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Abstract— Online identification of electrically stimulated
muscle under isometric conditions, modeled as a Hammerstein
structure, is investigated in this paper. Motivated by the
significant time-varying properties of muscle, a novel recur-
sive algorithm for Hammerstein structure is developed. The
linear and nonlinear parameters are separated and estimated
recursively in a parallel manner, with each updating algorithm
using the most up-to-date estimation produced by the other
algorithm at each time instant. Hence the procedure is termed
the Alternately Recursive Least Square (ARLS) algorithm.
When compared with the Recursive Least Squares (RLS)
algorithm applied to the over-parametric representations of the
Hammerstein structure, ARLS exhibits superior performance
on experimental data from electrically stimulated muscles
and a faster computational time for a single updating step.
Performance is further augmented through use of two separate
forgetting factors.

I. INTRODUCTION

As a result of the tradeoff between the complexity of

general nonlinear systems identification and the interpretabil-

ity of linear dynamical systems, Hammerstein structures

have received considerable attention, and have been used

in various areas to, for example, model chemical [24], bio-

logical [10] and electrical [26] processes. The Hammerstein

structure consists of a memoryless nonlinear block followed

by a linear dynamic system, and the difficulty is that the

inner signal is not measurable, that is, only input-output

data measurements can be used to separate the nonlinear

component from the linear one. There are many identification

methods applicable to Hammerstein models and in general

they can be roughly classified into two categories: iterative,

for example, [21] and [10] with application to stretch reflex

electromyogram, and non-iterative methods, for example,

an equation-error parameter estimation method in [6], an

optimal two-stage algorithm in [1], and decoupling methods

in [2]. However, after reviewing the existing techniques,

limitations were encountered when identifying an input-

output model of electrically stimulated muscles with incom-

plete paralysis. Consequently [20] developed two iterative

algorithms for the identification of electrically stimulated

muscles, and their efficacy was demonstrated through ap-

plication to experimentally measured data.

The algorithms developed in [20] represent significant

progress in the identification of electrically stimulated mus-

cles, but the models were only verified over a short time

interval (20 sec duration). However, when applied to stroke

rehabilitation, stimulation must be applied during intensive,
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goal orientated practice tasks in order to maximise improve-

ment in motor control [23]. In clinical trials this translates

to sustained application of stimulation during each treatment

session of between 30 minutes and 1 hour duration [9]. In this

case, slowly time-varying properties of the muscle system

arise due to fatigue, changing physiological conditions or

spasticity [14]. Motivated by this, online identification will

be considered in this paper where in this approach, the model

parameters are updated once new data is available. Only a

few of the existing identification methods are recursive, and

can be divided into three categories.

The first category is the recently developed recursive

subspace identification method [4]. Firstly, the Markov

parameters of the system are estimated by least squares

support vector machines (LS-SVM) regression and over-

parameterizations. This is followed by recursive estimation of

state-space model matrices by a propagator-based subspace

identification method. This procedure does not have sparsity

due to the LS-SVM model, and the resulting computational

load makes it unsuitable for real-time implementation.

The second category comprises stochastic approxima-

tion [15] where algorithms with expanding truncations are

developed for recursive identification of Hammerstein sys-

tems. Two major issues with this method are the rather slow

rates of convergence, and the lack of information on how to

select the optional parameters in the algorithm for problems

from different areas.

The third category is Recursive Least Squares (RLS)

or Extended Recursive Least Squares (ERLS). The RLS

algorithm is a well-known method for recursive identification

of linear-in-parameter models and if the data is generated

by correlated noise, the parameters describing the model of

the correlation can be estimated by ERLS. Here, a typical

way to use these two algorithms is to treat each of the

cross-product terms in the Hammerstein system equations

as an unknown parameter. This procedure, which results in

an increased number of unknowns, is usually referred to as

the over-parameterization method [1] and [6]. After this step,

the RLS or ERLS method can be applied [5].

The limitations of current algorithms are stated next and

used to justify some of the critical choices necessary for this

work to progress

• The first two categories have only been applied in simu-

lation and the stochastic approximation has not considered

time-varying linear dynamics. This, together with the draw-

backs described above, is the reason for not considering

them further for the application treated in this paper. The

third category is the most promising as it has already been

applied to electrically stimulated muscle in [8] and [22].
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• Most of the test signals used comprise random noise in

order to guarantee persistent excitation, even when applied

to the human muscle [22], and use pseudo-random binary

sequences. However, this type of signal, which excites the

motor units abruptly, will cause patient discomfort and may

elicit an involuntary response, as reported in [3]. In [8] a

test consisting of 25 pulses is used, each of which is of

1 second duration in the form of a noisy triangular wave.

This test meets our requirements but is too short to exhibit

time-varying properties.

• The most relevant previous work is [8] where the system

considered had linear constraints and RLS was developed

for constrained systems. However, the results given do not

establish that the constraints are achieved. For example,

even when showing the prediction error, the posteriori

estimated output without constraints is better than the one

with constraints. Thus, the idea of adding constraints to

RLS, leading to increased computational load, is well worth

considering.

Overall, RLS is the most promising technique for appli-

cation to electrically stimulated muscle. This algorithm is

implemented here but due to ignorance of the rank constraint

in the over-parametric vector, the performance is not wholly

satisfactory, especially in noisy environments, so another

recursive algorithm is developed in Section II-B. Moreover,

a long-period test signal needs to be designed for our

application, which is persistently exciting and also gradually

recruits the motor units. This problem is addressed in Section

III.

II. PROBLEM STATEMENT AND SOLUTION METHODS

A. Problem Statement

Consider the discrete-time SISO Hammerstein model,

shown in Fig. 1.
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Fig. 1. Hammerstein System.

The linear block is represented by the ARX model:

y(k) =
B(q)

A(q)
w(k)+

1

A(q)
v(k) (1)

where

B(q) = b0q−d +b1q−(d+1) + · · ·+bnq−(n+d) (2)

A(q) = 1+a1q−1 + · · ·+alq
−l (3)

q−1 is the delay operator and n, l and d are the number

of zeros, poles and the time delay order, respectively. The

parameters n, l and d are assumed to be known. The

nonlinearity is represented by a sum of the known nonlinear

function f1, f2, . . . , fm and a bias:

w(k) = f (u(k)) = β0 +
m

∑
i=1

βi fi(u(k)) (4)

The considered recursive identification problem is:

Given N consecutive input-output data measure-

ments {u(k),y(k)} estimate recursively the linear

parameters [a1, . . . ,al ,b0, . . . ,bn] in (2,3) and the

nonlinear parameters [β0, . . . ,βm] in (4).

B. ARLS Algorithm

A recursive identification method is developed which

avoids over-parameterization by instead splitting the model

into nonlinear and linear components, where each is iden-

tified independently using a parallel implementation. This

method builds on [20] in which two iterative algorithms were

developed for Hammerstein systems with differing noise

models, and in each case nonlinear and linear parameters

were alternately optimized by different projection algorithms.

Whilst both involved LS optimization for offline identifica-

tion, and therefore extend naturally to the online case through

application of RLS, the one with simpler implementation and

faster computation time will be taken as a starting point.

By invoking certain approximations, this algorithm can be

implemented recursively as follows:

• Recursive identification of linear parameters

The parameters of the ARX model can be separated into

linear and nonlinear parameter vectors

θn = [β0 · · · βm]T (5)

θl = [a1 · · · al b0 · · · bn]
T (6)

y(k) can be expressed as a function of linear parameters

a1(k), . . . ,al(k),b0(k), . . . ,bn(k) only, if the nonlinear pa-

rameter vector θn is known

y(k) =−a1(k)y(k−1)−·· ·−al(k)y(k− l)

+b0(k) f (u(k−d),θn)

...

+bn(k) f (u(k−d −n),θn)+ v(k) (7)

or

y(k) = φ T
l (k,θn)θl(k)+ v(k) (8)

where

φ T
l (k,θn) = [− y(k−1) · · · − y(k− l)

f (u(k−d),θn) · · · f (u(k−d −n),θn)] (9)

A forgetting factor λl is used in the recursive least squares

algorithm to minimize the criterion

Vl(θl ,k) =
1

2

k

∑
i=1

λ k−i
l

(

y(k)−φ T
l (k, θ̂n(k−1))θl(k)

)2
(10)

where the nonlinear parameter vector is approximated by

the estimated value at the previous time instant k−1.
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The recursive algorithm for the linear parameter vector

θl(k) is

Pl(k) =
1

λl

(

Pl(k−1)−
Pl(k−1)φl(k, θ̂n(k−1))φ T

l (k, θ̂n(k−1))Pl(k−1)

λl I +φ T
l (k, θ̂n(k−1))Pl(k−1)φl(k, θ̂n(k−1))

)

(11)

θ̂l(k) = θ̂l(k−1)+Pl(k)φ
T
l (k, θ̂n(k−1))

(

y(k)−φ T
l (k, θ̂n(k−1))θ̂l(k−1)

)

(12)

• Recursive identification for the nonlinear parameter vector

Similarly, it is first assumed that the linear parameter vector

θl is known, which leads to a system equation linear in

nonlinear parameters,

A(q,θl)y(k) = φ T
n (k,θl)θn(k)+ v(k) (13)

where

A(q,θl)y(k) = y(k)+a1y(k−1)+ · · ·+aly(k− l) (14)

and

φ T
n (k,θl) = [

n

∑
i=0

bi

n

∑
i=0

bi f1(u(k−d − i))

· · ·
n

∑
i=0

bi fm(u(k−d − i))] (15)

and then the linear parameter vector is substituted by the

estimated value from the previous time instant, resulting in

a recursive algorithm for the nonlinear parameter vector

Pn(k) =
1

λn

(

Pn(k−1)−
Pn(k−1)φn(k, θ̂l(k−1))φ T

n (k, θ̂l(k−1))Pn(k−1)

λnI +φ T
n (k, θ̂l(k−1))Pn(k−1)φn(k, θ̂l(k−1))

)

(16)

θ̂n(k) =θ̂n(k−1)

+Pn(k)φ
T
n (k, θ̂l(k−1))

(

A(q, θ̂l(k−1))y(k)−φ T
n (k, θ̂l(k−1))θ̂n(k−1)

)

(17)

III. APPLICATION TO ELECTRICALLY STIMULATED

MUSCLE

In this section, the two recursive algorithms are applied to

online identification of the response of electrically stimulated

muscle.

A. Modelling of electrically stimulated muscle

The most widely assumed structure used in model-based

control of electrically stimulated muscle is the Hill-type

model [16]. This describes the output force as the prod-

uct of three independent experimentally measured factors:

the force-length property, the force-velocity property and

the nonlinear muscle activation dynamics under isometric

conditions respectively. The first two account for passive

elastic and viscous properties of the muscle and comprise

static functions of the muscle length and velocity [19],

[12]. The activation dynamics capture the active properties

of the muscle, and are almost uniformly represented by a

Hammerstein structure. This comprises a crucial component

of the muscle model since in most applications joint ranges

and velocities are small so that the isometric behavior of

muscle dominates. The widespread use of a Hammerstein

structure to represent the activation dynamics is due to

correspondence with biophysics: the static nonlinearity rep-

resents the Isometric Recruitment Curve (IRC), which is

the static gain relation between stimulus activation level,

and steady-state output torque when the muscle is held at

a fixed length. The linear dynamics represents the muscle

contraction dynamics, which combines with the IRC to give

the overall torque generated.

The non-linearity has been parametrized in a number of

ways, taking the form of a simple gain with saturation [11]

or a piecewise linear function [19], [18]. The linear dynamics

have been assumed to be first order in [19], critically damped

second order in [25] or second order with possible transport

delay in [18].

In the tests which follow, the linear block is represented

by an ARX model described by (1), (2), and (3), with the

parameters l = 2,n = 2,d = 1. To provide a smooth function

with continuous derivatives suitable for subsequent control,

the nonlinear function f (u) is represented by the cubic spline

f (u) = β0 +β1u+β2u2 +β3u3 +
m+3

∑
i=4

βi|u−ui−3|
3 (18)

where umin = u1 < u2 < u3 < · · · < um = umax are the spline

knots.

B. Experimental Setup

Experimental tests have been carried out using a work-

station which has been developed as a platform for upper

limb stroke rehabilitation. It incorporates a five-link planar

robotic arm which includes a six axis force/torque sensor in

its extreme link, and an overhead projector used to display

trajectories to patients. The system has been used in a

clinical trial in which electrical stimulation was applied to

the patient’s triceps to assist their completion of trajectory

tracking tasks. Full details of the system are provided in

[13] which includes experimental validation of the sensor

and stimulation hardware.

Fig. 2. Robotic workstation

Recursive identification tests were performed on a single

unimpaired subject, and took place on several independent

days. The participant’s upper arm and forearm lengths were

first taken, they were then seated in the workstation and

their right arm was strapped to the extreme link of the

robotic arm. Straps were applied about the upper torso to

prevent shoulder and trunk movement (as shown in Fig. 2).

The subject’s upper limb was then moved over as large

an area as possible and a kinematic model of the arm

produced using the recorded measurements. This was used

to transform the force recorded by the force/torque sensor to

torque acting about the elbow (see [13]). The electrodes were

then positioned on the lateral head of triceps and adjusted
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so that the applied stimulation generated maximum forearm

movement. The stimulation consists of a series of bi-phasic

pulses at 40 Hz, whose pulsewidth is variable from 0 to

300 µs with a resolution of 1 µs. The amplitude, which

is fixed throughout all subsequent tests, is determined by

setting the pulsewidth equal to 300 µs and slowly increasing

the applied voltage until a maximum comfortable limit is

reached. A sample frequency of 1.6 KHz is used by the

real-time hardware.

The position of the robotic arm was then fixed at an

elbow extension angle of approximately π/2 rads using a

locking pin. This removes the non-isometric components

of the biomechanical model, so that the resulting system

corresponds to a Hammerstein structure (comprising the

muscle model with the addition of passive elastic torque

from the remaining arm which may also vary in time). The

model’s input is the stimulation pulsewidth, and its output is

the torque about the elbow. The recursive identification tests

last for 10 min, comprising 10 repeated waves of either a

half-cosine function, or a staircase signal, added to which the

diminishing excitation technique [7] has been used to make

the input signals persistently exciting. Although the white

noise input signal is widely used in recursive identification, it

is unsuitable for the present application as previously noted.

Both the half-cosine and staircase input signals have similar

characteristics to those used in rehabilitation (see [17]) and

the corresponding output signals are plotted in Fig. 3.
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Fig. 3. The input and output signals for recursive identification tests

C. Results

The two recursive algorithms, RLS and ARLS, are com-

pared in the following aspects:

• One-step ahead prediction

In order to evaluate the accuracy of the recursive algo-

rithms, the measured torque outputs y are compared with

the one-step ahead predicted outputs ŷ in terms of best fit

rate defined as:

Best Fit =

(

1−
‖y− ŷ‖2

‖y− ȳ‖2

)

×100

and ŷ is defined as

ŷ(k +1) = G(q, θ̂l(k)) f (u, θ̂n(k))

which is a one-step ahead prediction, using the updated

model at the time instant k to predict the output at the next

time instant k +1.

Table I lists the best fit rates for half cosine and staircase

wave inputs respectively, and considers both the whole 10-

minute dataset and the first 1-minute dataset, the latter of

which contains less time-varying information. The corre-

sponding fitting plots are shown in Fig. 4.

TABLE I

MUSCLE TESTS: BEST FIT RATES BETWEEN THE MEASURED OUTPUTS

AND THE ONE-STEP AHEAD PREDICTED OUTPUTS FROM THE TWO

RECURSIVE ALGORITHMS

half cosine wave input staircase wave input

RLS ARLS RLS ARLS

1 min -10.0244 87.9188 -130.4187 80.3162

10 min -52.3874 61.3267 -408.2148 57.4049

• Computational Time

Since the algorithms are intended for online implementation

in real-time, their computation time is an important factor.

The time taken to perform a single updating step for both

recursive algorithms is listed in Table. II.

TABLE II

MUSCLE TESTS: COMPUTATIONAL TIME IN SECONDS FOR A SINGLE

UPDATING STEP FOR THE TWO RECURSIVE ALGORITHMS

RLS ARLS

computational time 0.0019 1.0989×10−4

D. Discussion

First of all, the input and output signals, plotted in Fig.

3, clearly exhibit time-varying properties of the electrical

stimulated muscle system, that is, the responses to the same

input slowly change with time. This is in accord with the

assumptions made in this paper and also strongly supports

the need for online identification.

From the results, it is clear that ARLS is far superior to

RLS. The reason is the over-parametrization method from

which RLS arises already suffers from the problem of an

implicit rank constraint, that is, the newly defined parameter

vector should have a rank constraint, which is often ignored.
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Fig. 4. Muscle Tests: the fitting plot between the measured outputs and the one-step ahead predicted outputs from the RLS and ARLS algorithms.

Consequently, the performances are not satisfactory, for

example, in [27], the over-parametrization method shows

sensitivity to noise, when compared with the iterative and nu-

merical methods. Hence, after implementation in a recursive

fashion, the estimates from RLS are likely to be worse, espe-

cially for the noise contaminated experimental data. ARLS

overcomes this problem by avoiding over-parameterizations

and splitting the parameters into linear and nonlinear parts,

each of which has their own information states and updating

algorithms. With respect to the experimental results, for 1

minute data, one-step ahead prediction can track the output

well, shown in Fig. 4(a) and 4(c) and for 10 minute data, it

also can capture long term variation in the muscle properties,

as illustrated by Fig. 4(b) and 4(d).

Moreover, ARLS is even faster than RLS, because ARLS

splits the algorithm into two parallel ones, each of which

entails low-dimensional matrix multiplication.

Another advantage of ARLS is that it has two separate

weights for linear and nonlinear parameters, λl and λn. In

the real muscle system, the linear and nonlinear parameters

represent two different mechanisms (muscle activation and

recruitment respectively) which change over time at different

rates. The ability to choose individual weights for each mech-

anism provides clear selection and performance advantages

over a single λ parameter.

In the previous recursive process, the weighting parameters

λ , λl and λn are fixed at 1, and the implications of this

choice are now considered using Tables III and IV. For RLS,

there is no improvement when tuning the λ parameter, while

for ARLS, the fitting rate reaches 70% for λl = 0.9995 and

λn = 0.9997.

TABLE III

10 MIN DATA OF HALF COSINE WAVE INPUT: BEST FIT RATES BETWEEN

MEASURED AND ONE-STEP AHEAD PREDICTED OUTPUTS FROM RLS

WITH DIFFERENT λ

λ Best Fit Rate (%)

1 -52.3874

0.9999 -109.1885

0.9998 -141.6934

0.9997 -103.2831

0.9990 -64.0752

Fig. 5 shows the time trajectory of the estimated values

for the linear and nonlinear parameters from ARLS. These

illustrate the underlying physiological changes in the muscle

system over time.

IV. CONCLUSIONS

A novel recursive identification algorithm has been de-

veloped for Hammerstein structures, in which the linear
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TABLE IV

10 MIN DATA OF HALF OF COSINE WAVE INPUT: BEST FIT RATES

BETWEEN MEASURED AND ONE-STEP AHEAD PREDICTED OUTPUTS

FROM ARLS WITH DIFFERENT λl AND λn

λl λn Best Fit Rate (%)

1 1 61.3267

0.9999 0.9999 63.6053

0.9998 0.9999 65.8187

0.9997 0.9999 67.6394

0.9996 0.9998 68.7207

0.9995 0.9997 70.8437

0.9994 0.9996 43.0805
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Fig. 5. Muscle tests: the time trajectory of the estimated values of the
linear and nonlinear parameters from ARLS.

and nonlinear parameters are recursively identified in a

parallel manner. The proposed algorithm has been shown

to outperform the leading RLS alternative when applied

to the experimental identification of electrically stimulated

muscle. The identification procedure will be shortly utilised

in clinical trials with stroke patients for the purpose of

rehabilitation.
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