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Abstract— Most common methods for experiment design are
classical, geometric designs and optimal designs. Both categories
of methods don’t incorporate specific information about the
process behavior into the design of experiments. In the case
of optimal design often the underlying model structure is
chosen as low order polynomial which is very restricted in its
flexibility and causes problems, if used for higher-dimensional
problems. Furthermore, the focus of these approaches lies on
the minimization of the variance error. However, in many
applications the process noise is negligible in comparison to
the highly nonlinear behavior which usually causes a large
bias error. Therefore, this paper presents the new algorithm
HilomotDoE which is an active learning algorithm that aims to
minimize the bias error of the model. This is achieved by an
iterative refinement of a local model network and simultane-
ously the addition of a certain amount of measurement points.
Demonstration examples and theoretical comparisons with the
common D-optimal design show the usefulness of HilomotDoE
for the mentioned problem class.

I. INTRODUCTION

Generally, process data modeling is only a single step
in many necessary process chains, see e.g. Fig. 1. But
the quality of the entire process chain crucially depends
on well distributed measurements. The practitioner seeks
to keep the effort for data acquisition as low as possible,
because measurements are mostly both, time-consuming and
expensive. Furthermore, some kind of measurements can not
be repeated with the same environmental configurations.

Design of experiments is a well known approach to
efficiently collect data such that existing resources can be
used in the most effective way. The application of the major
theory in this field described, e.g. in [5], [6] or [15], has
the power to significantly reduce measurement costs and
to improve generalization properties of data-based modeling
strategies.

In many disciplines one can observe that the measurement
process is totally decoupled from the subsequent modeling
step. Modeling approaches are mostly treated as passive
recipients of data and the benefit that could be achieved
from interaction between model estimation and the ability to
influence the measurement process is totally neglected. As
proposed in [3], [1] or [23] active learning strategies lead to
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improved generalization at the cost of higher computational
effort.

This contribution focuses on processes where the most
modeling benefit is achieved with minimization of rather the
bias than the variance error, because usually low output noise
levels are expected. The author has experience with a real
world application that can be used as example at this point:
Experiment design in the framework of engine development.

In order to optimize the actuating variables of a combus-
tion engine with respect to its fuel consumption, exhaust
emissions and other criteria the engineer must have a well
generalizing high performance model. Figure 1 shows the
general procedure steps in combustion engine development.
For all subsequent steps the role of measurements is essen-
tial. In research for engine development this topic rather has
gained inferior attention. Most of the scientific literature in
this field is restricted to methods based on precise mathe-
matical derivations, see e.g. [18], [26], [25].
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Fig. 1. Process chain of typical application: Generation of adaptive engine
characteristic maps.

Mostly, the measurements on a engine test bench are
gathered stationary, i.e. at each operating point of the engine
the application engineer has to wait until the process is at
steady state. The stationary point is then result of averaging
a certain amount of data points, e.g. the mean of 50 samples.
Therefore, the measured data can be expected to be almost
noise-free, though it’s a non-ergodic process. For this kind
of application the challenging task is more concentrated on
minimizing the bias error than to minimize the parameter
variances of the model as it is the goal for an D-optimal
experiment design. This contribution proposes a new strategy
to cope with such requirements.

The following Section II gives an overview over common
methods for experiment design. Section III compares the
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attributes of passive and active learning methods. The main
part of the paper is described in Section IV, namely the intro-
duction of the HilomotDoE algorithm for active experiment
design. Finally, in Section V some demonstration examples
are shown and the paper ends up with the conclusions in
Section VI.

II. METHODS FOR EXPERIMENTAL DESIGN

As a branch of statistics, methods for design of exper-
iments (DoE) are tools to generate measurement samples
with as low experimental effort as possible or even make
the reasonable experiment realization possible at all in the
case of high-dimensional processes, respectively. The goal
of experiment design is to systematically investigate the
relationships between influencing variables and interesting
dependent variable [14].

In principle, DoE-methods can be distinguished into two
categories [13], [16]:

1) Classical, geometric experiment designs: The samples
distribution in the input space is arranged according to
a predefined pattern without any consideration of the
output variable. Commonly used experiment designs
are known as: Full and Fractional Factorial, Cen-
tral Composite and Box-Behnken, Latin Hypercube, et
cetera [22].

2) Optimal experiment designs: Goal of optimal strategies
is the minimization of the model output variance, the
variance of model parameters or similar quantities. For
this purpose a certain model structure must be assumed
which describes the input-output-mapping correctly.
Common approaches are known as D-, A- and V-
optimality [21]. Typically assumed model structures
are low order polynomials.

Furthermore, sometimes application-based strategies can
be found in literature where prior knowledge about the
specific problem is exploited, e.g. with application of a
fuzzy-rule-based approach like proposed in [9].

Generally, the most applicated method is the D-optimal
experiment design. Numerous publications favor the D-
optimal design, e.g. [7], [17]. At first, this method generates a
regression matrix X which is of polynomial structure. Then,
the determinant of the covariance matrix, which is a measure
for the model variance, is minimized:

det
(

(XTX)−1
)

→ min , (1)

or its inverse is maximized, respectively
(det (XTX) → max). Usually, approaches that minimize the
model variance are built on the basis of polynomial functions
of second or third order, although in [1] the extension to
multilayer-perceptron networks is already introduced.
However, the calculations for linearly parametrized models
like polynomials are considerably less complex.

The mentioned experiment design methods are based on
polynomial models. That is, all drawbacks with respect to
regression with polynomials, like e.g. bad interpolation and
extrapolation behavior and increased risk of overfitting [19],
are reflected in the experiment design. The popular D-optimal

design solely minimizes the variance error. In literature many
application attempts can be found, see e.g. [8], [4].

The DoE-methods of both categories don’t incorporate
the process output characteristics. However, especially for
complex, nonlinear processes the crucial point is to minimize
the bias error. These nonlinear relationships often can only
insufficiently be covered with polynomial structures. Hence,
D-optimal designs are only optimal with respect to a certain
model assumption. If these model assumptions do not match
the underlying process that has to be investigated, the prob-
ability of neglecting important nonlinear relationships of the
process is high.

The approaches of the first category are universally ap-
plicable. The distribution of data points in the input space
is independent of the problem and obstinately follows a
certain scheme. They can’t be very effective, because they
do not incorporate any structural information about the
estimated relationship between input and output variables.
These disadvantages should be avoided with methods from
the second category.

DoE-methods of the second category try to find a suitable
choice of measurement points in order to minimize the
variance error. The bias error is not taken into account.
Therefore, these approaches are only suggestive, if the vari-
ance amount of the overall model error is high in comparison
to the amount of the bias error.

An experiment design that minimizes the variance error
is called V-optimal [21]. However, much more popular and
computational less demanding is the minimization of the
volume of the confidence ellipsoid. This is achieved with the
minimization of the determinant of the parameter covariance
matrix. Therefore, this method is called D-optimal [21].
Sometimes an A-optimal design is used which aims to reduce
the asphericity of the confidence ellipsoid and therefore
minimizes the average variances of the parameters [21].
From a practical point of view all these approaches aim
to achieve the reduction of the variance error while they
simultaneously neglect or ignore the bias error, respectively.

Only a few publications discuss the reduction of the
bias error, although in [2] already numerous arguments can
be found that analyze the importance of the problem. [2]
discusses the problem that a D-optimal design can be very
disadvantageous, if the requirements for this approach are
not satisfied, namely the dominance of the variance error. In
many applications this criterion is not met.

III. PASSIVE VERSUS ACTIVE LEARNING

For time and financial reasons in all application fields only
a restricted contingent for measurements is available. The
efficiency of exploitation of given measurement resources
crucially influences all subsequent process steps. An iterative
synchronization between experiment and modeling during
the measurement allows the tuning of new measurements
according to the underlying process behavior.

The basic idea of active learning is to create an interaction
between the modeling and the measurement procedure. This
strategy focuses on finding a tradeoff between improved
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Fig. 2. Comparison of passive and active learning. In contrast to passive
learning the active learning approach iteratively trains the data and sets new
measurement points based on the previous training set which can improve
the model generalization significantly. However, this iterative procedure is
computational more expensive and therefore time-consuming [1].

generalization of the model, which is typically the case with
active learning, and the amount of computational cost, which
usually increases with this approach, too. The main goal is
to build a good model with the fewest data [1].

As pointed out with Fig. 2 the difference between active
and passive learning is that in case of active learning the
learning algorithm interacts with the process such that the
training set is iteratively updated. In case of passive learning
the learning algorithm gets the complete training set with
measurements that are taken beforehand in one step.

IV. MODEL-BASED DESIGN OF EXPERIMENTS WITH THE
HILOMOTDOE ALGORITHM

HilomotDoE stands for HIerarchical LOcal MOdel Tree
for Design of Experiments. It is an active, model-based and
incremental design of experiments method that generates a
sample distribution in order to minimize the bias error of the
model. The modeling is done with a local model network.
The output ŷ of a local model network (LMN) with p inputs
u = [u1 u2 · · · up]

T can be calculated as the interpolation
of M local model outputs ŷi(·), i = 1, . . . ,M [19],

ŷ =

M
∑

i=1

ŷi(u)Φi(u) , (2)

where the Φi(·) are called validity functions. These validity
functions describe the regions where the local models are
valid; they describe the contribution of each local model to
the output. From the fuzzy logic point of view (2) realizes
a set of M fuzzy rules where the Φi(·) represent the rule
premises and the ŷi(·) are the associated rule consequents.
Because a smooth transition (no switching) between the local
models is desired here, the validity functions are smooth
functions between 0 and 1. For a reasonable interpretation
of local model networks it is furthermore necessary that the
validity functions form a partition of unity:

M
∑

i=1

Φi(u) = 1 . (3)

Thus, everywhere in the input space the contributions of all
local models sum up to 100%. In principle, the local models

can be chosen of arbitrary type. This paper deals only with
local models of linear type:

ŷi(u) = wi,0 + wi,1u1 + wi,2u2 + . . .+ wi,pup . (4)

However, an extension to higher degree polynomials or other
linearly parameterized model classes is straightforward.

A. Functioning of the HilomotDoE algorithm

The HilomotDoE algorithm generates the partitioning of
a local model network and does the DoE sampling simul-
taneously. The partitioning is based on the axes-oblique
partitioning algorithm that is introduced in [20] and which
was further investigated in e.g. [12], [11]. The DoE sampling
is done with a pseudo-random Monte Carlo approach which
is explained in this section, too.

The basic rule of HilomotDoE is that a fixed amount of
data points is assigned to each local model. In each iteration
of the partitioning algorithm the global model is refined by
adding a new local model. Therefore, in each iteration of
HilomotDoE the same amount of new sample points is added
to the training set.

In order to make an active, complexity dependent DoE
sampling possible, the algorithm works as follows: First of
all, a first model with a low amount of data has to be esti-
mated. These samples should be distributed homogeneously
such that they cover most of the design space, if no prior
knowledge about the process is available. Then, this first
model is split into two submodels. Now, new measurement
points are set such that each local model region possesses
the same amount of data points. In the next step, the updated
training set allows the estimation of a second, further refined
model. The procedure is iterated as long until a certain stop
criterion is met. For example, this could be the maximum
number of measurement points.

The main attributes of the HilomotDoE algorithm can be
summarized as follows:

• To each local model the same amount of data samples
is assigned. The bound of a local model i is defined
with the validity function Φi(u).

• Iteratively, the global model is refined by adding a new
local model. This ensures that in each iteration the same
number of new data points is generated.

• For the placing of new measurement points the data
points that already exist are considered such that a
homogenous sampling is achieved.

• The global model is updated during each measurement
cycle. The model structure adapts to the real process
behavior.

• To those regions where the process shows strong non-
linearities measurements are assigned with high density.
If the process is almost linear in a certain region, it is
sufficient to cover this region with only few measure-
ments.

• The model is refined as long as a stop criterion is met,
such as the maximum number of measurement points.

• Design of experiments, measurement and modeling are
concurrent operations.

5308



• It is easily possible to incorporate design space infor-
mation that is known a priori.

A crucial part of the HilomotDoE algorithm is the pseudo-
Monte Carlo sampling algorithm which is described next.

B. Pseudo-Monte Carlo Sampling Algorithm

The DoE sampling algorithm used in HilomotDoE is
inspired by the generation of pseudo-random numbers. In
literature many approaches can be found that aim to generate
homogeneously distributed data samples. For example, Hal-
ton sequences [10] or Sobol sequences [24] can be mentioned
that are commonly used for high-dimensional integrations.
The sampling in HilomotDoE has a similar goal, namely the
generation of new points which are far away from existing
points. For this purpose, an algorithm is used in HilomotDoE
which selects from a set of random candidate points the
sample that has maximum distance to all existing points.
The sampling functions as follows:

1) Generate a candidate set Z ∈ R
p of equally distributed

random samples {zj}
Nc

j=1, where p is the number of
input or design variables.

2) Calculate distance matrix D = {dij} ∈ R
N×NC from

all candidate points {zj}
Nc

j=1 to all esxisting points
{ui}

N
i=1, see Fig. 3. The distance d2ij is defined as the

Mahalonobis norm:

d2ij = ||ui − zj ||
2
Σ = (ui − zj)

TΣ(ui − zj) , (5)

where Σ is the covariance matrix. If the design space
has equally scaled axes, the covariance matrix Σ can
be chosen as identity matrix (Σ = I). Then the
Mahalonobis norm equals the Euclidean norm.

3) The i-th row of the distance matrix D contains the
distances from all candidate points {zj}

Nc

j=1 to the
i-th existing point ui. To each existing point ui the
nearest neighbor candidate point zi,NN is selected, that
is, the candidate point with minimum distance dij
to the existing point ui. This results in a distance
vector dNN ∈ R

N×1 containing all nearest neighbor
distances.

4) Finally, the candidate point is selected which causes
the maximum entry value in dNN, i.e. the candidate
point with maximum nearest neighbor distance.

Compared to a equally distributed sampling the pseudo-
Monte Carlo sampling covers the design space much more
homogenously as can be seen in Fig. 4. Furthermore, the
Monte Carlo approach takes already existing measurements
into account for setting the new data points which is not the
case for equally distributed sampling.

C. Influence of amount of samples and process noise

One challenging point of the proposed active learning
approach is to set the number of data points per local model.
If there is a restricted amount of data that can be measured,
a compromise between two extreme cases has to be found:

On the one hand, to each local model can be assigned
exactly as many points as there are local model parameters
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Fig. 3. Distance calculation in design space. The nearest (already existing)
neighbor point of each candidate point is evaluated and the candidate with
maximum nearest neighbor distance is chosen for next measurement. This
ensures a wide spread data distribution.
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Fig. 4. Comparison of DoE samples that are generated with the proposed
pseudo Monte-Carlo sampling (left) with equally distributed sampling in a
given design space (right). Furthermore, the Monte Carlo approach takes
already existing measurements into account.

that have to be estimated. In the case of local linear models
this would mean p + 1 parameters, where p is the number
of inputs. This procedural method leads to a very flexible
partitioning because of the high number of local models
that has to be generated by HilomotDoE in order to set all
measurement points. Unfortunately, with this procedure the
nonlinear split optimization with HilomotDoE will become
not very efficient because the optimization is done with
a sparse amount of data. Therefore, many iterations are
necessary in order to cover the nonlinearities of the process.

The other extreme would be the generation of one global
model with all data points. This procedure leads to a space
filling experiment design due to the pseudo-Monte Carlo
sampling, but there is no interaction between measurement
and modeling. Hence, there is no chance to reproduce the
process nonlinearity or to minimize the bias error, respec-
tively.

In order to show the dependency of the number of local
model points on the resulting global model error an academic
example is presented in Figs. 5 and 6. The process follows
the equation: y = 0.1

0.1+0.5(1−u1)+0.5(1−u2)
. It is modeled with

three data point strategies, i.e. 3, 6 and 9 points per local
model (LM). Stop criterion for HilomotDoE was a total of
90 samples. The simple example shows, that the strategy
with 6 points per local model leads to the best validation
error, see Fig. 5. Furthermore, it becomes clear that in the
presence of noise the choice of the strategy with the most
data points per local model is the best.

Figure 6 exemplarily compares the resulting model and
the process for the 6-point strategy. The partitioning and the
generated data points show clearly that with respect to the
complexity adaptive DoE algorithm HilomotDoE the density
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of measurements is high in regions where the process shows
severe nonlinear behavior and low in regions of almost linear
characteristic.
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Fig. 5. Left: Convergence behavior of HilomotDoE algorithm for different
number of data points per local model (LM). Right: Same experiment for
three different output noise levels.
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Fig. 6. Demonstration example with 2 inputs and 1 output. Left:
Comparison between process and model. Right: Partitioning with 6 data
samples per local model, overall 90 samples.

D. Comparison of D-optimal designs with HilomotDoE de-
signs

Most of the publications in the field of automotive engine
development deal with the application of D-optimal designs.
From a scientific point of view a comparison with Hilomot-
DoE seems to be somehow unfair, but from a practical point
of view this represents the current state-of-the-art approach.
Therefore, on the basis of some selective criterions D-optimal
design is compared to the design via HilomotDoE as follows:

• Goal: In case of D-optimal design parameter variances
have to be minimized, whereas the goal of the Hilomot-
DoE algorithm is the minimization of the global model
error.

• Model structure: User defines the underlying model
structure for D-optimal designs, usually polynomials of
second order. With HilomotDoE the structure is refined
iteratively and follows a divide & conquer principle.

• Process supervision: D-optimal designs only incorpo-
rate the input variables, independently of the environ-
ment. HilomotDoE aims to minimize the bias error.
Therefore, it sets the data points with respect to the
underlying process.

• Reproducibility: D-optimal designs are reproducible, if
the same regressors are used, although it is barely de-
terministic. The reproducibility of HilomotDoE designs
is restricted. This can be circumvented, if the samples
inside of the local models are distributed with a fixed
geometrical design, e.g. with a latin hypercube design.

• Underlying model: Typically, D-optimal designs are
built up with a polynomial model of low degree, e.g.
second order. In the case of HilomotDoE the experiment
design is taken on the basis of a local model network
with an axes-oblique partitioning strategy.

• Parsimony of sample placings: Only a very small
amount of different data samples is placed with D-
optimal design. But this method tends to generate data
clusters where a certain quantity of data points is placed
at the same design coordinate. With HilomotDoE the
amount or density of required samples, respectively,
depends on the underlying process nonlinearity.

• Suitability for high-dimensional problems: For high-
dimensional input spaces D-optimal designs are rather
disadvantageous, because a huge number of polyno-
mial regressor terms has to be considered. Due to
the extremely flexible model structure HilomotDoE is
especially well suited for high-dimensional problems.

• Suitability for model-based optimization: Could be
problematic with D-optimal design, because it doesn’t
consider the bias error or the true process behavior,
respectively. HilomotDoE minimizes the error between
model and process. Nonlinearities are modeled with
high accuracy. This leads to good preconditions for
optimization.

• Computation effort: D-optimal design can be done
pretty fast, but it has high effort with the candidate
selection procedure. HilomotDoE designs are compu-
tationally more expensive because of the required non-
linear optimization of the local model network structure
and the pseudo-Monte Carlo sampling. But in the case
of measurements on an engine test bench it can be
assured that HilomotDoE is fast enough to calculate a
new input to try while the measurement of the old point
is still running.

V. DEMONSTRATION EXAMPLES

The potential of experiment designs with HilomotDoE
compared with standard D-optimal designs is shown with
some examples presented in the Figs. 7 and 8. The pictures il-
lustrate both, D-optimal experiment designs and HilomotDoE
designs. The test processes are compared with the resulting
model. Again, it should be mentioned that the HilomotDoE
method is developed for processes where the variance error
can be neglected in comparison to the bias error.

For example, on an engine test bench each measurement
is taken in steady-state. To ensure stationarity the measure-
ments have to be taken for a time period of few minutes and
the resulting data point for modeling is generated by taking
the mean value of steady-state measurements. Therefore, the
engine process has a very low noise level. This is the reason
why the investigations in this paper are taken on processes
without noise.

For both, the D-optimal designs and the HilomotDoE
designs the same model structure was used for experiment
design as for modeling. In the case of D-optimal design the
regressors were chosen as full polynomial of third degree
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and MATLAB’s row exchange algorithm [22] was used for
candidate selection. The same polynomial regressors were
used for modeling as for generation of the experiment design.
In the case of the HilomotDoE design the underlying local
model network is compared to the process. In all examples
the same amount of data points was produced.

It becomes obvious that the model with D-optimal design
is not able to achieve the main process nonlinearities. Thus, if
the model assumption of a polynomial of third degree doesn’t
match to the real process the experiment design can be very
inefficient. This shows the big advantage of the structure
adaptive, active learning procedure with HilomotDoE.

! !"# $
!

!"#

$

!
"

#

! !"# $
!

!"#

$

!
"

#

%&'()**

+',)-

.#/.#/

.0/

.#/

%&'()**

+',)-

!

!"#

$

#

!

!"#

$

#

! !"# $
!
"

! !"# $
!
"

%&'()**

+',)-

%&'()**

+',)-

.0/.#/ .#/ .#/

Fig. 7. Comparison of D-optimal design (left) and HilomotDoE design
(right) (21 samples with each design).
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VI. CONCLUSIONS

This paper presents the new active learning algorithm
HilomotDoE. It is especially developed for the problem class
of processes with highly nonlinear behavior and low noise
levels such as known, e.g., in the field of combustion engine
calibration. HilomotDoE is based on a local model network
structure. In each iteration of the algorithm the model is
refined by adding a new local model. To each local model the
same amount of data points is assigned. The size of the local
model validity regions depends on the nonlinearity of the
underlying process. Therefore, in regions where the process
shows highly nonlinear behavior the density of measurements
is much higher than in regions where the process is almost
linear. This ensures a very effective exploitation of given

measurement resources and a nonlinear process model that
is of high flexibility. Experiment design, measurement and
modeling are concurrent operations.
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