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Abstract— A method to synthesize an observer for
continuous-time Descriptor Linear Parameter Variant (D-LPV)
systems is presented in this paper. The main contribution
consists of an observer synthesis developed for descriptor linear
time invariant extended to LPV systems. The conditions for the
existence of LPV observer are given. Such conditions guarantee
the observer convergence and they are proved through a
Lyapunov-like analysis based on Linear Matrix Inequality
(LMI) formulation. The observer is evaluated through numer-
ical simulations.

I. INTRODUCTION

The observer synthesis for descriptor systems (also known
as singular systems) has been widely investigated in the
literature, see for instance [1], [2], [3], [4]. Furthermore, in
the last years, more researchers have paid attention to the
problem of observer synthesis for Linear Parameter Variant
systems (LPV). LPV systems can be considered to approx-
imate nonlinear systems and hence systematic and generic
available theoretical results for LPV systems can be then
applied to derive nonlinear control laws. Some examples of
practical processes modeled as descriptor LPV systems are:
aircrafts [13], [14], mechanical systems [15] and chemical
processes [16]. For instance, [5] consider a LPV representa-
tion to model and to control diesel engines. Fault diagnosis
methods dedicated to LPV systems are presented in [6]. Fault
tolerant control design for polytopic LPV systems is treated
in [7], whereas in [8], both fault detection and control of LPV
systems is presented. Unknown input reconstruction for LPV
systems to design fault detection filters is presented in [9].
However, to the best of our knowledge, few works are only
studied observers and controllers for descriptor LPV systems.
Although the idea of merging descriptor and LPV systems is
not new (see for instance [10], [11] and more recently [12]),
but there is not a general approach of observer synthesis for
affine, multi-affine, polynomial or rational descriptor LPV
systems.

The main contribution of this paper consists of the ob-
server design for descriptor LPV systems where the regu-
larity assumption is not required. The proposed approach
extends the results obtained in [2] where a method to design
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full-order observers for non-regular descriptor linear time in-
variant systems has been considered. Then the synthesis of an
observer for polytopic descriptor LPV systems is presented.
The existence conditions of a LPV observer synthesized with
appropriate transformations are given. Such conditions guar-
antee the observer convergence proved through a combined
method based on the original approach proposed in [2] and
a Lyapunov-like analysis. The LPV observer is evaluated
through numerical simulations. This paper complements the
ideas presented in [12] where the authors proposed an
observer for a class of descriptor LPV systems where gains
are computed by constant matrices according to from a
system transformation.

II. OBSERVER SYNTHESIS
A. Problem formulation

Consider the following descriptor LPV system:

Eẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rq , y(t) ∈ Rp are the state,
the measured input and the measured output, respectively,
E ∈ Rm×n, C ∈ Rp×n are constant matrices and A(ρ(t)) ∈
Rm×n, B(ρ(t)) ∈ Rm×q are time varying matrices. It should
be noticed that E and A(ρ) are two square matrices if m = n
or two non-square matrices if m 6= n.
Two main classes of LPV systems can be identified: affine
LPV systems where the parameter-varying matrices depend
affinely on ρ(t) and polytopic LPV systems where the
parameter ρ(t) varies in a convex polytope whose vertices
are denoted by ρi, i.e. ρ(t) ∈ Co {ρ1, ρ2, . . . , ρσ}, where
σ is the number of vertices included in the polytope [11].
In the sequel the second class is considered. The polytopic
D-LPV system (1) have the following form:

Eẋ(t) =

M∑
i=1

εi(ρ(t)) (Aix(t) +Biu(t))

y(t) = Cx(t)

(2)

where

M∑
i=1

εi(ρ(t)) = 1, εi(ρ(t)) ≥ 0 (3)

with i = 1, . . . ,M , and M is the total number of scheduling
functions εi(ρ(t)).
The vector ε(ρ(t)) evolves over the convex set defined by
[17]:
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Γ =

{
col
i

:

M∑
i=1

εi(ρ(t)) = 1, εi(ρ(t)) ≥ 0

}
The following assumptions are considered [2]:

(A1) The rank r of the matrix E is smaller than the number
of states n, i.e. rank E = r < n.

(A2) rank

(
E
C

)
= n.

Considering assumption A2, there exists a nonsingular
matrix ∆:

∆ =

(
α β
γ ξ

)
such that

αE + βC = In (4)

γE + ξC = 0 (5)

where α ∈ Rn×m, β ∈ Rn×p, γ ∈ R(m+p−n)×m and
ξ ∈ R(m+p−n)×p are constant matrices which can be found

by the Singular Value Decomposition of
(
E
C

)
. This is

accomplished by computing two orthogonal matrices X and
Y such that

X

[
E
C

]
=

[
ΞY
0

]
(6)

where Ξ = diag(ς1, . . . , ςj , . . . , ςn), ςj > 0, j = 1, . . . , n.
The matrix ∆ is then given by

∆ =

[
Y Ξ−1 0

0 Im+p−n

]
XT (7)

Based on [2], an observer associated to system (2) is
proposed such as:

O :


ż(t) =

M∑
i=1

εi(ρ(t)) [Niz(t) + L1iy(t)

+ Giu(t) + L2iy(t)]

x̂(t) = z(t) + βy(t) +Kξy(t)

(8)

where z(t) ∈ Rn is the state vector and x̂(t) ∈ Rn is the
estimated state vector. The inputs are the measured outputs
y(t) and the process inputs u(t). The matrices Ni, L1i,
L2i, Gi and K, ∀i = 1, . . . ,M should be determined
such that the estimates of the state variables x̂(t) ∈ Rn
converge asymptotically to x(t). For the sake of simplicity,
the following notation is used:

Ω(ρ(t)) = Ω(ρ) =

M∑
i=1

εi(ρ(t))Ωi ∀i = 1, . . . ,M

Thus, the system (8) is rewritten as follows:

ż(t) = N(ρ)z(t) + L1(ρ)y(t)

+ G(ρ)u(t) + L2(ρ)y(t)

x̂(t) = z(t) + βy(t) +Kξy(t)

(9)

Let the observer error be defined as:

e(t) = x(t)− x̂(t) (10)

Replacing x̂(t) from (9) into (10):

e(t) = x(t)− z(t)− βCx(t)−KξCx(t) (11)

Considered βC and ξC from (4) and (5), (11) becomes:

e(t) = x(t)− z(t)− (In − αE)x(t)

− K(−γE)x(t)

= (α+Kγ)Ex(t)− z(t)

(12)

Thus

ė(t) = (α+Kγ)Eẋ(t)− ż(t) (13)

Replacing Eẋ(t) and ż(t) from (2) and (9), respectively,
into (13):

ė(t) = (α+Kγ) (A(ρ)x(t) +B(ρ)u(t))

− N(ρ)z(t)− L1(ρ)y(t)

− L2(ρ)y(t)−G(ρ)u(t)

(14)

By grouping common terms in x(t), u(t) and z(t), (14)
becomes:

ė(t) = [KγA(ρ) + αA(ρ)− L1(ρ)C

− L2(ρ)C]x(t)−N(ρ)z(t)

+ [KγB(ρ) + αB(ρ)−G(ρ)]u(t)

(15)

By adding and subtracting the term N(ρ) (α+Kγ)Ex(t)
in (15), it follows that:

ė(t) = [(α+Kγ)A(ρ)−N(ρ) (α+Kγ)E − L1(ρ)C

− L2(ρ)C]x(t) +N(ρ) [(α+Kγ)Ex(t)− z(t)]︸ ︷︷ ︸
e(t)

+ [(α+Kγ)B(ρ)−G(ρ)]u(t)
(16)

It can be seen in (16) that if the following conditions are
fulfilled

(α+Kγ)A(ρ)−N(ρ) (α+Kγ)E

− L1(ρ)C − L2(ρ)C = 0
(17)

and

G(ρ) = (α+Kγ)B(ρ) (18)
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then (16) reduces to

ė(t) = N(ρ)e(t) (19)

.
Now, replacing αE and γE from (4) and (5), respectively,

in (17), it is easy to deduce:

N(ρ) = (α+Kγ)A(ρ)− L2(ρ)C

+ [N(ρ) (β +Kξ)− L1(ρ)]C
(20)

Under the assumption that the second term in the right
hand side of (20) is zero

L1(ρ) = N(ρ) (β +Kξ) (21)

then, (20) becomes

N(ρ) = KγA(ρ) + αA(ρ)− L2(ρ)C (22)

.

B. Observer stability
In order to ensure the stability of the observer error (19),

the following theorem is proposed:
Theorem 1: The system (9) is an observer for the system

(2) if there exist appropriate matrices P , Q and Ri such that
M∑
i=1

εi(ρ(t))
(
ATi α

TP +ATi γ
TQT − CTRTi +

PαAi +QγAi −RiC) < 0

(23)

and consequently x̂(t) will asymptotically converge to x(t).
Proof: Consider the following Lyapunov function candi-

date V (e(t)) = eT (t)Pe(t) with P = PT > 0 ((·)T denotes
matrix transposition). The time derivative of the Lyapunov
function along the system trajectories (19) is:

V̇ (e(t)) = ėT (t)Pe(t) + eT (t)P ė(t)

= eT (t)
(
NT (ρ)P + PN(ρ)

)
e(t)

= eT (t)

M∑
i=1

εi(ρ(t))
(
NT
i P + PNi

)
e(t)

(24)
Quadratic stability [19] is guaranteed if V̇ (e(t)) < 0,

∀e(t) 6= 0. This condition is satisfied if

M∑
i=1

εi(ρ(t))
(
NT
i P + PNi

)
< 0 (25)

If there exists an appropriate symmetric matrix P to
achieve that

(
NT
i P + PNi

)
< 0 holds ∀ i = 1, . . . ,M ,

then it is obvious that (25) holds for any εi(ρ(t)). Since Eq.
(25) must be true for every value of εi(t) then it must be
true at every vertices of the polytope and this implies [17]:(

NT
i P + PNi

)
< 0 ∀ i = 1, . . . ,M (26)

Ni is deduced from (22) and defined such as:

Ni = KγAi + αAi − L2iC ∀ i = 1, . . . ,M (27)

Replacing Ni from (27) in (25), the following BMI is
obtained:

ATi α
TP +ATi γ

TKTP − CTLT2iP+

PαAi + PKγAi − PL2iC < 0∀ i = 1, . . . ,M
(28)

The BMI conditions (28) can be transformed into LMI
conditions by considering Q = PK and Ri = PL2i.
Eq. (28) becomes:

ATi α
TP +ATi γ

TQT − CTRTi +

PαAi +QγAi −RiC < 0 ∀ i = 1, . . . ,M
(29)

By multiplying each LMI (29) by
M∑
i=1

εi(ρ(t)) and adding

them all together, the following inequalities are defined:

M∑
i=1

εi(ρ(t))
(
ATi α

TP +ATi γ
TQT − CTRTi +

PαAi +QγAi −RiC) < 0

(30)

Finally, if there exist appropriate matrices P , Q and Ri,
then it is obvious that (30) holds and consequently the system
(19) is stable. �

As suggested by [7], the observer gains can be de-
signed through the poles assignment of the system (19) in
a subregion of the complex left half-plane [20]. It can be
accomplished by defining a LMI region D, for instance a
circle with an affix (−λ, 0) and a radius δ. The values of λ
and δ determine a specific region D to place the eigenvalues
of each Ni. In this context, the pole placement of the system
(19) in the LMI region D can be expressed as:(

−δP λP +WT
i

λP +Wi −δP

)
< 0 (31)

where Wi = PαAi +QγAi −RiC, ∀ i = 1, . . . ,M .

III. EXAMPLE
Consider a continuous-time LPV descriptor system (2)

described by:

E =

 1 0 0
0 1 0
0 0 0


A1 =

 −5 0 0
0 −4 0
0 0 −4.5

 A2 =

 −6 0 0
0 −4 0
0 0 −5


B1

 0
−1
1

 B1

 0
−0.5

2
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C =

(
1 0 1
0 1 0

)
According to the fullfilled condition rank

(
E
C

)
= 3, then

the matrices α, β, γ and ξ satisfying (4) and (5) are computed
using Eqs. (6) and (7):

α =

 1 0 0
0 0.5 0
−1 0 0

 β =

 0 0
0 0.5
1 0


γ =

(
0 0 −1
0 −0.707 0

)
ξ =

(
0 0
0 0.707

)
The design of the LPV observer has been achieved by

considering the pole placement in LMI region D with the
parameters λ=7 and δ=5.5. These values of λ and δ associ-
ated to a disk region are chosen from the nominal dynamic
behavior of the system in order to stabilize and to guarantee
an efficient state estimation. The following matrices are
calculted from (31) through the YALMIP toolbox [21] :

P =

 5.6424 0 0.0307
0 5.6731 0

0.0307 0 5.6424


Q =

 0.0017 0
0 −1.0880

−0.0017 0

× 103

R1 =

 0.0097 0
0 −3.0490

0.0300 0

× 103

R2 =

 0.0074 0
0 −3.0490

0.0324 0

× 103

The effectiveness of the proposed observer is illustrated
with the system studied in open-loop. The input vector is
presented in Fig. 1. The weighting functions εi(ρ(t)) i = 1, 2
of the LPV system (2) are shown in Fig. 2. It can be seen
that the system is evaluated over the entire operating range.

Given the initial conditions x(0) = [3 2 1]T and x̂(0) =
[0 0 0]T , the simulation result of the state space vector x(t)
is depicted in Fig. 3. The observer error e(t) = x(t)− x̂(t)
(which is plotted during the first 15000 s of the simulation
in order to appreciate better the observer convergence) is
illustrated in Fig. 4. It can be appreciated that the observer
errors reach rapidly to zero. The observer is insensitive to
the input or gain scheduling variations.

IV. CONCLUSIONS
In this paper an observer for polytopic descriptor LPV

systems has been proposed. The observer synthesis is an
extension of the work presented in [2] for LTI to LPV
systems. Sufficient conditions are stated to ensure the ex-
istence and the stability of the proposed observer by using a
combined Lyapunov-like analysis based on LMI formulation.
The observer performance is evaluated via simulations using
a numerical example. This approach could be useful to

Fig. 1. Dynamic behaviour of the input

Fig. 2. Dynamic behaviour of the weighting functions

Fig. 3. Dynamic behaviour of the state space vector
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Fig. 4. Dynamic behaviour of the error vector

treat the problem of estimating simultaneously the state and
the unknown inputs of several processes modeled in an
LPV framework (see for instance [16]). This case will be
considered in a future work.
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