptive control systems.

In this paper, we show that Kalman filter based adaptive
controllers can be obtained by imposing a constraint on the
weight estimates, and formulating and solving an associated
minimization problem. To address the problem of maintain-
ing a measure of stability margin in the adaptive system,
we also use a Kalman filtering approach to approximately
enforce the ALR constraint. The resulting adaptive control
law is shown to guarantee that the closed loop error signals
are uniformly ultimately bounded (UUB). An illustrative
example is provided to demonstrate the efficacy of the
proposed approach.

The notation used in this paper is fairly standard. R
n

denotes the set of n× 1 real column vectors, R
n×m denotes

the set of n × m real matrices, (·)T denotes transpose,
and (·)−1 denotes inverse. Furthermore, we write λmin(M)
(resp., λmax(M)) for the minimum (resp., maximum) eigen-
value of the Hermitian matrix M , ‖ · ‖ for the Euclidian
vector norm or for the Frobenius matrix norm, vec(·) for the
column stacking operator, and ⊗ for Kronecker product.

II. PRELIMINARIES

Consider the controlled uncertain system given by

ẋ(t) = Ax(t) + B[u(t) + ∆(x(t))], (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control
input, A ∈ R

n×n and B ∈ R
n×m are known matrices, and

∆ : R
n → R

m is matched uncertainty. We assume that the
full state vector is available for feedback and the control input
is restricted to the class of admissible controls consisting of
measurable functions.

In order to achieve trajectory tracking, define a reference
system given by

ẋm(t) = Amxm(t) + Bmr(t), (2)

where xm(t) ∈ R
n is the reference state vector, r(t) ∈ R

r

is a bounded piecewise continuous reference input, Am ∈
R

n×n is Hurwitz, and Bm ∈ R
n×r, r ≤ m.

Assumption 1. The unknown matched uncertainty in (1)
can be linearly parameterized as

∆(x) = WTβ(x), (3)

where W ∈ R
s×m is the unknown constant weight matrix

and β : R
n → R

s is the basis function vector of the form
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β(x(t)) = [β1(x(t)), β2(x(t)), . . . , βs(x(t))]T ∈ R
s.

Consider the control signal

u(t) = un(t) − uad(t), (4)

where un(t) is the nominal control signal given by

un(t) = −K1x(t) + K2r(t), (5)

K1 ∈ R
m×n and K2 ∈ R

m×r are nominal control gains,
and uad(t) is the adaptive control signal given by

uad(t) = ŴT(t)β(x(t)), (6)

where Ŵ (t) ∈ R
s×m is an estimate of W obtained from the

adaptive weight update law

˙̂
W (t) = γ

[

β(x(t))eT(t)PB − σŴ (t)
]

. (7)

In (7) γ and σ are fixed positive adaptation and modification
gains, respectively, e(t) = x(t) − xm(t) is the error signal,
and P ∈ R

n×n is a positive-definite solution of the Lyapunov
equation

0 = AT
mP + PAm + L, (8)

for any L = LT > 0.

The system dynamics (1) can now be written as

ẋ(t) = Amx(t) + Bmr(t) − BW̃T(t)β(x(t)), (9)

where Am = A−BK1, Bm = BK2, and W̃ (t) , Ŵ (t)−W ,
with the system error dynamics and the error weight update
given by

ė(t) = Ame(t) − BW̃T(t)β(x(t)), (10)

and

˙̃W (t) = γ
[

β(x(t))eT(t)PB − σŴ (t)
]

. (11)

Theorem 1. Consider the uncertain system given by (1)
with the adaptive control law defined by (4)–(8), subject to
Assumption 1. The corresponding errors given by (10) and
(11) are UUB.

Proof. The proof of Theorem 1 is common in the literature
[1], [13], and follows directly by considering the Lyapunov
function candidate

V(e(t), W̃ (t)) = eT(t)Pe(t) +
1

γ
tr[W̃T(t)W̃ (t)], (12)

and differentiating (12) along the closed-loop system trajec-
tories of (10) and (11).

III. KALMAN FILTER BASED ADAPTIVE CONTROL

FORMULATION

The weight update law given by (7) can be viewed
as a gradient approach for enforcing the following linear
constraint on the weight estimates

ŴT(t)Φ1(·) = Φ2(·) (13)

where

Φ1(·) =
√

σ Is (14)

Φ2(·) =
√

σ −1β(x(t))eT(t)PB, σ > 0. (15)

To see this, consider the cost function

J (Ŵ (t)) =
1

2
||ŴT(t)Φ1 − Φ2(x(t))||2. (16)

The negative gradient of J (Ŵ (t)) with respect to Ŵ (t) is
given by

−dJ (Ŵ (t))

dŴ (t)
= β(x(t))eT(t)PB − σŴ (t), (17)

where we used (14) and (15). Multiplying both sides of (17)
by γ > 0 gives (7).

The problem of estimating W so that it satisfies the the
linear constraint in (13) can be formulated as an optimization
problem. For this purpose, taking the transpose of (13)
and then applying vec(·) operator results in the following
equivalent form

Φ̄T
1 (·)ω(t) = Φ̄T

2 (·), (18)

where Φ̄1(·) = Im ⊗ ΦT
1 (·) ∈ R

ms×ml, Φ̄2(·) =
vec(ΦT

2 (·)) ∈ R
ml, and ω(t) = vec(Ŵ (t)) ∈ R

ms. Define
the stochastic process

ω̇(t) = q(t), (19)

z(t) = Φ̄T
1 (·)ω(t) + r(t), (20)

where q(t) and r(t) are zero-mean, Gaussian, white noise
processes with covariances

E
{

q(t)qT(τ)
}

= Q̄δ(t − τ), Q̄ ∈ R
ms×ms > 0, (21)

E
{

r(t)rT(τ)
}

= R̄δ(t − τ), R̄ ∈ R
ml×ml > 0, (22)

and z(t) is regarded as a measurement. The estimate of z(t)
is

ẑ(t) = Φ̄T
1 (·)ω̂(t), (23)

where ω̂(t) is an estimate of ω(t). The Kalman filter asso-
ciated with this problem formulation is given by [15]:

˙̂ω(t) = S̄(t)Φ̄1(·)R̄−1(z(t) − ẑ(t)), ω̂(0) = 0, (24)

˙̄S(t) = −S̄(t)Φ̄1(·)R̄−1Φ̄T
1 (·)S̄(t) + Q̄,

S̄(0) = S̄0 > 0, (25)

where S̄(t) ∈ R
ms×ms. Since the objective is to approx-

imately satisfy the constraint in (13), the logical choice
for z(t) when employing this estimator is z(t) = Φ̄T

2 (·).
Furthermore, choosing R̄ = Im×m ⊗ R with R ∈ R

l×l > 0
and Q̄ = Im×m⊗Q with Q ∈ R

s×s > 0, Appendix A of [8]
shows that (24) and (25) with z(t) = Φ̄T

2 (·) can equivalently
be expressed as:

˙̂
W (t) = −S(t)Φ1(·)R−1

[

Φ1(·)TŴ (t) − Φ2(·)T
]

,

Ŵ (0) = 0, (26)

Ṡ(t) = −S(t)Φ1(·)R−1ΦT
1 (·)S(t) + Q,

S(0) = S0 > 0, (27)

where S(t) ∈ R
s×s.

Using (14) and (15) in (26) and (27) and choosing R =
rIl, r > 0, leads to a Kalman filter based adaptive controller
(KFAC) with weight update law given by:

˙̂
W (t) = Γ(t)

[

β(x(t))eT(t)PB − σŴ (t)
]

, (28)

Ṡ(t) = −(σ/r)S2(t) + Q, S(0) = S0 > 0, (29)
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where Γ(t) , S(t)/r.

Remark 1. It follows from Proposition 1.1 in Ref. 16
that S(t) exists and is symmetric and positive definite for all
t ≥ 0. Furthermore, it follows from Theorem A.2 in Ref. 8
that S(t) is uniformly bounded. Hence, Γ(t) is the positive
definite, time-varying, and uniformly bounded Kalman filter
gain for KFAC.

The weight error satisfies

˙̃W (t) = Γ(t)
[

β(x(t))eT(t)PB − σŴ (t)
]

. (30)

Theorem 2. Consider the uncertain system given by (1)
with the adaptive control law defined by (4)–(6), (8), (28),
and (29) subject to Assumption 1. The corresponding errors
given by (10) and (30) are UUB.

Proof. Consider the Lyapunov function candidate

V(·) = eT(t)Pe(t) + tr[W̃T(t)Γ−1(t)W̃ (t)], (31)

where P > 0 satisfies (8). Differentiating (31) along the
closed-loop trajectories of (10) and (30) gives

V̇(·) = 2eT(t)P
[

Ame(t) − BW̃T(t)β(x(t))
]

+2tr
[

W̃T(t)
(

β(x(t))eT(t)PB − σŴ (t)
)]

−tr
[

W̃T(t)Γ−1(t)Γ̇(t)Γ−1(t)W̃ (t)
]

= −eT(t)Le(t) − 2σtr
[

W̃T(t)Ŵ (t)
]

−tr
[

W̃T(t)Γ−1(t)Γ̇(t)Γ−1(t)W̃ (t)
]

≤ −λmin(L)|e(t)|2 − σ||W̃ (t)||2 + σ||W ||2

−tr
[

W̃T(t)Γ−1(t)Γ̇(t)Γ−1(t)W̃ (t)
]

. (32)

Using Γ−1(t)Γ̇(t)Γ−1(t) =
(

rS−1(t)
)(

−(σ/r2)S2(t) +
Q/r

)(

rS−1(t)
)

= rQS−1(t) − σIs in (32) yields

V̇(·) ≤ −λmin(L)|e(t)|2 − σ||W̃ (t)||2 + σ||W ||2

−rtr
[

W̃QS−1(t)W̃ (t)
]

+σ||W̃ (t)||2

= −λmin(L)|e(t)|2 − rλmin

(

QS−1(t)
)

||W̃ (t)||2

+σ||W ||2

= −c1|e(t)|2 − c2||W̃ (t)||2 + c3, (33)

where c1 , λmin(L) > 0, c2 , rλmin

(

QS−1(t)
)

> 0, and

c3 , σ||W ||2 > 0. Either |e(t)| ≥ Θe or ||W̃ (t)|| ≥ Θw

renders V̇(·) < 0, where Θe ,
√

c3/c1 and Θw ,
√

c3/c2.

Therefore, the closed loop signals e(t) and W̃ (t) are UUB.

Remark 2. If Assumption 1 is relaxed to

∆(x) = WTβ(x) + ǫ(x), (34)

where ǫ : R
n → R

m is the residual error satisfying ||ǫ(x)|| <
ǭ, then (33) becomes

V̇(·) ≤ −c1|e(t)|2 − c2||W̃ (t)||2 + c3

+2eT(t)PBǫ(x(t))

≤ −(c1 − ξ)|e(t)|2 − c2||W̃ (t)||2
(c3 + ||PB||2ǭ2), ξ > 0, (35)

where Young’s inequality (xTy ≤ γxTx + yTy/4γ, γ >
0) is used for 2eT(t)PBǫ(x(t)). In this case, either

Fig. 1. Linearized adaptive system dynamics.

|e(t)| ≥ Θ̃e or ||W̃ (t)|| ≥ Θ̃w renders V̇(·) < 0, where

c1 > ξ, Θ̃e ,
√

(c3 + ||PB||2ǭ2)/(c1 − ξ), and Θ̃w ,
√

(c3 + ||PB||2ǭ2)/c2. Hence, the closed loop signals e(t)
and W̃ (t) are UUB.

IV. ADAPTIVE LOOP RECOVERY

In this section we first summarize the ALR approach
proposed in Ref. 5. The objectives of ALR are:

i. Design an adaptive controller so that the closed-loop
system can achieve stabilization and command following
while maintaining the margins of the reference system given
by (2) in the absence of uncertainty (∆(x(t)) = 0).

ii. Preserve the reference system margins to the degree
possible even under uncertainty.

While the aspect of stabilization and command following
can be dealt with in a nonlinear setting by employing
Lyapunov stability analysis, addressing issues related to
margins requires linearization. Within the context of the
adaptive control problem, this reduces to linearizing the
adaptive weight update law. Fig. 1 illustrates the result of
this linearization with weights frozen. When ∆(x(t)) = 0
(objective i), the upper portion of this drawing represents
the reference model dynamics. The margins calculated with

the loop broken at × in this drawing with
¯̂
W = 0 correspond

to the margins of the reference model. The bottom portion
of this diagram shows the effect that the adaptive controller
in steady state has on the loop properties of the reference
model. However, this picture is fallacious because in reality
the weights of the reference model are not frozen. But even
if they were frozen it is apparent that even if the tracking
error is zero, the margins of the reference model are not
maintained, but instead they are modified in an unknown way
by the lower feedback block. In the case of varying weights
it is not possible to even calculate margins on the basis of
Fig. 1, because the lower portion of this diagram is a time-

varying matrix block with
¯̂
W replaced by Ŵ (t). However, it

might still be possible to achieve both objectives of ALR if

one enforces the constraint ŴT(t)βx(x(t)) = 0 for all t ≥ 0

in the adaptive process, where βx(x(t)) ,
dβ(x(t))

dx(t) . In this

direction, the following assumption is introduced in Ref. 5.

Assumption 2. There exists W (t) such that

∆(x(t)) = WT(t)β(x(t)), (36)

WT(t)βx(x(t)) = 0. (37)

In addition, βx(x(t)) has full column rank.

Remark 3. Assumption 2 requires that there is sufficient
redundancy in the choice of the basis function vector to
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allow simultaneous satisfaction of conditions (36) and (37).
Including a bias term in the basis vector is one easy way to
ensure the conditions are met.

Remark 4. It is necessary that the condition

ŴT(t)βx(x(t)) = 0 be maintained during both transitory
and steady-state conditions.

It is shown in Ref. 5 that enforcement of the constraint
ŴT(t)βx(x(t)) = 0 in the adaptive weight update law can
be approximated by considering a cost function

JA(t) = ||ŴT(t)βx(x(t))||2, (38)

and taking its negative gradient with respect to Ŵ (t), which
leads to the ALR modification term given by

˙̂
WA(t) = −βx(x(t))βT

x (x(t))Ŵ (t). (39)

In the context of the Kalman filter modification approach,

the enforcement of the constraint ŴT(t)βx(x(t)) = 0 in the
adaptive weight update law follows from (22) and (23) of
Ref. 8 as

˙̂
WA(t) = −SA(t)βx(x(t))R−1

A βT
x (x(t))Ŵ (t), (40)

ṠA(t) = −SA(t)βx(x(t))R−1
A βT

x (x(t))SA(t) + QA,

SA(0) > 0, (41)

where RA ∈ R
n×n > 0 and QA ∈ R

s×s > 0. Remark 1
also applies to the solution of (41). Choosing RA > rAIn,
rA > 0, yields

˙̂
WA(t) = −ΓA(t)βx(x(t))βT

x (x(t))Ŵ (t), (42)

where ΓA(t) , SA(t)/rA. Note that (42) has a time-varying
adaptation gain, whereas (39) has a fixed adaptation gain.
The adaptive weight update law presented in the previous
section with ALR modification is now given by

˙̂
W (t) = Γ(t)

[

β(x(t))eT(t)PB − σŴ (t)

−ΓA(t)βx(x(t))βT
x (x(t))Ŵ (t)

]

. (43)

The weight error W̃ (t) , Ŵ (t) − W (t) satisfies

˙̃W (t) = Γ(t)
[

β(x(t))eT(t)PB − σŴ (t)

−ΓA(t)βx(x(t))βT
x (x(t))Ŵ (t)

]

−Ẇ (t). (44)

Theorem 3. Consider the uncertain system given by (1)
with the adaptive control law defined by (4)–(6), (8), and

(43), subject to Assumption 2 and ||Ẇ (t)|| < ẇ∗. The
corresponding errors given by (10) and (44) are UUB.

Proof. Consider the Lyapunov function candidate given by
(31). Differentiating (31) along the closed-loop trajectories
of (10) and (44) gives

V̇(·) ≤ −c1|e(t)|2 − c2||W̃ (t)||2 + c̄2||W̃ (t)|| + c3

−tr
[

W̃T(t)ΓA(t)βx(x(t))βT
x (x(t))Ŵ (t)

]

, (45)

where c̄2 , rλmin(S−1(t))ẇ∗ > 0. Using Assumption 2 in
the last term of (45) yields

V̇(·) ≤ −c1|e(t)|2 − ||W̃ (t)||
(

c2||W̃ (t)|| − c̄2

)

+c3

= −c1|e(t)|2 −
(

||W̃ (t)||√c2 −
c̄2

2
√

c2

)2

+
c̄2
2

4c2
+ c3. (46)

Either |e(t)| ≥ Θ̄e or ||W̃ (t)|| ≥ Θ̄w renders V̇(·) < 0,

where Θ̄e ,
√

c̄3/c1, Θ̄w ,
(√

c̄3 − c̄2/(2
√

c2)
)

/
√

c2, and

c̄3 , c̄2
2/(4c2) + c3. Therefore, the closed loop signals e(t)

and W̃ (t) are UUB.

Define q(t) ≡ [eT(t), vec(W̃ (t))T]T and let Br = {q(t) :
||q(t)|| < r}, such that Br ⊂ D for a sufficiently large
compact set D. Then, we have the following corollary.

Corollary 1. Under the conditions of Theorem 3, an
estimate for the ultimate bound is given by

r =

√

λmax(P )Θ̄2
e + λmax(Γ−1(t))Θ̄2

w

λmin(P̄ )
, (47)

where P̄ , diag[P, Γ−1(t)].

Proof. Denote Ωα = {q(t) ∈ Br : qT(t)P̄ q(t) ≤ α},

α = min
||q(t)||=r

qT(t)P̄ q(t) = r2λmin(P̄ ). Since

V(·) = qT(t)P̄ q(t)

= eT(t)Pe(t) + tr[W̃T(t)Γ−1(t)W̃ (t)], (48)

it follows that Ωα is an invariant set as long as

α ≥ λmax(P )Θ̄2
e + λmax(Γ

−1(t))Θ̄2
w. (49)

Thus, the minimum size of Br that ensures this condition
has radius given by (47). The sets used in this proof are
illustrated in Figure 2.

Fig. 2. Geometric representation of sets.

V. ILLUSTRATIVE EXAMPLE

In this section, we apply KFAC in (28), (29) and KFAC
with Kalman filter based ALR (KFAC–ALR) in (29), (41),
(43) to a model of wing rock dynamics [17] given by
[

ẋ1(t)
ẋ2(t)

]

=

[

0 1
0 0

] [

x1(t)
x2(t)

]

+

[

0
1

]

[

u(t) + ∆(x(t))
]

, (50)

where ∆(x(t)) = α1x1(t) + α2x2(t) + α3|x1(t)|x2(t) +
α4|x2(t)|x2(t) + α5x

3
1(t) with α1 = 0.9814, α2 = 1.5848,

α3 = −0.6245, α4 = 0.0095, and α5 = 0.0215. In (50),
x1(t) represents the roll angle, and x2(t) represents the roll
rate. In this example, the control objective is to track a square
wave reference command. The reference system is selected
to be second order with a natural frequency of 0.5 rad/s,
and a damping of 0.707, and to have unity low frequency
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gain from r(t) to x1(t). This corresponds to choosing K1 =
[0.25, 0.707] and K2 = 0.25. We chose β(x(t)) =

[

1/(1 +
e−x1), 1/(1+e−x2), 0.1

]

. The design parameters for KFAC
are chosen to be L = I3, σ = 0.005, Q = 1000I3, r = 1,
and S(0) = 0.001I3. Furthermore, the design parameters
for Kalman filter based ALR modification are chosen to be
Q = 6000I3, rA = 60, and SA(0) = 0.001I3, when it is
employed.

Figures 3 and 4 show the closed loop responses when
the nominal controller is applied without uncertainty
(∆(x) = 0). Note that the difference between x(t) and
xm(t) is not distinguishable at this scale. Figures 5 and 6
show the closed loop responses when the nominal controller
is applied to the uncertain system. In this case, the system
response is unstable. Figures 7 and 8 present the results
when KFAC is employed. From these results we were
able to obtain satisfactory system performance in terms of
tracking the square wave reference command. Figures 9
and 10 present the results when KFAC is applied to the
uncertain system with 0.010 seconds of input time delay. In
this case, we were not able to achieve a reasonable response.
The responses obtained when KFAC–ALR is employed for
the same case but with 0.025 seconds of input time delay
are shown in Figures 11 and 12. Clearly, the sensitivity of
KFAC–ALR to time delay is less than that of KFAC.
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Fig. 3. Responses of reference input, state vector, and reference state vector
with nominal controller without uncertainty.
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Fig. 4. Responses of control input, Γ(t), and ΓA(t) with nominal controller
without uncertainty.
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Fig. 5. Responses of reference input, state vector, and reference state vector
with nominal controller for uncertain system.
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Fig. 6. Responses of control input, Γ(t), and ΓA(t) with nominal controller
for uncertain system.
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Fig. 7. Responses of reference input, state vector, and reference state vector
with KFAC for uncertain system.
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Fig. 8. Responses of control input, Γ(t), and ΓA(t) with KFAC for
uncertain system.
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Fig. 9. Responses of reference input, state vector, and reference state vector
with KFAC for uncertain system under 0.010 seconds of input time delay.

0 10 20 30 40 50 60 70 80
−40

−30

−20

−10

0

10

20

t (sec)

u
(t

)

0 2 4 6 8 10
0

100

200

300

400

t (sec)

||
S

(t
)|

| 
/ 

r

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1

t (sec)

||
S

A
(t

)|
| 
/ 

r A

Fig. 10. Responses of control input, Γ(t), and ΓA(t) with KFAC for
uncertain system under 0.010 seconds of input time delay.
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Fig. 11. Responses of reference input, state vector, and reference state
vector with KFAC–ALR for uncertain system under 0.025 seconds of input
time delay.

VI. CONCLUSION

The intent of this paper has been to present a Kalman
filter based adaptive controller with loop transfer recovery
of an associated reference system. A model of wing rock
dynamics illustrates the presented theory. The new controller
showed significant improvement when ALR modification
is employed with respect to robustness to time-delay. The
key properties are that the adaptation gain is optimization
based, time-varying, does not require tuning, and increases
the level of confidence of adaptive control systems.
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Fig. 12. Responses of control input, Γ(t), and ΓA(t) with KFAC–ALR
for uncertain system under 0.025 seconds of input time delay.
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