
 

Abstract—Mathematical models are commonly used to 

interrogate and control biological systems.  However, such 

models are often uncertain and sloppy, with multiple 

parameter sets equally capable of reproducing the 

experimental data.  These features make systems biology 

models unreliable when used to support a model-based control 

strategy.  Multi-scenario control can help account for this 

uncertainty, but a computationally feasible method for 

characterizing all data-consistent regions of the global 

parameter space is necessary.  Herein, we propose a tool for 

multi-scenario control in which sparse grid-based optimization 

is paired with a grid focusing algorithm to characterize 

acceptable regions of the uncertain parameter space.  The grid 

focusing algorithm is first demonstrated on a test function 

before being applied within a multi-scenario control framework 

to an uncertain model of cell differentiation.  The results show 

the algorithm’s ability to identify disparate low-cost regions of 

the parameter space and selectively increase the grid resolution 

in these areas to help determine appropriate model scenarios 

for the multi-scenario controller.  While particularly relevant 

to biological systems, this approach is broadly applicable to the 

control of any uncertain system. 

I. INTRODUCTION 

he use of nonlinear mathematical models to provide 

insight into biological processes is well-established [1].  

Increasingly, these models are being used to optimize or 

control the complex dynamics associated with these systems; 

however, unique challenges exist for the creation, refinement 

and utilization of systems biology models [1].  The ability of 

a model to accurately and reliably describe the underlying 

process dynamics depends on the model structure and the 

values of the model parameters.  However, mathematical 

models of biological processes represent only simple 

abstractions of highly complex biochemical networks.  As 

directly measuring model parameters can be difficult or 

impossible, parameters are generally fit to experimental data, 

which is usually sparsely sampled, corrupted with noise, and 

obtained only from a limited number of measurable model 

species.  In addition, systems biology models are often 

“sloppy” as they contain sets of correlated parameters and 

can exhibit parameter sensitivities that span several orders of 

magnitude [2].   As a result, the model characterization is 

                                                           
Manuscript received March 30, 2011.  

 

S.L. Noble is with the School of Electrical and Computer Engineering, 

Purdue University, West Lafayette, IN 47906  

G.T. Buzzard is with the Mathematics department, Purdue University, 

West Lafayette, IN 47906 

A.E. Rundell is with the Weldon School of Biomedical Engineering, 

Purdue University, West Lafayette, IN 47906 (e-mail: rundell@purdue.edu) 

non-unique, with several sets of parameters equally capable 

of reproducing the available data.   

This intrinsic uncertainty is particularly problematic when 

these models are relied upon to support a model-based 

control strategy.  The resulting plant-model mismatch error 

limits the utility of the model predictions and undermines the 

success of the controller.  Even within an adaptive control 

framework, where the model parameters are refined based 

on the plant feedback data to help alleviate mismatch error, 

the problem of non-uniqueness still exists.  Relying on a 

single set of model parameters ignores the fact that multiple 

model characterizations exist given the available data and, 

when utilized in the controller, each characterization may 

predict a different set of control inputs.  A multi-scenario 

control framework can ensure that the implemented control 

sequence is feasible for all data-consistent model 

characterizations; however, a parameter identification 

scheme is needed that can characterize all acceptable regions 

of the parameter space in a computationally feasible manner.   

Adaptive sparse grids can be used to screen the global 

parameter space while limiting computational expense [3].  

With this approach, the model is selectively evaluated at 

points in the parameter space, building a grid of model-

evaluated support nodes.  An error-controlled interpolated 

approximation for the cost function is created by combining 

basis functions at the support nodes [3-4].  This interpolating 

polynomial can be used as a surrogate for the model output 

to estimate the value of the cost function at parameter sets 

not evaluated by the model.  Thus, unlike traditional 

stochastic optimization approaches, the sparse grid-based 

approach quantifies the behavior of the cost function over 

the entire uncertain parameter space so that disparate regions 

of acceptable parameter sets can be identified and 

considered.  However, one drawback to utilizing grid-based 

techniques is that to increase the accuracy of the grid, 

additional points are added symmetrically across the global 

parameter space [4].  This approach wastes computational 

effort by placing support nodes in regions of the parameter 

space known to be unacceptable.  Previous work developed 

a sparse grid focusing technique where smaller sparse grids 

were placed about some acceptable regions of the parameter 

space [5], but the determination of focused grid placement 

and size were ad hoc and must be formalized.   

Herein, we present a tool for multi-scenario control in 

which sparse grid-based optimization is combined with an 

improved grid focusing algorithm to increase the grid 

resolution in all regions of low cost.  The algorithm is 

described in Section II, and in Section III, we demonstrate 
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the algorithm on a test function as well as on an uncertain 

biological model.  Conclusions and future work are 

described in Section IV. 

II. METHODS  

Typically, only a small region of the global parameter 

space will have acceptably low cost function values.  We 

aim to identify these disparate regions of acceptability and 

increase the grid resolution in these areas only.  To achieve 

this, we propose a grid focusing algorithm in which new, 

smaller sparse grids are placed in areas of low cost.  This 

selective grid refinement will increase grid resolution, and 

therefore grid accuracy, in regions of interest while limiting 

“wasted” model evaluations in the unacceptable space.   

The following sections will discuss the details of grid 

placement including the choice of center and range in each 

parameter direction.  All sparse grids presented herein were 

generated using the Sparse Grid Toolbox for Matlab, version 

5.1.1 [6] and utilized a Chebyshev grid construction.    

A. Creation of Screening Sparse Grid 

A screening sparse grid is used initially to identify 

acceptable regions of the parameter space.  An acceptable 

parameter set is one whose cost function value is below a 

defined threshold.  This threshold is problem- and cost 

function-dependent and quantifies how well a parameter set 

is expected to reproduce the experimental data.   

The screening grid samples the entire uncertain parameter 

space, dℜ⊂Ω .  We specify a maximum of 100d points 

initially.  Grid points are iteratively added in sets of 50d 

until the estimated relative grid error (as calculated by the 

sparse grid toolbox) is less than 1% to ensure sufficient 

interpolating polynomial accuracy.   

B. Determination of Focused Sparse Grid Center 

Based on the results of the screening grid, areas of low 

cost must be identified.  These represent local minima and 

are the regions in which we want to selectively increase the 

grid resolution; however, the identification of local minima 

on a multi-dimensional surface is not trivial.  We propose 

two strategies: one which is very effective in low dimensions 

(~5 or less, depending on the number of grid points used), 

and one which is scalable to higher dimensions. 

 

1) Low dimensions: Critical point method   

In low dimensions, the local minima can be found through 

identification of all critical points of the interpolated cost 

function surface.  As described in [7], the Lagrange form of 

the interpolating polynomial for the cost function values at 

the sparse grid nodes is converted to a generalized 

polynomial chaos (gPC) representation, which is a sum of 

products of one-dimensional orthogonal polynomials.  In 

this case, we expanded the polynomial in terms of the 

Legendre polynomials, with a resulting polynomial: 

              ( ) ( ) ( )nn xLxLcxxf
nαα

α

α ...,..., 11 1∑=                  (1) 

where ( )nααα ,...,1=  is a multi-index and Lj(x) is the 

Legendre polynomial of degree j.  Since the derivatives of 

the Legendre polynomials are known explicitly, we may take 

the gradient and Hessian of f directly from the formula 

above.  Expanding the gradient in terms of the usual 

monomials, we apply the package HOM4PS-2.0 [8] to find 

the critical points of f.   

To begin the focusing algorithm, the lowest cost critical 

point, pmin
crit

, is selected as a candidate center.  Using the 

Hessian calculated previously, the concavity at this 

candidate point is evaluated and the point is classified.  If the 

candidate point is a minimum, it is selected as the focused 

grid center.  If the candidate point is not a minimum, it is 

thrown out, and the Hessian of the next lowest cost critical 

point is tested.  This continues until the center of the first 

focused grid is placed.  Once the size of this grid is 

determined (see Section IIC), all remaining critical points, 

p
crit

 (those which have not been thrown out), are checked to 

see if they lie within the grid.  Any critical points that lie in 

the region spanned by the focused grid are thrown out.  All 

remaining points are retained for subsequent iterations.   

To place the subsequent focused grids, the lowest cost 

critical point remaining is selected as a candidate center.  

The process repeats as described above until no critical 

points remain for consideration.  Thus, the number of 

focused grids placed in the global parameter space depends 

only on the topography of the cost function.   

 

2) High dimensions: Acceptable point method 

In higher dimensions, calculating the critical points 

becomes a memory-intensive task.  In this case, we propose 

a semi-heuristic strategy in which sampled grid points are 

used to identify the local minima.  To ensure a more 

thorough characterization of the uncertain parameter space, 

the screening grid interpolant is sampled with an additional 

100d points using a Latin hypercube.  All acceptable points 

are combined (those from the screening grid and those from 

the hypercube); this subset of points, p
accept

, will be used to 

locate the local minima in a manner similar to how the 

critical points were used previously.  If there exist more than 

100 acceptable points, the algorithm chooses the 100 lowest 

cost points to reduce computational time, but this point limit 

could easily be increased or removed.    

To begin the focusing algorithm, the lowest cost 

acceptable point, pmin
accept

, is selected as a candidate center.  

Matlab’s constrained optimization solver (fmincon) is 

applied to this point to find the nearest minimum, qmin
accept

.  

This extra minimization step is added because, unlike 

previously, the acceptable points are not necessarily critical 

points.  The concavity of qmin
accept

 is then evaluated using the 

Hessian and the point is classified.  If the point is truly a 

minimum, it is selected as the focused grid center.  If the 

candidate point is not a minimum, it is thrown out, and the 

Hessian of the next lowest cost acceptable point is tested.  

This process continues until the center of the first focused 

grid is placed.  Similar to the previous section, the remaining 
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points in p
accept

 are checked with the new focused grid, and 

those that are contained in the grid are thrown out.   

To place subsequent grids, the lowest cost acceptable point 

remaining is selected as a candidate center.  The local search 

is applied and the point is classified.  If the point is a 

minimum, an additional check is made to see if it is 

contained in an existing focused grid.  This check is 

necessary because the local search has modified the 

candidate center. While we previously verified that no 

acceptable points were contained in existing focused grids, 

the local search can tweak the candidate center such that this 

is no longer true.  The algorithm continues, selecting the first 

distinct minimum as the focused grid center and eliminating 

any acceptable points that fall within this grid.  As before, 

the process repeats until no acceptable points remain.   

C. Determination of Focused Sparse Grid Range 

The size of each focused grid is determined based on a 

quadratic approximation about the grid’s center point, p0.  

We calculate the change in each parameter, ∆pi, that results 

in a 10% increase in the cost function:   

         ( ) ( ) ( ) ( ) 2
0000

2

1
1.1 iiiii pHpJff ∆+∆+= pppp        (2) 

where Ji is the i
th

 element of the Jacobian and Hii is the i
th

 

diagonal element of the Hessian for i = 1:d.  The range of the 

grid in the i
th

 parameter direction is: 

[ ]++ ∆+∆−= iiiii pppprange ,0,0 ,  

where p0,i is the i
th

 element of the center point, and ∆pi
+
 is 

the positive root of (2).  The range of the focused grid is 

cutoff if it stretches outside Ω. 

D. Creation of Focused Sparse Grid 

As with the screening grid, we specify a maximum of 

100d points for focused grid initially.  Grid points are 

iteratively added in sets of 50d until the estimated relative 

grid error is less than 1%.   
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III. RESULTS  

A. Modified Rastrigin's Function in Two Dimensions – 

Critical Point Method 

As a visual example, we use a modified Rastrigin's 

function: 

                
( ) ( )( )

12.512.5

,12cos1010

1

2

≤≤−

+−+= ∑
=

i

d

i

ii

x

xxdh πx
          (3) 

where d is the dimension, and the global minimum is h(x) = 

1 at xi = 0 for i = 1:d.  This nonlinear function exhibits 

cosine modulation and is highly multi-modal [9] (see Fig. 2). 

In this example, the focusing algorithm was applied using 

the critical point method (Section IIB1) to place the focused 

grid centers.  We applied the algorithm in two dimensions so 

the results could be visualized (in (3), d = 2).  The screening 

grid is shown in Fig. 1, where the support nodes are color 

coded by cost function value.  Note that the uncertain 

parameter space:  

[ ]{ }2,1,25.1,75.1 =−∈=Ω ixx ii  

is not centered around (0,0).  As the global minimum of 

Rastrigin’s function is known to occur at this point, we did 

not want to bias the algorithm with the placement of the 

screening grid.   

Fig. 2 shows the interpolated test function with the 36 

identified critical points indicated by black stars.  The 

focusing algorithm chose to place nine focused grids.  Fig. 3 

shows the points of both the screening grid and the nine 

focused grids superimposed over a contour plot of the test 

function for comparison.  Table I compares the centers of the 

focused grids (in the order they were placed) with the known 

values of the local minima, as well as the calculated versus 

true cost of these points.   

Fig. 2.  Interpolated test function (modified Rastrigin’s function) with the 

36 critical points indicated by black stars.  The critical points were found 

by converting the interpolating polynomial to a generalized polynomial 

chaos representation of Legendre polynomials.  From these polynomials, 

the gradient and Hessian were directly computed and the critical points 

identified.  
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Fig. 1.  Screening grid points for two dimensional modified Rastrigin’s 

function.  The grid placed 121 points to achieve an estimated relative grid 

error of 2.06e-4.  The points are color coded by cost (red: high, blue: low).   
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From these results, the algorithm correctly identified the 

regions of low cost and placed focused grids about these 

regions.  The algorithm identified the global minimum first 

followed by the next lowest cost minima.  While shown on a 

test function to allow for comparison to true values, this 

approach is very effective (in low dimensions) at identifying 

regions of low cost in more complicated functions (results 

not shown) to enable selective grid refinement.   

B. Modified Rastrigin's Function in Two Dimensions – 

Acceptable Point Method 

We also applied the grid focusing algorithm to the 

modified Rastrigin’s function using the acceptable point 

method (Section IIB2) to place the focused grid centers.  We 

have applied it here in two dimensions for visualization, but 

the method scales to higher dimensions as well.  For the test 

function, the acceptable threshold was chosen to be 15.  In 

general, the choice of this threshold is not obvious and trial-

and-error may be necessary to find a threshold large enough 

to produce a set of acceptable points while small enough to 

prevent considering the entire parameter space acceptable.   

The screening grid is identical to that shown in Fig. 1.  

Following the procedure outlined previously, the algorithm 

found 64 acceptable grid points; local searches were applied 

to the acceptable points to place the focused grid centers.  

The focusing algorithm placed ten focused grids.  Fig. 4 

shows the points of the screening grid and the ten focused 

grids over a contour plot of the test function.  Table II 

compares the centers of the focused grids (in the order they 

were placed) with the known values of the local minima, as 

well as the calculated versus true cost of these points.  

From Fig. 4 and Table II, nine grids were placed about the 

nine local minima.  A tenth grid was placed along the 

boundary at (0, -1.75).  This highlights the tradeoff that 

comes with this focusing method.  While scalable to higher 

dimensions, the method relies on sampling and local 

searches to find the areas of low cost.  Depending on how 

the sampled acceptable points are arrayed in the global 

parameter space, the local search may lead to the placement 

of an extraneous grid.  This can be prevented if the 

acceptable threshold is placed below the cost function value 

of these boundary points, but this type of insight is generally 

not available.  Additionally, the minima are not found in 

order of increasing cost function value.  The algorithm 

begins from the lowest cost acceptable point which may not 

fall in the trough of the global minimum.  
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Fig. 4.  Demonstration of placement of focused grids using the acceptable

point method.  The screening grid and focused grid points for the two 

dimensional modified Rastrigin’s function have been plotted on top of the 

contour plot for the function.   The focusing algorithm placed ten focused 

grids, with the tenth grid at a boundary point (0, -1.75). 

Fig. 3.  Demonstration of placement of focused grids using the critical 

point method.  The screening grid and focused grid points for the two 

dimensional modified Rastrigin’s function have been plotted on top of the 

contour plot for the function.   The focusing algorithm placed nine focused 

grids corresponding to the nine local minima of the test function. 

TABLE I  

CRITICAL POINT METHOD 

Focused 

Grid 

Number 

Focused Grid 

Center 

(x1, x2) 

Calculated 

Cost 

True Local 

Minimum 

(x1, x2) 

True 

Cost 

1 (0, 0) 1 (0, 0) 1 

2 (0.995, 0) 1.995 (1, 0) 2 

3 (0, 0.995) 1.995 (0, 1) 2 

4 (0, -0.995) 1.995 (0, -1) 2 

5 (-0.995, 0) 1.995 (-1, 0) 2 

6 (0.995, -0.995) 2.989 (1, -1) 3 

7 (0.995, 0.995) 2.989 (1, 1) 3 

8 (-0.995, -0.995) 2.989 (-1, -1) 3 

9 (-0.995, 0.995) 2.989 (-1, 1) 3 

Comparison of focused grid centers with true local minima, as well as the 

calculated versus true cost of these points for the critical point method. 

 

TABLE II  

 ACCEPTABLE POINT METHOD 

Focused 

Grid 

Number 

Focused Grid 

Center 

(x1, x2) 

Calculated 

Cost 

True Local 

Minimum 

(x1, x2) 

True 

Cost 

1 (-0.995, 0) 1.995 (-1, 0) 2 

2 (0, 0.995) 1.995 (0, 1) 2 

3 (-0.995, 0.995) 2.989 (-1, 1) 3 

4 (0.995, -0.995) 2.989 (1, -1) 3 

5 (-0.995, -0.995) 2.989 (-1, -1) 3 

6 (0.995, 0) 1.995 (1, 0) 2 

7 (0.995, 0.995) 2.989 (1, 1) 3 

8 (0, -0.995) 1.995 (0, -1) 2 

9 (0, 0) 1 (0, 0) 1 

10 (0, -1.75) 14.062 N/A N/A 

Comparison of focused grid centers with true local minima, as well as 

the calculated versus true cost of these points for the acceptable point 

method. 

 

2912



  

C. Biological Model and Multi-Scenario Control 

Herein, we applied the acceptable point method to a 

model of HL60 cell differentiation [10] to support a multi-

scenario model predictive controller.  The model consists of 

four ordinary differential equations and eight parameters.  

For the in silico controller implementation, the parameters of 

the plant model were established by randomly perturbing 

each value from its nominal value by ±30% according to a 

Gaussian distribution.  Mock feedback data was created by 

adding realistic levels of Gaussian noise to the state 

variables (±5% [11]) and cell counts (±10% [12]). 

As in [10], we aimed to control the percentage of mature 

granulocytes in the population through periodic additions of 

the differentiation-inducing chemical  dimethyl sulfoxide 

(DMSO).  Here we applied a multi-scenario model 

predictive control strategy in which all eight model 

parameters were refit based on the noisy plant feedback data.   

The nominal parameter values, pnom, were assumed for the 

first controller iteration as feedback data is not yet available.  

For subsequent iterations of the controller, the sparse grid 

focusing algorithm sampled the eight-dimensional uncertain 

parameter space, constrained according to: 

[ ]{ }8,...,1,25.0 ,, =∈=Ω ipppp inominomii . 

Focused grids were placed about the regions of low cost.  In 

this example, the cost function was the mean square error 

between the simulated data and “mock” experimental data: 

( ) ( ) ( )[ ] ,ˆ
1

ˆ

1

2














−= ∑

=

in

i

ii

i

tt
n

g xpxx  

of sampled time points at time ti (where ni increases at each 

iteration with the addition of a new sample). 

 The acceptable parameter sets from the screening grid and 

all focused grids were combined.  (For this example, the 

acceptable threshold was set to 20 based on trial and error).  

To find the representative parameter sets for the multi-

scenario controller, these acceptable points were clustered 
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into disjoint sets according to Euclidian distance using 

Matlab’s hierarchical clustering routine (cluster).  The 

lowest cost parameter set in each cluster was taken to be a 

scenario representative.  In this application, we specified a 

maximum of three scenarios, with the maximum distance 

between points in a cluster iteratively increased until only 

three disjoint clusters were formed.  The resulting 

representative parameter sets, p
rep

, were used by the multi-

scenario controller to solve the input optimization problem. 

For each representative parameter set, pj
rep

, the input 

optimization minimized the least squares deviation of the 

predicted output trajectory for the percentage of 

granulocytes, ( )kiky j +ˆ , from the desired target, s, as well as 

the magnitude of the DMSO dose (control input, uj(·)): 

     ( )[ ] ( )[ ] ,ˆminarg

1 1

22














++−+∑ ∑

= =

p u

j

H

i

H

i

jj
u

kikuRskikyQ   (4) 

for jnj ,...,1= where Hp and Hu are the prediction and 

control horizon lengths, Q and R are weighting constants, 

and nj is the number representative parameter sets.  Here, Hp 

= 7 days, Hu = 7 days, Q = 10, R = 1, s = 25%, and nj = 3.  

The controlled output was the percent of total cells that are 

mature granulocytes (state x3), so the predicted output 

trajectory took the form: 

( )
[ ] ( )
[ ] ( )

100
ˆ01111

ˆ00100
ˆ ×=+

+

+

rep
jik

rep
jik

j

t

t
kiky

px

px
 

where ( )rep
jikt px +

ˆ  represents the model-predicted state 

vector at each future sampling time for parameter set pj
rep

.  

As in [10], Matlab’s constrained optimization solver 

Fig. 5.  Representative in silico controller results.  The upper plot shows the 

time-course trajectory of the percentage of granulocytes (solid line).  The 

lower plot shows the multi-scenario MPC-derived control inputs (%v/v). 

TABLE III 

  3-7 days 10-14 days 17-21 days 

 

Number 

of focused 

grids 

0 2 1 

S
ce

n
ar

io
 1

 Parameter 

set 

[0.38, 6.3e-3, 

0.09, 0.01, 6.06, 

1.14, 1.72, 0.19] 

[0.15, 6.3e-3, 

0.21, 0.01, 6.06, 

0.46, 0.69, 0.19] 

[0.38, 6.3e-3, 

0.21, 0.01, 4.67,    

1.14, 1.72, 0.19] 

Cost 1.52 11.53 18.40 

Control 

input 
1.20 0 0.30 

S
ce

n
ar

io
 2

 Parameter 

set 

[0.38, 6.3e-3, 

0.34, 0.01, 6.06, 

1.14, 1.72, 0.19] 

[0.38, 6.3e-3, 

0.21, 0.01, 5.35, 

1.14, 1.72, 0.30] 

[0.33, 6.3e-3, 

0.21, 0.01, 6.06, 

1.14, 1.72, 0.19] 

Cost 1.57 1.28 9.31 

Control 

input 
0.66 0.63 0 

S
ce

n
ar

io
 3

 Parameter 

set 

[0.38, 6.3e-3, 

0.21, 0.01, 4.04, 

0.46, 1.72, 0.30] 

[0.25, 3e-3, 

0.18, 0.01, 5.53, 

1.37, 1.01, 0.27] 

[0.36, 5.7e-3, 

0.27, 0.01, 6.11, 

0.54, 1.71, 0.23] 

Cost 0.11 3.79 2.94 

Control 

input 
0.28 0.04 0 

 

Applied 

control 

input 

0.71 0.22 0.10 

Determination of multi-scenario control strategy in three time intervals for 

the in silico experiment shown in Fig. 5.  In a given time interval, the 

parameter values that differ across the three scenarios are shown in bold.  

The applied input was found by averaging the inputs for each scenario. 
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(fmincon) was used to solve (4) subject to the control input 

constraint ( ) [ ]2.1,0∈+ kiku j .  To calculate the control 

input to be applied to the plant, we averaged the values of 

the first element of each control input vector, ( ) ju j ∀,1 .   

A sample in silico experiment is provided in Fig. 5.  The 

upper plot shows the time-course trajectory of the 

percentage of granulocytes as directed by the multi-scenario 

model predictive controller.  The lower plot shows the multi-

scenario-derived control strategy.  The controller drives the 

output to within 5% of the target trajectory by day 10 and 

subsequently sustains that level despite the uncertain 

parameters and the sparse and noisy feedback data. 

Table III provides a glimpse into how the multi-scenario 

control strategy was derived for three different time intervals 

of the in silico experiment shown in Fig. 5 (all time intervals 

not shown).  The number of focused grids placed during 

each interval is shown in the first row.  The middle of the 

table shows the (eight-dimensional) representative parameter 

set, its cost, and the calculated control input for each 

scenario.  Within a given time interval, the parameter values 

that differ across the three controller scenarios have been 

highlighted in bold.  The final row shows the applied input, 

found by averaging the control inputs for each scenario.  As 

shown in Table III, the lack of data early in the in silico 

experiment leads to significant variability in potential 

control inputs (spanning almost the entire feasible control 

input space).  Averaging these inputs helps avoid biasing the 

applied input toward any particular model characterization.  

Later in the in silico experiment, when more data has been 

collected, the variation in the potential control inputs has 

decreased significantly with the averaged value more closely 

reflecting the preference of each scenario.   

 To test the sparse grid-based multi-scenario control 

strategy on a larger scale, we performed 100 in silico 

experiments (each with different randomly perturbed plant 

parameters).  The controller performance was evaluated 

based on two metrics:  steady state error and response time.  

The first metric quantifies achievement of the control 

objective by calculating the difference between the actual 

and desired steady-state granulocyte levels.  Ninety-nine 

percent of in silico experiments achieved the control 

objective with no detectable steady-state offset (not shown).  

The second metric calculates the rise time, which is defined 

as the time needed to rise to within 5% of the desired steady 

state.  Ninety-nine percent of in silico experiments exhibited 

a rise time of 3 weeks or less, while 94% had a rise time of 2 

weeks or less (not shown).   

From these results we see that the sparse grid-based multi-

scenario control strategy effectively controlled this uncertain 

and highly abstracted model of cell differentiation.  The grid 

focusing algorithm was applied in eight dimensions using 

the acceptable point method, helping to provide finer grid 

resolution in acceptable regions of the parameter space to aid 

in the selection of scenario-specific parameter sets.   

IV. CONCLUSIONS AND FUTURE WORK 

This work presents a tool for multi-scenario control in 

which a sparse grid-based focusing algorithm screens the 

global parameter space and identifies disparate regions of 

acceptable parameter sets.  The algorithm places smaller 

sparse grids in these regions to increase the grid resolution 

about potential local minima without wasting computational 

effort in the unacceptable regions of the parameter space.   

We presented two versions of the grid focusing algorithm: 

one that is applicable only in low dimensions (critical point 

method) and one that is scalable to higher dimensions 

(acceptable point method).  Each was demonstrated on a 

modified Rastrigin’s function in two dimensions for ease of 

visualization.  The grid focusing algorithm was also applied 

to a simple model of cell differentiation with eight unknown 

parameters to support a multi-scenario model predictive 

control strategy.  The in silico controller implementation 

achieved the target level of cell differentiation despite the 

uncertainty in the model characterization.   

Future work will continue to combine sparse grid-based 

optimization with the grid focusing algorithm for robust 

control strategy development.  The scope will be expanded 

beyond model parameter identification to include 

characterization of the control input space with future 

applications including the robust control of multiple models. 
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