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Abstract— Stable operation of the future electrical power
system will require efficient techniques for supply-demand
balancing, i.e., load-frequency control, due to liberalization
of electrical energy production. Currently, there is a growing
interest for asymptotically stabilizing the grid frequency via
model predictive control (MPC). However, the centralized
implementation of standard MPC is hampered by the scale
and complexity of power networks. In this paper we therefore
evaluate the suitability of a scalable, distributed Lyapunov-
based MPC algorithm as an alternative to conventional balanc-
ing techniques. The approach is particularly suited for large-
scale power networks, as it employs only local information
and limited communication between directly-coupled generator
buses to provide a stabilizing control action. The effectiveness
of the distributed control scheme is assessed by simulating it
in closed-loop with the 7-machine CIGRÉ benchmark system.

I. INTRODUCTION

The growing need for a more efficient, expanding electric-

ity infrastructure has resulted in a fundamental restructuring

of the power grid. Firstly, from a regulated, monopolistic

operation, power systems are being deregulated and reorga-

nized to support large numbers of market actors that compete

for energy supply and demand, which is believed to lower

prices and minimize costs (see, e.g., [1]). Secondly, the past

decennium has shown a considerable increase of distributed

generation (DG) at the expense of conventional, large-scale

power plants. The penetration of (often renewable-based) DG

is expected to continue as a result of environmental concerns

and rising fossil fuel prices, see, e.g., [2].

The major shift in electricity grid design requires a funda-

mental change of control strategies, in order to guarantee

reliable energy supply in the future. One of the control

problems complicated by deregulation and DG is that of au-

tomatic generation control (AGC), see, e.g., [3]. AGC aims at

asymptotic stabilization of the network frequency, which cor-

responds to continuously balancing generation and load. To-

day, AGC is usually implemented via classical proportional-

integral feedback laws. This approach has proven to be

reasonably adequate for traditional power systems that are

characterized by highly repetitive power flows, a relatively

small amount of uncertain fluctuations on the demand side

and well-controllable, large-scale power plants on the supply

side. However, with grid operation becoming deregulated,

competitive economic forces tend to push the system towards

its stability boundaries (see, e.g., [1]). Recent studies, such

as [4], [5], show that already today, the increasing overlap
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of market and control mechanisms is inducing alarmingly

high frequency fluctuations in the European electricity grid,

thereby impounding a large part of the balancing reserves.

In addition, the performance of conventional AGC is threat-

ened considerably by the increasing extent of unpredictable

imbalance fluctuations that originate from intermittent DG.

Recently, it was observed that model predictive control

(MPC) has a potential for solving the problems that are

expected in future electrical power networks, see [6]–[8].

MPC can explicitly take state/input constraints into account

and can employ disturbance models to counteract imbal-

ance fluctuations due to intermittent distributed generation

or market-based scheduling. Yet, the fact that MPC is a

centralized control method is a major issue if it is to be used

in power systems. Standard MPC requires a single controller

to measure all the system outputs and to compute and apply

the control action to all actuators in the network, all within

one sampling period. As power networks are large and com-

plex, it is practically impossible to implement a dedicated

centralized predictive control scheme. This motivates the

search for non-centralized formulations of MPC, in which

the overall control action is formed by a set of control laws,

each assigned to a separate control area.

The non-centralized MPC schemes that have been pro-

posed in the literature can roughly be divided into decentral-

ized techniques, see, e.g., [9]–[11], in which local controllers

operate without communication (just as standard AGC),

and distributed techniques, see, e.g., [6], [7], [12], [13], in

which the control action is computed by exploiting a mutual

exchange of information over a usually predefined structured

communication network. Distributed methods that employ

iterations or global information, such as the approaches

proposed in [6], [7], generally outperform decentralized MPC

in terms of optimality with respect to a global objective

at the cost of higher computational and communication

requirements. However, the sampling periods required in

power system control (in the order of seconds) are usually

too short for MPC algorithms to perform iterations or to

exchange global information in a reliable fashion, see [14].

Consequently, the objective of a globally optimal performing

MPC-controlled power system is currently out of reach.

Given these observations, we focus on load-frequency

control using the non-iterative distributed Lyapunov-based

MPC scheme that was presented in [15]. This method needs

no global coordination to guarantee stability and can be

implemented in an almost-decentralized fashion. That is, the

controller only requires one run of information exchange

between directly neighboring subsystems per sampling in-

stant. This communication scheme fits the current power
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system control architecture, as present transmission lines are

usually equipped with communication links. We illustrate

the effectiveness of the almost-decentralized scheme of [15]

by simulating it in closed-loop with the 7-machine CIGRÉ

system that is often used in load-frequency control studies.

A. Basic Notions and Definitions

Let R, R+, Z and Z+ be the sets of real, non-negative real,

integer and non-negative integer numbers, respectively. For

every c ∈ R and Π ⊆ R we define Π≥c := {k ∈ Π | k ≥ c}
and Π≤c := {k ∈ Π | k ≤ c}. Moreover, let ZΠ := {k ∈ Z |
k ∈ Π}. For a finite set of vectors {xi}i∈Z[1,N]

, xi ∈ R
ni ,

N ∈ Z≥1, let col({xi}i∈Z[1,N]
) or col(x1, . . . , xN ) be the

column vector
(
x⊤

1 , . . . , x⊤
n

)⊤
, and let diag(xi) denote a

square matrix with the elements of xi on the main diagonal

and zeros elsewhere. Let 0n and 1n denote column vectors

in R
n with all elements equal to zero and one, respectively.

IN ∈ R
N×N is the identity matrix. For a set S ⊆ R

n,

the interior of S is represented by int(S). For x ∈ R
n, let

‖x‖ denote an arbitrary p-norm and let [x]i, i ∈ Z[1,n] be

the i-th component of x. The ∞-norm of x is ‖x‖∞ :=
maxi=1,...,n |[x]i|, where | · | is the absolute value operator.

For M ∈ R
m×n, let ‖M‖ := maxx6=0n

‖Mx‖
‖x‖ be the induced

matrix norm. If m = n, M ≻ 0 and M � 0 indicates that M

is positive definite and positive semi-definite, respectively. A

function ϕ : R+ → R+ belongs to class K if it is continuous,

strictly increasing and ϕ(0) = 0. Function ϕ ∈ K is in class

K∞ if lims→∞ ϕ(s) = ∞. A set-valued map on S1 ⊆ R
n

to S2 ⊆ R
m is denoted by S1 ⇉ S2.

II. MULTIMACHINE POWER SYSTEMS

N -machine power systems, such as the network shown in

Fig. 1, consist of N generator buses and a finite number of

load buses that are interconnected by a grid of transmission

lines. These networks can be described by a connected graph

Ḡ = (S̄, Ē , A), with a collection of buses/nodes S̄ :=
{SGenerator,SLoad} = {{ς1, . . . , ςN}, {ςN+1, . . . , ςM}}, a set

of tie lines/undirected edges Ē ⊆ {(ςi, ςj) ∈ S̄ × S̄ | i 6= j}
and a weighted adjacency matrix A ∈ R

M×M . Edges are

denoted by εij := (ςi, ςj) and A satisfies [A]ij 6= 0 ⇔ εij ∈
Ē . For convenience, we define the weights in the adjacency

matrix as [A]ij := −bij , where bij [Ω−1] is the susceptance

(i.e., the inverse inductive reactance) of line/edges εij , εji.
The linearized continuous-time dynamics of steam-valve

controlled generators can be described by the following
standard model for load-frequency control studies, see [3]:

δ̇i = ωi, (1a)

ω̇i =
1

Hi

(
PMi

− Diωi − PLi
−

∑
{j|(ςi,ςj)∈Ē}

Ptieij

)
, (1b)

ṖMi
=

1

τTi

(PGi
− PMi

), (1c)

ṖGi
=

1

τGi

(Prefi − PGi
−

1

ri

ωi). (1d)

Here, δi [rad], ωi [rad/s], PMi
[MW] and PGi

[MW] are the

rotor/voltage phase angle and frequency, and the turbine and

governor states of the machine (or lumped set of machines)

at bus ςi ∈ SGenerator, respectively, all measured with respect

to the a priori set values δi,0, ω0, PMi,0
and PGi,0

. The

relative control input of system i is Prefi [MW] and the

exogenous disturbance input PLi
[MW] is the deviation in

power demand with respect to the operating point. The

parameters of generator bus i are Hi, Di, τTi
, τGi

and ri,

i.e., the inertia, damping coefficient, turbine and governor

time constants, and the regulation constant of the primary,

decentralized feedback loop, respectively. The power flow

from bus ςi to connected nodes {ςj ∈ S̄|(ςi, ςj) ∈ Ē} is

determined using a “DC power flow” model, see [16], which

is an acceptable approximation of the realistic nonlinear

“AC power flow” equations if small phase differences are

considered. Hence, the flow in line εij ∈ Ē is given by

Ptieij
= bij(δi − δj) = −Ptieji

, where Ptieij
> 0 indicates

power flow from i to j.
At frequency-control relevant time scales, load-bus angle

dynamics can be ignored, as the inertia at these nodes is
negligibly small compared to that of generators. Thus, the
coupling between δj , j ∈ {j|ςj ∈ SLoad}, and δi, ωi, i ∈
{i|ςi ∈ SGenerator} is approximated by




H1ω̇1

...
HN ω̇N

0

...
0


 =




PM1
−D1ω1−PL1

...
PMN

−DN ωN−PLN
−PLN+1

...
−PLM



−

[
B11 B12
B21 B22

]




δ1

...
δN

δN+1

...
δM


 , (2)

where B =
[

B11 B12

B21 B22

]
:= A − diag(A1M ) ∈ R

M×M .

Eliminating δN+1, . . . , δM from (2) reduces (1b) to

[
H1ω̇1

...
HN ω̇N

]
=

[ PM1−D1ω1

...
PMN

−DN ωN

]
− Γ

[
δ1

...
δN

]
+ Υ

[ PL1

...
PLM

]
, (3)

where Γ := (B11 − B12B
−1
22 B21) ∈ R

N×N and Υ :=
[−IN B12B

−1
22 ]. Hence, given the sets S := SGenerator and

E := {(ςi, ςj) ∈ S × S | i 6= j, [Γ]ij 6= 0}, the power system

can be defined as a network of dynamical systems (NDS)

with connected graph representation G = (S, E), where the

continuous-time dynamics of the systems assigned to vertices

ςi ∈ S are given by (1a), (1c)–(1d) and (3).

Now consider the following control problem.

Problem II.1 Single-area load-frequency or automatic-
generation control (AGC): Find a control law for a single-
area multimachine power system that asymptotically stabi-
lizes the network bus frequency at nominal value 0. �

Load-frequency control is crucial for stable power system

operation, particularly since asymptotic frequency stabiliza-

tion corresponds to continuously balancing active power and

energy supply/demand, see, e.g., [3]. This is necessary as

efficient, economically feasible ways of storing electrical

energy are scarce. Moreover, to ensure safe operation of

transformers and synchronous machines in the network,

voltage frequency fluctuations should be small. Also, AGC

allows to regulate the inter-area power flow, which is impor-

tant because the corresponding transfer capacity is limited.

Because conventional AGC performance is affected by

deregulation, network growth and the introduction of DG,
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we suggest to solve Prob. II.1 with the non-centralized MPC

scheme that was recently proposed in [15] instead.

III. ALMOST-DECENTRALIZED PREDICTIVE CONTROL

The control synthesis method employed in this work is

Lyapunov-based MPC, see [17], which is a successful class

of predictive control techniques when stabilization is the

main focus. The interested reader is referred to the appendix

for a short overview on the underlying notions of Lyapunov

stability and control Lyapunov functions (CLFs).

Consider a NDS described by the graph G = (S, E), where

the discrete-time dynamics of the system assigned to vertex

ςi ∈ S are governed by the difference equation

xi(k + 1) = φi(xi(k), ui(k), vi(xNi
(k))), k ∈ Z+, (4)

for vertex indices i ∈ I := Z[1,N ]. Here, xi ∈ Xi ⊆ R
ni

is the state and ui ∈ Ui ⊆ R
mi is the control input of the

i-th system, i.e., the system assigned to vertex ςi. With each

edge (ςj , ςi) ∈ E we associate a function vij : R
nj → R

nvij

that defines the interconnection vij(xj(k)) ∈ R
nvij , k ∈ Z+,

between systems j and i, i.e., vij(xj(k)) characterizes how

the states of system j influence the dynamics of system i. We

use Ni := {j | (ςj , ςi) ∈ E} to denote the set of indices of

the direct neighbors of system i. A direct neighbor of system

i is any system in the network whose dynamics (e.g., states

or outputs) appear explicitly, via vij(·), in the state equations

that govern the dynamics of system i. Let N i := Ni ∪ {i}.

We define xNi
(k) := col({xj(k)}j∈Ni

) as the vector that

collects all the state vectors of the direct neighbors of system

i and vi(xNi
(k)) := col({vij(xj(k))}j∈Ni

) ∈ R
nvi as

the vector that collects all the vector-valued interconnection

signals that enter system i. The functions φi(·, ·, ·) and vij(·)
are nonlinear and satisfy φi(0ni

,0mi
,0nvi

) = 0ni
for all

i ∈ I and vij(0nj
) = 0nvij

for all (i, j) ∈ I × Ni. For all

i ∈ I we assume that 0ni
∈ int (Xi) and 0mi

∈ int (Ui).
Finally, let the dynamics of the overall network of inter-

connected systems (4) be written in a compact form as

x(k + 1) = φ(x(k), u(k)), k ∈ Z+ (5)

where x = col({xi}i∈I) ∈ R
n, n =

∑
i∈I ni, and u =

col({ui}i∈I) ∈ R
m, m =

∑
i∈I mi.

A. Structured max-CLFs

Next, consider the following definition, see also [15], [18].

Definition III.1 Let αi
1, α

i
2 ∈ K∞ for i ∈ I and let {Vi}i∈I

be a set of functions Vi : R
ni → R+ that satisfy

αi
1(‖xi‖) ≤ Vi(xi) ≤ αi

2(‖xi‖), (6a)

for all xi ∈ R
ni , i ∈ I. Then, given ρi ∈ R[0,1), i ∈ I, if

there exists a set of control laws πi : R
ni ×R

nvi ⇉ Ui such

that

Vi(φi(xi, ui, vi(xNi
))) ≤ ρimax

j∈N i
Vj(xj), (6b)

for all xi ∈ Xi, ui ∈ πi(xi, vi(xNi
)), the set {Vi}i∈I is

called a set of “structured max control Lyapunov functions”
in X := {col({xi}i∈I) | xi ∈ Xi} for system (5). �

In Def. III.1, the term structured emphasizes that each Vi is a

function of xi only, i.e., the set {Vi}i∈I reflects the structural

decomposition of the dynamics of overall interconnected

system (4). Moreover, the term max originates from the

corresponding convergence condition, i.e., (6b). Next, based

on Def. III.1, we formulate the following feasibility problem.

Problem III.2 Let ρi ∈ R[0,1), i ∈ I, and a set of candidate

structured max-CLFs {Vi}i∈I be given. At time k ∈ Z+, let

{xi(k)}i∈I , {vi(xNi
(k))}i∈I and {Vi(xi(k))}i∈I be known,

and calculate a set of control actions {ui(k)}i∈I , such that

ui(k) ∈ Ui, φi(xi(k), ui(k), vi(xNi
(k))) ∈ Xi, (7a)

Vi(φi(xi(k), ui(k), vi(xNi
(k))))

≤ ρimax
j∈N i

Vj(xj(k)), (7b)

for all i ∈ I. �

It can be proven that a feedback law π : R
n → R

m

that selects an arbitrary control action col({ui}i∈I) out

of the set of solutions to Prob. III.2 for each x ∈ R
n

asymptotically stabilizes the difference equation x(k + 1) =
φ(x(k), π(x(k))) in X. This proof, given in [15], exploits

the fact that the function V (x) := maxi∈I Vi(xi) is a CLF

for the overall network if (7) is recursive feasible. The result

then directly follows from Thm. I.3, given in the Appendix.

Note that in Prob. III.2, the functions Vi do not need to

be CLFs in Xi (conform Def. I.4) for each respective system

i ∈ I. Indeed, (7b) allows Vi to increase, as long as for each

system i the value of Vi at the next time instant is less than

ρi times the maximum over the current values of its own

function and those of its direct neighbors. Still, (7b) may be

restrictive in practice, as it can be hard to find {Vi}i∈I that

satisfy (6) for all xi ∈ Xi. Hence, we formulate the following

feasibility problem, which permits non-monotonic decrease

of both local functions Vi(xi) and V (x).

Problem III.3 Given Nτ ∈ Z≥1, consider Prob. III.2 for a

set of structured max-CLFs {Vi}i∈I in X̃ ⊂ X, with (7b)

replaced by

Vi(φi(xi(k), ui(k), vi(xNi
(k))))

≤ ρimaxτ∈Z[0,Nτ −1]
max

j∈N i
Vj(xj(k − τ)), (8)

for all k ∈ Z≥Nτ−1 and i ∈ I. �

In [15] it is proven that a feedback law π̄ : R
n → R

m

that selects an arbitrary control action col({ui}i∈I) out

of the set of solutions to Prob. III.3 for each x ∈ R
n

renders the closed-loop system x(k+1) = φ(x(k), π̄(x(k)))
asymptotically stable in X. The proof demonstrates that the

function V (x) := maxi∈I Vi(xi) asymptotically converges

to 0 for k → ∞, assuming recursively feasibility of (7a) and

(8). This and (6a) imply attractivity and Lyapunov stability.

Next, note that Prob. III.2 and Prob. III.3 are separable

in {ui}i∈I . Therefore, it is possible to compute the control

action u(k) := col({ui(k)}i∈I) by solving N feasibility

problems independently, with each subproblem in ui(k)
assigned to one local controller, corresponding to one system
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i ∈ I. In order to compute ui(k), each controller needs

to measure/estimate the current local state xi(k) and have

knowledge of the interconnection terms vij(xj(k)), j ∈
Ni, and the values Vj(xj(k)), j ∈ N i. In practice, many

interconnection signals can be measured directly at node i,

whereas a single run of information exchange among direct

neighbors per sampling instant is sufficient to acquire the

non-locally measurable signals. Notice that this is certainly

the case in electrical power systems, where each generator

bus represents a dynamical system, and the interconnection

term may be the frequency of adjacent generator buses

and the power flowing from/to these neighbors. The power

flow Ptieij
(k) is directly measurable at node i, whereas the

frequency ωj(k) can only be determined at the corresponding

bus and needs to be transmitted to node i. The values Vj(xj),
j ∈ Ni, can be computed both at node j and i, although the

latter option requires j to send its full state information xj

to i, instead of only Vj(xj). Note that the above described

exchange of information between possibly different market

actors does not carry competitive risks, as specific system

parameters cannot be deduced from state information and

Vj(xj) alone. This makes Prob. III.2 and Prob. III.3 well

suited for use in a liberalized market environment.

If we combine Prob. III.3 with the optimization of a set of

local cost functions, the feasibility-based stability guarantee

and the possibility of an almost-decentralized implementa-

tion still hold. This enables the formulation of a one-step-

ahead predictive control algorithm in which stabilization is

decoupled from performance, and in which the controllers

do not need to attain the global optimum at each sampling

instant, as typically required for stability in classical MPC.

Given a set of convex objective functions {Ji(xi, ui)}i∈I ,

we thus consider the following algorithm.

Algorithm III.4 At each instant k ∈ Z+ and node i ∈ I:

Step 1: Measure or estimate the current local state xi(k) and

transmit vji(xi(k)) and Vi(xi(k)) to nodes {j ∈ I | i ∈ Nj}.

Step 2: Minimize Ji(xi(k), ui(k)) over the set of feasible

local control actions (determined by Prob. III.3) and denote

the optimizer by u∗
i (k);

Step 3: Use ui(k) = u∗
i (k) as control action.

The interested reader is referred to [15] for more informa-

tion on the algorithms and results presented in this section.

B. Implementation Issues

For infinity-norm based CLFs (i.e., Vi(xi) = ‖Pixi‖∞,

with full-column rank Pi ∈ R
pi×ni) and input-affine

prediction models xi(k + 1) = fi(xi(k), vi(xNi
(k))) +

gi(xi(k), vi(xNi
(k)))ui(k), (8) can be formulated as a set

of linear inequalities without introducing conservatism. By

definition of the infinity norm, for ‖x‖∞ ≤ c to hold for

some x ∈ R
n and c ∈ R, it is necessary and sufficient to

require that ± [x]j ≤ c for all j ∈ Z[1,n]. Hence, (8) is

satisfied if and only if, for all j ∈ Z[1,pi] and k ∈ Z≥Nτ−1,

±[Pi{gi(xi(k), vi(xNi
(k)))ui(k)}]j

≤ ζi(k) ∓ [Pi{fi(xi(k), vi(xNi
(k)))}]j ,

(9)

~~

~

1                                                                      9

10

2                                                                     3

5                                                                     6                                                                     7

4

8

~~

~

~

Fig. 1. Single-line representation of the seven-machine CIGRÉ test system.

TABLE I

SIMULATION PARAMETERS

H1, . . . , H7 100, 30.3, 35.8, 28.6, 26, 34.8, 26.4

D1, . . . , D7 0.8, 0.85, 0.8, 0.8, 0.9, 0.7, 0.8

τG1 , . . . , τG7 0.2, 0.15, 0.2, 0.2, 0.25, 0.2, 0.2

τT1 , . . . , τT7 0.5, 0.4, 0.5, 0.5, 0.4, 0.5, 0.5

bij b1,3 = 24.5, b1,4 = 24.5, b2,3 = 62.6, b2,10 = 32.3,

b3,4 = 40, b3,9 = 28, b4,5 = 10, b4,6 = 10, b4,9 = 97,

b4,10 = 33, b6,8 = 31.8, b7,8 = 39.5, b8,9 = 97

r1, . . . , r7
1
20

, 1
23

, 1
19

, 1
21

, 1
21

, 1
18

, 1
20

N1, . . . ,N7 {3, 4}, {3, 4}, {1, 2, 4, 6, 7}, {1, 2, 3, 5, 6, 7},
{4}, {3, 4, 7}, {3, 4, 6}

F1, . . . , F7

[ 713 4736 23.2 8.85
4736 63831 325 125
23.2 325 1.65 0.638
8.85 125 0.638 50.2

]
,

[ 382 1245 18.5 7.01
1245 7474 117 45.3
18.5 117 1.85 0.715
7.01 45.3 0.715 50.3

]
,

×10

[ 425 1593 22.7 8.67
1593 11732 178 69.3
22.7 178 2.71 1.06
8.67 69.3 1.06 50.4

]
,

[ 340 984 17.9 6.83
984 6679 134 52.9
17.9 134 2.72 1.07
6.83 52.9 1.07 50.4

]
,

[ 357 1087 18 10.4
1087 6368 111 66.3
18 112 1.98 1.17

10.4 66.3 1.17 50.7

]
,

[ 416 1525 22.2 8.45
1525 1136 176 68.6
22.2 176 2.75 1.07
8.45 68.6 1.07 50.4

]
,

[ 380 1215 24.6 9.49
1215 6980 151 59.5
24.6 151 3.3 1.3
9.49 59.5 1.3 50.5

]

Q1, . . . , Q7 Qi = 100 · diag (5, 5, 0, 0), i ∈ I

R1, . . . , R7 Ri = 0.1, i ∈ I

where ζi(k) := ρi maxτ∈Z[0,Nτ −1]
max

j∈N i
Vj(xj(k−τ)) ∈

R+ is constant for any k ∈ Z≥Nτ−1. This yields a total of

2pi linear inequalities in ui. In combination with polytopic

state/input sets and an infinity-norm or quadratic cost func-

tion, it is therefore possible to implement step 2 of Alg. III.4

as a linear or quadratic program, respectively.

IV. APPLICATION CASE STUDY

We illustrate the potential of Alg. III.4 for application in

frequency control by simulating it in closed-loop with the

7-machine CIGRÉ (International Council on Large Electric

Systems) test power system reproduced from [19]. The

network is schematically depicted in Fig. 1, and consists of

N = 7 generator buses and 3 load buses, interconnected

via 13 transmission lines. Each generator is modeled in

accordance with (1a), (1c)–(1d) and (3). The parameters used

in the simulation are listed in Table I.

The prediction model employed by Alg. III.4, i.e., (4),

is obtained via time discretization of (1a), (1c)–(1d) and (3),

using sampling period Ts = 1 s. This yields the discrete-time

linear state-space representation

xi(k + 1) = φi(xi(k), ui(k), vi(xNi
(k)))

:= Aiixi(k) + Biiui(k) + vi(xNi
(k)),

vi(xNi
(k)) :=

∑
j∈Ni

Aijxj(k),

(10)
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for xi := [ δi ωi PMi
PGi ]

⊤
, ui := Prefi , i ∈ I := {1, . . . , 7},

and where Aii ∈ R
ni×ni , Bii ∈ R

ni×mi , Aij ∈ R
ni×nj .

In order to compute xi(k + 1), controller i needs to have

knowledge of vij(xj(k)) and Vj(xj(k)), j ∈ Ni, where the

set of direct neighbors Ni is given in Table I. The direct

neighbors of generator i are those generator buses j that

are connected by a single edge εij ∈ Ē , or, due to load-

bus elimination in single-area control problems, by a path

in single-line diagram Ḡ from generator i to generator j

via load buses only. Consequently, some of the sparsity of

non-reduced network graph Ḡ is lost. Note that load-bus

elimination is not required if multiple generator and load

buses are clustered into control areas that are governed by

difference equations only (i.e., with no need for algebraic

relations). This is the case, e.g., in Europe, where the

multi-area secondary control problem is solved by assigning

a separate controller to every country/area, each usually

connected to a small number of neighboring areas only.

The controllers employ quadratic cost functions, i.e.,

Ji(xi, ui) := (x+
i )⊤Fix

+
i + x⊤

i Qixi + u⊤
i Riui, i ∈ I, with

one-step-ahead state prediction x+
i := φi(xi, ui, vi(xNi

)).
Table I lists the values of Fi ≻ 0, Qi � 0 and Ri ≻
0. Note that Fi satisfies the discrete-time Riccati equation

Fi = A⊤
iiFiAii + A⊤

iiFiBiiLi + Qi, with linear quadratic

regulator feedback gain Li = (Ri + B⊤
ii FiBii)

−1B⊤
ii FiAii.

This specific value was chosen to optimize performance

in terms of
∑

k∈Z+

∑
i∈I xi(k)⊤Qixi(k) + ui(k)Riui(k),

where Qi penalizes δi and ωi to induce adequate frequency

and line flow damping. Yet, in contrast to standard MPC, Fi’s

value is irrelevant for guaranteeing closed-loop stability.
The method of [20] was used to compute the weights Pi ∈

R
ni×ni , i ∈ I, of the local infinity-norm based candidate

CLFs for Alg. III.4, i.e., Vi(xi) = ‖Pixi‖∞ with ρi = 0.9,
∀i ∈ I, and system (10), in closed-loop with local feedback
laws ui(k) := Kixi(k), Ki ∈ R

1×ni , yielding

P1 =

[
−0.62979 17.158 7.3639 −6.5897
−1.2466 38.485 0.68023 2.3994
3.0898 33.119 0.35449 0.94405

−0.41334 −14.006 0.11274 0.99418

]
K1 =

[
−0.056146

17.013
0.17313
0.63512

]⊤

P2 =

[
−7.7327 24.86 −0.45184 −1.3596
9.6994 62.824 10.53 −11.793
9.7231 72.123 −2.791 9.8619
−8.0183 4.4586 7.5088 1.19

]
K2 =

[
−0.1415
17.27

−0.42816
1.1958

]⊤

P3 =

[
−0.94289 34.854 −6.4203 10.729
−5.7409 −16.222 1.6906 −0.96636
6.8157 44.128 4.5873 −3.129
12.125 10.053 0.8673 0.68066

]
K3 =

[
−1.9488
10.154
0.15808
0.20908

]⊤

P4 =

[
1.6663 7.5646 −5.1264 13.222
4.0893 −20.416 −0.89703 −0.58409
−1.9142 2.2781 7.2915 −1.6996
4.0666 29.068 0.84367 0.18502

]
K4 =

[
0.11742
17.745
0.37284
0.12559

]⊤

P5 =

[
5.7046 5.5612 −5.5749 7.2372
6.5151 25.236 1.0041 −0.082996
−5.2836 18.191 1.1193 1.9971
4.8618 −12.936 0.42708 0.18429

]
K5 =

[
−0.13866
14.185
0.5927

−0.20511

]⊤

P6 =

[
−2.7264 10.554 1.1353 3.9908
2.5412 −12.799 0.68144 −0.30603
2.7504 4.5373 −4.8496 3.1844
3.4173 21.908 0.28121 0.062939

]
K6 =

[
−0.17089
11.615

0.072399
0.038927

]⊤

P7 =

[
5.6752 54.244 4.6571 −0.39439

−0.26188 23.17 −3.3943 13.382
8.5394 28.707 2.5505 4.1042

0.044767 3.4706 9.2078 −2.4838

]
K7 =

[
−0.4908
15.387
0.62681
−0.229

]⊤

.

It is important to stress that the control laws ui(k) =
Kixi(k) are only employed off-line, to calculate the matrices

Pi and they are never used for controlling the system.

Moreover, we set Nτ = 5 in Alg. III.4. Note that by choosing

infinity-norm CLFs, it is possible to formulate Alg. III.4 as
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Fig. 2. Frequency, flows and inputs under structured max-CLF control.
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Fig. 3. Evolution of Vi(xi(k)), V (x(k)) and its upper bound over time.

a quadratic program (QP), as explained in Section III-B.
In the simulation we evaluated the performance of the

closed-loop network when recovering from a state pertur-
bation (or imbalance) given by

{xi(0)}i∈I = 10−2×{[
−10
2.5
−40
10

]
,

[
15

−3.5
1.5
10

]
,

[
5

−0.5
0
1

]
,

[
10

−0.25
1

0.05

]
,

[
−25
0.4
0
5

]
,

[
−20
2

−50
0.1

]
,

[
25
0.5
1.5
−4.5

]}
.

Furthermore, we assume a nominal, static load, i.e., we set

PLi
(k) := 0 for k ∈ Z+ and i ∈ I. Since power networks are

generally subject to constraints, for physical, performance or

safety reasons, we constrain the control inputs as

−0.2 ≤ ui ≤ 0.2, i ∈ I. (11)

The relevant system outputs (ωi, Ptiei
), where Ptiei

(t) :=∑
{j|(ςi,ςj)∈E} Ptieij

(t), are shown in Fig. 2, along with the

corresponding control inputs Prefi , i ∈ I. Clearly, the trajec-

tories converge to 0 for k → ∞. Note that constraint (11) is

not violated, although it is active for some time instants.

Fig. 3 depicts the evolution of Vi(xi(k)) for i ∈ Z[1,4],

V (x(k)) and the corresponding upper bound generated by

condition (8) in Alg. III.4. The simulation shows that

V (x(k)) may vary arbitrarily within the converging envelope

defined by (8), resulting in closed-loop stability.

5229



V. CONCLUSIONS

Stable operation of future electrical power systems will

require advanced control techniques for supply/demand bal-

ancing, as a consequence of the liberalization and decen-

tralization of electrical power generation. In this paper we

studied an almost-decentralized Lyapunov-based predictive

control algorithm for load-frequency control, i.e., for asymp-

totic grid-frequency stabilization. The scheme is particularly

suited for large-scale power networks, as it only requires

local information and short-distance communication between

directly-coupled generator buses to provide a stabilizing

control action. We assessed the potential of the almost-

decentralized predictive control scheme for practical appli-

cation by simulating it in closed-loop with the 7-machine

CIGRÉ benchmark system. The obtained simulation results

encourage further development of the almost-decentralized

MPC method for application in power system control, as its

performance matches that of conventional frequency-control

schemes while offering a closed-loop stability guarantee.

APPENDIX I

LYAPUNOV STABILITY

Consider the discrete-time autonomous system

x(k + 1) = Φ (x(k)) , k ∈ Z+, (12)

where x(k) ∈ X ⊆ R
n is the state at discrete-time instant

k ∈ Z+. The nonlinear function Φ : R
n → R

n satisfies

Φ (0n) = 0n, i.e., the origin is an equilibrium of (12).

Definition I.1 A set P ⊆ R
n is Positively Invariant (PI) for

system (12) if ∀x ∈ P it holds that Φ (x) ∈ P . �

Definition I.2 (i) System (12) is Lyapunov stable if ∀ε > 0,
∃δ(ε) > 0 such that for all trajectories of (12) it holds that
‖x(0)‖ ≤ δ(ε) ⇒ ‖x(k)‖ ≤ ε for all k ∈ Z+. (ii) Let
X ⊆ R

n and 0n ∈ int(X). The origin is attractive in X if
for any x(0) ∈ X it holds that all corresponding trajectories
of (12) satisfy limk→∞ ‖x(k)‖ = 0. (iii) System (12) is
asymptotically stable in X (AS(X)) if it is Lyapunov stable
and attractive in X. �

Theorem I.3 Let X be a PI set for system (12) and let 0n ∈
int(X). Furthermore, let α1, α2∈ K∞, ρ ∈ R[0,1) and let V :
R

n → R+ be a function such that

α1 (‖x‖) ≤ V (x) ≤ α2 (‖x‖) (13a)

V (x+) ≤ ρV (x) (13b)

for all x ∈ X and all x+ = Φ(x). Then (12) is AS(X). �

A function V that satisfies the conditions of Thm. I.3 is

called a Lyapunov function.

A. CLFs for discrete-time systems

Consider the discrete-time constrained nonlinear system

x(k + 1) = φ(x(k), u(k)), k ∈ Z+, (14)

where x(k) ∈ X ⊆ R
n is the state and u(k) ∈ U ⊆ R

m is the

control input at discrete-time instant k ∈ Z+. The function

φ : R
n × R

m → R
n is nonlinear with φ(0n,0m) = 0n. We

assume that X and U are bounded sets with 0n ∈ int(X) and

0m ∈ int(U). Next, let α1, α2 ∈ K∞ and ρ ∈ R[0,1).

Definition I.4 A function V : R
n → R+ that satisfies

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),∀x ∈ R
n, for which there

exists a control law π : R
n ⇉ U such that V (φ(x, u)) ≤

ρV (x), ∀x ∈ X,∀u ∈ π(x), is a control Lyapunov function
(CLF) in X for (14). �
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