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Abstract— This paper presents an approach for signal loss
compensation in vibrometry, a contactless measurement tech-
nique. Since a new scanning method based on computer
generated holograms was developed, now signal loss caused by
speckle effects can be reduced and in the best case significantly
compensated.

For this, multiple Zernike polynomials are used in a Zernike
expansion mapped to a computer generated hologram, which
modifies the wave front of a coherent laser beam. The coeffi-
cients of each Zernike polynomial are used as parameters in a
global optimization. Solving this optimization problem with a
suitable cost function leads to an increased signal level.

I. INTRODUCTION

To improve the quality of mechanical devices, investi-

gation of vibration behavior is often useful. For instance,

manufacturers of brake systems are highly interested in

factors that cause squeaking noises. State-of-the-art methods

to measure such vibrations are based on the Doppler Effect

used in a Doppler-Laser-Vibrometer.

Thus, a laser beam is focused on the surface of a mea-

surement object, the Vibrometer detects frequencies and

amplitudes of mechanical oscillations [1], [2] by analyzing

the shift in wave length of a reference beam that interferes

with a reflected beam. Advantage of laser vibrometry is, that

it is a contactless and non-reactive method.

Due to requirements of the customers, vibrometry needs

scanning features which led to the development of Scanning-

Vibrometers. Until now, Scanning-Vibrometers used galvanic

mirrors [3] to place their measurement spots onto user-

defined points on the measurement object. To scan the

surface of the object with adequate speed, a position con-

troller with small mechanical damping is necessary. These

requirements induce additional signal noise in the detector

signal which is caused by remaining torsional vibrations of

the mechanical scanning system.

A novel technique for a Scanning-Vibrometer was pre-

sented in [3] to reduce these drawbacks. The mechanical

scanning system was replaced by a Spatial Light Modulator

(SLM). Computer Generated Holograms (CGH), written to

this phase modulating SLM are utilized to modify angle,

focus and position of a laser beam on a measured object.

Furthermore, with an SLM it is now possible to reduce the

signal loss caused by the so-called speckle effect. Speckle
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patterns occur on rough grained surfaces, where the granu-

lation size and the wave length of the laser beam are in the

same range, which is discussed in [4].

The idea is to compensate such speckle patterns by writ-

ing correction patterns to the SLM based on the Zernike

expansion [5]. Therefore, small aberrations will be mapped

by Zernike polynomials which must be added to the current

pattern on the SLM. Each Zernike polynomial is weighted

by a Zernike coefficient that can be used as an optimization

parameter. Thus, the reduction of signal loss of the detector

signal leads to an optimization problem which can be solved

by a standard optimization algorithm.

Section II presents a brief review of the mathematical

concepts. Zernike polynomials and the DIRECT algorithm

will be introduced. In section III the related optimization

problem will be derived, section V summarizes the results

of an experimental proof of concept which is presented in

section IV. Finally, section VI gives a conclusion of the

achieved results and an outlook to further research.

II. MATHEMATICAL CONCEPTS

A. Aberration patterns by using Zernike polynomials

In optical systems, aberrations can be described as a

sum of weighted Zernike polynomials (see [5]) which

represent wave front functions. These polynomials are a set

of orthogonal radial polynomials, divided into odd and even

polynomials and defined as

Zm
n (ρ, ϕ) =

{

Rn−2m
n (ρ) cos (mϕ) n− 2m ≤ 0

Rn−2m
n (ρ) sin (mϕ) n− 2m > 0

, (1)

where Rn−2m
n is the radius-dependent part defined as

Rn−2m
n =

m
∑

s=0

(−1)
s (n− s)!

s! (m− s)! (n−m− s)!
ρn−2s (2)

and ρ is the normalized radial distance and ϕ the azimuthal

angle. Hence, the resulting Zernike expansion

Φ (c, ρ, ϕ) =

k
∑

n=0

n
∑

m=0

cmn · Zm
n (ρ, ϕ) (3)

is defined as sum of Zernike polynomials weighted with

a related coefficient cmn for each polynomial. They can be
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collected in a vector c = (c00, . . . , cmn) ∈ R
nc where nc is

the number of used Zernike polynomials.

For further information on Zernike polynomials you may

refer to [5]. Table I lists the Zernike polynomials used in our

method.

# n m name polynomial

1 1 0 tilt Y ρ · sin (ϕ)
2 1 1 tilt X ρ · cos (ϕ)
3 2 0 astigmatism Y ρ

2
· sin (2ϕ)

4 2 2 astigmatism X ρ
2
· cos (2ϕ)

5 3 1 Coma Y
(

3ρ3 − 2ρ
)

· sin (ϕ)
6 3 2 Coma X

(

3ρ3 − 2ρ
)

· cos (ϕ)
7 4 2 spherical aberr. 6ρ4 − 2ρ2 − 1

TABLE I

OVERVIEW OF ZERNIKE POLYNOMIALS

The transformation of polynomials Zm
n (ρ, ϕ) given in ta-

ble I from Polar to Cartesian coordinates with transformation

rules from [6] leads to

Φ (c, x, y) =

k
∑

n=0

n
∑

m=0

cmn · Zm
n (x, y) . (4)

The Zernike expansion in equation (4) represents a 2D

phase aberration pattern which can be generated by CGHs

on SLMs. Such 2D phase aberration patterns modify the in-

cident wave front of a laser beam in its xy-plane. Therefore,

the pattern is parameterized only by c. With the assumption

that the idealized laser beam has no shift in phase before the

SLM, the solution of the homogenous wave equation with a

constant phase shift Φ following [7] is given by

u (x, y, z, c, t) = ej(kz−ωt+Φ(c,x,y)). (5)

Since the phase offset behind the SLM is needed by a later

introduced costfunction, we can define Ψ as constant phase

pattern at t = 0 and z = 0 of the wave front in equation (5)

as

Ψ(c, x, y) = ejΦ(c,x,y). (6)

Itz is normalized to −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.

Furthermore, an associated normalized aperture can defined

as

Γ (x, y) =

{

1 −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

0 otherwise
. (7)

B. DIRECT algorithm (one-dimensional)

With a given function f : D ⊆ R → R an optimization

algorithm has to solve the following problem in general

f⋆ = min
x∈D

{f (x)} . (8)

In technical applications without closed mathematical de-

scriptions, approaches for solving global optimization prob-

lems must be based on sampling methods, for instance the

Monte-Carlo method [8] or the Shubert [9] algorithm. The

Monte-Carlo method uses stochastic samples to find the

global minimum. It is a non-deterministic blind-shot method.

The maximum number of function evaluation per seconds in

our technical system depends on the frame rate of the SLM.

Currently, the used SLM can generate aberration patterns

with a frequency of 30 Hz. So we can evaluate the function

max. every 33 ms. Thus, we had to mind this time factor

while choosing the optimization method. That is why a

Lipschitzian method was selected.

The Shubert algorithm is a deterministic global

optimization algorithm based on the Lipschitz constant

KL which is defined as

KL = max

{

|f (x)− f (x′)|

|x− x′|

}

, ∀ x, x′ ∈ [x, x] . (9)

All f (x) where sup {f ′ (x)} exists, which basically means

all bounded, continuous functions fulfills this equation, and

thus are called Lipschitz continuous.

With KL defined in equation (9) as biggest absolute slope

between any two points on the interval [x, x] two simple

linear bounding inequalities can be defined as

f (x) ≥ f (x)−KL · (x− x) , (10)

f (x) ≥ f (x) +KL · (x− x) . (11)

A lower bound ymin for the minimum of f⋆ and its related

xmin are given by the point of intersection of the lines defined

by equation (10) and (11) as follows

xmin =
x+ x

2
+

f (x)− f (x)

2KL

, (12)

ymin = KL ·
x− x

2
+

f (x) + f (x)

2
. (13)

Figure 1 shows an example of the initial step of Shubert’s

algorithm.

Fig. 1. initial step of Shubert’s algorithm

The next step is to split the interval [x, x] such that [x, x] =
[x, xmin]∪ [xmin, x], evaluate the point f (xmin) and calculate

ymin for the new intervals. These steps are repeated always

choosing the interval with the lowest ymin until a termination

criterion is fulfilled.
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Unfortunately, the Shubert algorithm suffers from three

major problems. Firstly, the objective function in our sys-

tem is unknown and function values will be evaluated by

measurements, so that the Lipschitz constant cannot be

specified analytically. Secondly, for large Lipschitz constants

the algorithm converges slowly and in n dimensions the

algorithm needs 2n samples to compute the next step.

The DIRECT algorithm overcomes these disadvantages. It

was presented in [9] and modifies the Shubert algorithm.

Its idea is to shift the evaluation from the interval

bounds to the center of the interval, given by xc = x+x

2 .

Furthermore, equations (10) and (11) are adapted. This

leads to new inequalities, given as

f (x) ≥ f (xc)−KL · (x− xc) for x ∈ [xc, x] , (14)

f (x) ≥ f (xc) +KL · (x− xc) for x ∈ [x, xc] . (15)

A lower bound for the minimum of f (x) ∀ x ∈ [x, x] is now

given by

ymin = f (xc)−KL ·
x− x

2
. (16)

In figure 2 changes towards to center point sampling has

been made for the initial step.

Fig. 2. initial step of the DIRECT algorithm

With center point sampling, the method to split an interval

[x, x] has to change too. The DIRECT algorithm divides the

interval [x, x] into three parts of equal size such that

[x, x] =

[

x,
2x+ x

3

]

∪

[

2x+ x

3
,
2x+ x

3

]

∪

[

2x+ x

3
, x

]

.

(17)

After dividing the current interval into three parts, an

approach to select a good candidate for the next sampling

is needed. We have to keep in mind that sampling is time

consuming for our technical system and a good choice will

speed up the algorithm. An adequate heuristic was also

presented in [9].

Assuming that the start interval [x, x] was trisected mul-

tiple times into m sub-intervals [xi, xi], with their related

center points [xc]i, for i ∈ [1,m]. Furthermore, ỹmin

is the current minimal sample. The sub-interval
[

xj , xj

]

,

j ∈ [1,m] is a good candidate if there exists a related slope

Kj > 0 such that

f
(

[xc]j

)

−Kj ·
xj − xj

2
≤ f ([xc]i)−Kj ·

xi − xi

2
, (18)

so interval j has the smallest value [ymin]j . Equation (18)

describes candidates for next sampling by comparing the

minimum (see equation (16)) of the considered interval j
with all other intervals. This requires that all positive slopes

between such two points have to be analyzed. Figure 3 shows

an example with some intervals, sorted with respect to the

radius of it.

Fig. 3. convex hull

Candidates for next the sampling are those intervals which

sample points form a partial convex hull on the set of points

with positive slopes. Only the slopes between the filled dots

satisfy the condition in equation (18). Thus, they are suitable

slopes for a linear function that can be used to calculate a

lower bound for all existing intervals.

To avoid a locally oriented search, a constant δ > 0 was

introduced. Equation (19) emphasizes samples that improves

the lower bound by a significant value. Thus, δ is used to

influence local vs. global search by setting percentually a

threshold value that has to be exceeded.

f
(

[xc]j

)

−Kj ·
xj − xj

2
≤ ỹmin − δ |ỹmin| (19)

With the assumption that a list L can store samples in its

form S = {f (xc) , [x, x]}, the algorithm can be described

as follows

1) Initialize the DIRECT algorithm

L = [{(f (xc)) , [x, x]}] with [x, x] the initial start box

and f (xc) the measured sample at its center point.

2) Identify all candidates for next sampling

Test all candidates if they match the conditions in

equation (18) and (19) for being good candidates, add

them to a set C and remove them from L.

3) Split and sample

For all candidates in C:

a) Store list element as {f (xc) , [x, x]} for tempo-

rary use and remove it from C.

b) Divide interval into three parts, as shown in

equation (17).

c) Evaluate sample of first and last new part at their

center points. The middle interval has already

evaluated and is given by the old f (xc) of the

investigated interval.
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d) Update ymin = f (xc) if f (xc) ≤ ymin.

e) Add new intervals to L including the middle

interval.

4) Termination criterion

While the termination criterion (for instance: exceeding

a max. number of iterations) is not reached, go to 2).

The multidimensional version of DIRECT can derived

equivalently. Splitting domains leads to handle with hyper-

rectangles and need further considerations that are described

in [9].

III. RELATED OPTIMIZATION PROBLEM

A. Associated system

Equation (6) represents the normalized square of a 2D

phase aberration pattern that can be varied only by the related

coefficients c ∈ R
nc . These Zernike expansion coefficients

are used to modify the CGH on the SLM and are the

independent variables of the system we want to optimize.

At first, we have to take a look at the associated system in

figure 4.

system

Fig. 4. System to be optimized

The measured system output is the signal strength on a

logarithmic scale. Variation of c changes the signal strength

but, unfortunately, also the position and shape of the laser

spot. To avoid large variances in position and shape, a cost

function consisting of the detected signal and measure of

spot quality is needed. Let α (c) be the measured signal and

β (c) a measure for spot quality, then we can assume for a

first approach the following cost function

z (c) = γ ·
1

α (c)
+

1

β (c)
. (20)

On the one hand, β (c) could be calculated from the aber-

ration pattern on the SLM; on the other hand α (c) cannot

be identified analytically because it depends on the surface

of the measurement object and its microscopic structure.

Accordingly, a derivative of the cost function cannot be

calculated which led to the choice of the DIRECT algorithm.

B. Measure of spot quality

The quality measure β (c) should describe the intensity

level within the aperture with emphasis onto the center. From

[10] it is well known that the intensity distribution of the light

within an optical path limiting aperture Γ is propotional to

the 2D Fourier transform of itself, given by

ΓF (u, v) = F {Γ (x, y)} (21)

For use in a measure of quality, reduction to a real number

is necessary. Therefore the square of ΓF (u, v) will be used.

The following equation defines β (c) by weighting ΓF (u, v)
with the Fourier transform of Ψ(c, x, y)

β (c) =

∞
∫

−∞

∞
∫

−∞

|ΨF (c, u, v)|
2
· |ΓF (u, v)|

2

max
{

|ΓF (u, v)|
2
} dudv , (22)

normalized to the maximum value of |Γ (u, v))|
2
. ΨF can

also be written as

ΨF (c, u, v) =

∞
∫

−∞

∞
∫

−∞

ej(Ψ(c,x,y)−2π(ux+uy))dxdy . (23)

For Zernike polynomials of order 3 and above this integral

cannot be solved analytically, thus a discrete Fast Fourier

Transform (FFT) must be performed in the algorithm. How-

ever, equation (21) leads to a closed analytical expression

under the assumption that the aperture is limited by a

normalized square

ΓF (u, v) =

1
∫

−1

1
∫

−1

e−j2π(ux+uy)dxdy

⇒ ΓF (u, v) =
1

π2uv
· sin (2πu) · sin (2πv) . (24)

Figure 5 shows ΓF (u, v). It is easy to see that the square

of the intensity distribution |ΓF (u, v)|
2

in equation (22) will

emphasize the values near the center of the aperture similarly

to a 2D Gaussian filter.

In our technical system, β (c) will be calculated from

the current phase aberration pattern Ψ(c, x, y) written to

the SLM and the discrete representation of the analytical

expression of equation (24).

Fig. 5. plot of ΓF (u, v)

C. Optimization problem

The given optimization problem belongs to the class of

multi-objective optimization. Therefore, in equation (20)

γ ∈ R is a constant scalar to shift between the objectives.

Finally, the optimization problem can be written as follows

c∗ = argmin
c

{

γ ·
1

α (c)
+

1

β (c)

}

. (25)
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IV. EXPERIMENTAL PROOF OF CONCEPT

The used Vibrometer with applied SLM has been devel-

oped by Polytec with collaboration of the Institute of Tech-

nical Optics (ITO) of the University of Stuttgart, Germany.

It is based on a Polytec IVS 300 [3].

Initial measurements have been obtained under laboratory

conditions. A half-transparent plastic plate in front of a

mirror was optimal for first experimental investigations and

led to a stable damped signal. Figure 6 shows a sketch of

the hardware setup.

Holo-Vibrometer

half-transparent

plastic plate in front of 

a mirror

mirror

incident wavefront

reflected wavefront

Fig. 6. hardware setup

This hardware was set up on a special vibration absorbing

table. First tests with a mirror have shown that there is only a

minimal speckle effect caused by the surface of a mirror. This

leads to the conclusion that using a mirror in the hardware

setup did not influence the following results.

The used SLM is limited in its frame rate which is

currently 30 Hz. At first, an investigation of the time delay

of the system has to be done so that the evaluation rate of

the algorithm did not violet this latency.

Therefore, the laser spot was switched between two spot

sites. The first spot site generated a strong signal while the

second site generated a weak one. The spot was switched

every 500 ms between these sites and a measurement of the

signal level was done every 5 ms. Figure 7 shows the latency

analysis for 5 steps.
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Fig. 7. analysis of the system latency (5 steps)

The average system latency was calculated by averaging

over 100 steps and led to system latency of 86 ms (see figure

8). This latency has to take into account while executing the

optimization algorithm. That means that after writing a new
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Fig. 8. average system latency

pattern to the SLM, the algorithm has to wait at least 86 ms

before it measures the signal strength.

For this hardware setup a closed-loop system was devel-

oped which applies the optimization algorithm. Controlling

will be stopped by reaching a given threshold or maximum

number of feedback steps. An extremum seeking control is

not feasible at the moment because the frame rate of the

SLM is too slow with respect to the scanning frequencies.

A sketch of the deployed system can be seen in figure 9.

systemoptimizer

threshold iterations

Fig. 9. related closed-loop system

To obtain reasonable optimization results, the parameter

range of the Zernike coefficients had to be constrained.

These constraints were identified by a special test series.

With this preparations the optimizer was tested by several

measurement experiments.

A software written by ITO was used to control the SLM.

It allows setting and modifying aberrations to the SLM. To

calculate the necessary FFTs, the library for Fast Fourier

Transformation fftw3 [11] was used. Furthermore, a standard

optimizer for nonlinear programming was used. It is available

with the well known nlopt library [12]. Both libraries are

published under the GNU GPL and are freely available for

educational and commercial use.

The detector board provides the heterodyne carrier signal

for the FM (frequency modulation) demodulator and a volt-

age signal which is a measurand for the signal strength of

the carrier. The signal strength corresponds to the detected

light power. It delivers values in the range of 0 to 5 V. The

voltage signal is proportional to the signal strength with a

factor of 6 dB/V in the linear range. Thus, an increase of 500

mV corresponds to an increase of the SNR (signal-to-noise

ratio) by a factor 2. The data acquisition was conducted with

a National Instruments Ni DAQ-Pad.
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The software was developed with the integrated develop-

ment environment Visual Studio 2008.

V. OPTIMIZATION RESULTS

For investigation of convergence behaviour and effective-

ness of the algorithm, 4 passes with different polynomials

were performed. For the first optimization pass Zernike

polynomials 1 to 4 as described in table I were used. The

second optimization pass used polynomials 1, 2, 5, 6. Both

passes were weighted with γ = 2, aborted after 100 iterations

and led to an improvement of the signal strength. Whereas

the first pass increased the detector signal by about 1.27V

which means an increase of the SNR by a factor of 5.78.

Pass 2 could increase the detector signal by only about 0.92V

(increase of the SNR by a factor of 3.35).
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Fig. 10. first pass (solid) vs. second pass (dashed)

Figure 10 shows the results of both optimization passes,

whereas the solid graph represents the first and the red graph

the second pass.

Pass 3 extended pass 1 to coefficients 5 and 6 so that

coefficients 1 to 6 were used for optimization. Pass 4

extended pass 4 with the last remaining coefficient so that

all coefficients in table I were used. For both passes γ was

set to γ = ∞ that means only the objective 1/α (c) was

used for optimization. Furthermore, the number of iterations

had to be increased with because of the increasing number

of optimization parameters.
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Fig. 11. third pass (red) vs. fourth pass (green)

Both passes led to an increase of the detector signal by

about 1.0V (increase of the SNR by a factor of 4).

Pass 3 reached the optimized signal strength after 300

iterations while pass 4 needed about 370 iterations. Figure

11 shows both passes, where the solid graph represents the

third and the dashed graph the fourth pass.

VI. CONCLUSION AND OUTLOOK

It has been shown that modifying the wave front of a laser

beam by mapping aberration patterns to an SLM can improve

the signal level significantly. The choice of the polynomials

and their number is important for the convergence of the

approach. The best increase of the signal level was reached

by pass 1. Pass 3 and 4 also led to an increased signal level

but the laser spot was massively deformed.

Additionally, the DIRECT algorithm is a suitable can-

didate for global optimization for this problem. Next idea

in research is to adapt the algorithm to the given problem.

Therefore, the DIRECT algorithm has to be improved in 3

respects:

• Weight of optimization parameters must be possible.

• Modification of DIRECT for better convergence.

• With respect to multi point methods for vibrometry,

DIRECT has to be analyzed if parallel processing

(multiple instances on CUDA) is possible.

Also, measurements will be extended to find the of poly-

nomials with the best convergence.

Another issue of research could be the investigation of

filters that replace the intensity distribution in equation (22)

and which could applied in time domain, so a FFT would

not be necessary. Furthermore, methods to reduce the noise

on the current measured sample should be investigated, for

instance with an adapted Kalman filter.
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