
Decentralized Learning in Two-Player Zero-Sum Games: A LR−I

Lagging Anchor Algorithm

Xiaosong Lu and Howard M. Schwartz

Abstract— This paper presents a LR−I lagging anchor al-
gorithm that combines a lagging anchor method to the LR−I

learning algorithm. We prove that this decentralized learning
algorithm converges in strategies to a Nash equilibrium in two-
player, zero-sum, two-action matrix games, while only needing
knowledge of their own action and reward.

I. INTRODUCTION

Multi-agent learning algorithms have received consider-

able attention over the past two decades [1] [2]. Among

multi-agent learning algorithms, decentralized learning al-

gorithms have become an attractive research field. Without

using a centralized agent to control the learning process of

all the agents, each agent will use a decentralized learning

algorithm to learn its ”optimal” strategy. Decentralized learn-

ing algorithms can be applied for players to learn their Nash

equilibria (NE) in games with incomplete information. In-

complete information means that one player in the game may

not know its reward function, the other players’ strategies or

their actions. The player only knows its own action and the

received reward at each time step. The main challenge for

designing a decentralized learning algorithm with incomplete

information is to prove that the players’ strategies converge

to the Nash equilibrium when all the players apply the same

learning algorithm.

There are a number of decentralized learning algorithms

proposed in the literature which can be applied for two-

player zero-sum games. A learning automata approach called

linear reward-inaction approach is proposed in [3] [4] that

can guarantee the convergence to the Nash equilibrium under

the assumption that the matrix game only has strict Nash

equilibrium in pure strategies. The linear reward-penalty

approach [5] can guarantee that the expected value of the

players’ strategies converge to Nash equilibrium in fully

mixed strategies with proper choice of certain parameters.

But the convergence of the player’s strategy itself has not

been proved in [5]. Bowling and Veloso proposed WoLF-

IGA approach that can guarantee the convergence to the

Nash equilibrium for two-player two-action matrix games

where the Nash equilibrium can be in fully mixed strategies

or pure strategies. However, the WoLF-IGA approach is not a

completely decentralized learning algorithm since the player

has to know its own reward matrix and its opponent’s strategy

X. Lu is with the Department of Systems and Computer Engineer-
ing, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada
luxiaos@sce.carleton.ca

H. M. Schwartz is with the Department of Systems and Computer
Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON,
Canada schwartz@sce.carleton.ca

at each time step. Dahl [6] proposed the lagging anchor

model approach that can guarantee the convergence to the

Nash equilibrium in fully mixed strategies. But the lagging

anchor algorithm is not a decentralized learning algorithm

since each player has to know its reward matrix.

In this paper, we investigate these learning algorithms

and propose a decentralized learning algorithm called the

LR−I lagging anchor algorithm which is the combination

of learning automata and lagging anchor algorithms. Unlike

the lagging anchor algorithm, the LR−I lagging anchor

algorithm is a completely decentralized algorithm where each

player only needs its own action and the received reward at

each time step. We also prove the convergence of the LR−I

lagging anchor algorithm to a Nash equilibrium in two-

player two-action zero-sum matrix games while the Nash

equilibrium in the game can be in pure or fully mixed

strategies.

The main contributions of this paper are

• Design a decentralized learning algorithms called LR−I

Lagging Anchor Algorithm

• Prove the convergence of the designed LR−I lagging

anchor algorithm to the Nash equilibrium in two-player

two-action zero-sum matrix games.

II. DECENTRALIZED LEARNING ALGORITHMS FOR

TWO-PLAYER ZERO-SUM MATRIX GAMES

A matrix game is a tuple (n,A1, ...An, R1, ...Rn) where

n is the number of the players, Ai(i = 1, ..., n) is the action

set for the player i and Ri : A1×· · ·×An → R is the reward

function for the player i. A matrix game is a game involving

multiple players and a single state. Each player i(i = 1, ..., n)
selects an action from its action set Ai = {ai1, a

i
2, · · · , a

i
mi

}
and receives a reward. The player i’s reward function Ri is

determined by all the players’ joint action from joint action

space A1 × · · · ×An.

For a two player matrix game, we can set up a matrix

with each element containing a reward for each joint action

pair. Then the reward function Ri for player i(i = 1, 2)
becomes a matrix. If the two players are fully competitive,

we will have a two-player zero-sum matrix game with

R1 = −R2. In a matrix game, each player tries to maximize

his own expected reward based on the player’s strategy. A

player’s strategy is defined as a probability distribution over

the player’s action set. To evaluate a player’s strategy, we

have the following concept of Nash equilibrium. A Nash

equilibrium is a collection of strategies for all the players

such that no player can do better by changing its own

strategy given that the other players continue playing their

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 107

Nash equilibrium strategies. A Nash equilibrium can be in

fully mixed strategies or pure strategies. If the probability

of any action from the action set is greater than 0, then the

player’s strategy is called a fully mixed strategy. If the player

selects one action with probability of 1 and other actions

with probability of 0, then the player’s strategy is called a

pure strategy. A Nash equilibrium is called a strict Nash

equilibrium in pure strategies if each player’s equilibrium

action is better than all its other actions, given the other

players’ actions [7].

We take the matching pennies game for example. Each

player has two actions: Heads or Tails. If both players choose

the same action, then player 1 gets a reward 1 and player

2 gets a reward -1. If the actions are different, then player

1 gets -1 and player 2 gets 1. Based on the reward matrix

in Table I (a), the equilibrium strategy for each player is

playing Heads and Tails with half probability each. Then we

modify the matching pennies game and let player 1 get a

reward of 2 when player 1 plays Heads and player 2 plays

Tails. Based on the reward matrix for the modified matching

pennies game in Table I (b), the equilibrium strategy for each

player is playing Heads. In this modified matching pennies

game, the Nash equilibrium is a strict Nash equilibrium in

pure strategies.

Learning in a two-player zero-sum matrix game can be

expressed as the process of the player updating its strategy

according to the received reward from the environment.

A learning scheme is used for each player to update its

own strategy toward the Nash equilibrium based on the

information from the environment. A decentralized learning

algorithm requires the least information from the environ-

ment including the player’s own action and the received

reward from the environment. In the literature, decentralized

learning algorithms for two-player zero-sum matrix games

can be divided into two groups. One group is based on

learning automata scheme and another group is based on

gradient ascent methods. In this section, we present four

existing learning algorithms based on the above two groups

of learning techniques.

A. Learning Automata

learning automation is a learning unit for adaptive deci-

sion making in an unknown environment [4]. The objective

of the learning automation is to learn the optimal action

or strategy by updating its action probability distribution

based on the environment response. The learning automata

approach is a completely decentralized learning algorithm

TABLE I

TWO EXAMPLES OF TWO-PLAYER ZERO-SUM MATRIX GAMES

(a) Matching pennies game (b) Modified matching
pennies game

R1 =

[

1 −1

− 1 1

]

, R2 = −R1 R1 =

[

1 2

− 1 1

]

, R2 = −R1

NE in fully mixed strategies NE in pure strategies

since each learner only considers its action and payoff from

the environment and ignores any information from other

agents such as the actions taken by other agents. The learning

automation can be represented as a tuple (A, r, p, U) where

A = {a1, · · · , am} is the player’s action set, r ∈ [0, 1] is the

reinforcement signal, p is the probability distribution over the

actions and U is the learning algorithm to update p. There are

two typical learning algorithms based on learning automata:

linear reward-inaction (LR−I) algorithm and linear reward-

penalty (LR−P) algorithm [4].

1) Linear Reward-Inaction Algorithm: The linear reward-

inaction (LR−I) algorithm for player i(i = 1, ..., n) is

defined as follows [4]

pic(k + 1) = pic(k) + ηri(k)(1− pic(k))

(if ac is the current action taken at time k)

pij(k + 1) = pij(k)− ηri(k)pij(k)

(for all aij 6= aic) (1)

where k is the time step, the superscripts and subscripts on

p denote different player and each player’s different action

respectively, 0 < η < 1 is the learning parameter, ri(k) is

the response of the environment given the player i’s action

aic at k and pic is the probability distribution over player i’s
action aic(c = 1, · · · ,m).

In a matrix game with n players, if each player uses the

LR−I algorithm, then the LR−I algorithm guarantees the

convergence to a Nash equilibrium under the assumption that

the game only has strict Nash equilibria in pure strategies [4].

2) Linear Reward-Penalty Algorithm: The linear reward-

penalty (LR−P) algorithm for player i is defined as follows

[4]

pic(k + 1) = pic(k) + η1r
i(k)[1 − pic(k)]− η2[1−

ri(k)]pic(k) (if aic is the current action)

pij(k + 1) = pij(k)− η1r
i(k)pij(k) + η2[1−

ri(k)][
1

m− 1
− pij(k)] (for all aij 6= aic) (2)

where 0 < η1, η2 < 1 are learning parameters and m is the

number of actions in the player’s action set.

With the careful choice of the above two learning parame-

ters, the linear reward-penalty algorithm can be applied to the

two-player zero-sum game involving only Nash equilibrium

in fully mixed strategies [4]. In a two-player zero-sum matrix

game, if each player uses the LR−P and chooses η2 < η1,

the expected value of the fully mixed strategies for both

players can be made arbitrarily close to the Nash equilibrium

[4]. This means that the LR−P algorithm can guarantee the

convergence to the Nash equilibrium in the sense of expected

value, but not the player’s strategy itself.

B. Gradient Ascent Learning

Gradient ascent learning can be used to update the player’s

strategy in a matrix game. In a gradient ascent learning

algorithm, the player’s strategy can be updated in the di-

rection to the current gradient with a small step size η [8].

At each iteration, the player will adjust its strategy based

108

on its gradient in order to increase its expected payoff.

Using a gradient ascent learning algorithm, [8] shows that the

players’ strategies do not converge to the Nash equilibrium

for general cases. But the expected payoffs of the players

converge to the Nash equilibrium. In the literature, there

is a number of gradient ascent learning algorithms that can

guarantee the convergence to the Nash equilibrium for some

specific matrix games [9] [10]. In this section, we introduce

two gradient ascent learning algorithms and analyzes them

from the point of view of decentralized learning.

1) WoLF-IGA Algorithm: Win or learn fast-infinitesimal

gradient ascent (WoLF-IGA) algorithm is presented by Bowl-

ing and Veloso [9] for two-player two-action matrix games.

As a gradient ascent learning algorithm, the WoLF-IGA

algorithm allows the player to update its strategy based on

the current gradient and a variable learning rate. The value

of the learning rate when the player is winning is smaller

than the value of the learning rate when the player is losing.

We assume p1 is the probability of the player 1 choosing the

first action. Then 1 − p1 is the probability of the player 1

choosing the second action. Accordingly, q1 is the probability

of the player 2 choosing the first action and 1 − q1 is the

probability of the player 2 choosing the second action. The

updating rules of the WoLF-IGA are listed as follows [9]

p1(k + 1) = p1(k) + ηl1(k)
∂V 1(p1(k), q1(k))

∂p1
(3)

q1(k + 1) = q1(k) + ηl2(k)
∂V 2(p1(k), q1(k))

∂q1
(4)

l1(k) =

{

lmin, if V 1(p1(k), q1(k)) > V 1(p∗
1
, q1(k))

lmax, otherwise

l2(k) =

{

lmin, if V 2(p1(k), q1(k)) > V 2(p1(k), q
∗

1
)

lmax, otherwise

where η is the step size, li(i = 1, 2) is the learning rate for

player i(i = 1, 2), V i(p1(k), q1(k))(i = 1, 2) is the expected

payoff of the player i at time k given the current two players’

strategy pair (p1(k), q1(k)), and (p∗
1
, q∗

1
) are equilibrium

strategies for the players. In a two-player two-action matrix

game, if each player uses the WoLF-IGA algorithm with

lmax > lmin, the players’ strategies will converge to Nash

equilibrium as the step size η → 0 [9].

This algorithm provides a gradient ascent learning al-

gorithm that can guarantee the convergence to a Nash

equilibrium in fully mixed or pure strategies for two-player

two-action matrix games. However, this algorithm is not a

decentralized learning algorithm. In order to compute the

partial derivative of V i(i = 1, 2) with respect to p1 or q1 at

time k, we need to know the player i’s reward matrix and its

opponent’s strategy at time k. This learning algorithm also

requires the knowledge of V 1(p∗
1
, q1(k)) and V 2(p1(k), q

∗

1
)

in order to choose the learning parameter between lmin and

lmax accordingly. With a qualified decentralized learning

algorithm in matrix games, the only information a player

can get is its own action and received reward. Therefore,

the WoLF-IGA algorithm does not satisfy the requirement

of designing a decentralized learning algorithm for matrix

games. Although Bowling and Veloso provide a practical

decentralized learning algorithm called WoLF policy hill-

climbing based on the WoLF-IGA algorithm in [9], there

is no proof of convergence to the Nash equilibrium for this

practical algorithm.

2) the Lagging Anchor Algorithm: The lagging anchor

algorithm for two-player zero-sum games was introduced

by Dahl [10] [6]. As a gradient ascent learning method,

the lagging anchor algorithm updates the players’ strategies

according to the gradient. We denote player 1’s strategy as

a vector v = [p1, p2, · · · , pm1
]T which is the probability

distribution over all the possible actions. Accordingly, the

player 2’s strategy is a vector w = [q1, q2, · · · , qm2
]T . The

updating rules are listed as follows [6]

v(k + 1) = v(k) + ηPm1
R1Y (k) + ηγ(v̄(k)− v(k))

v̄(k) = v̄(k) + ηγ(v(k)− v̄(k))

w(k + 1) = w(k) + ηPm2
R2X(k) + ηγ(w̄(k)− w(k))

w̄(k) = w̄(k) + ηγ(w(k)− w̄(k)) (5)

where η is the step size, γ > 0 is the anchor drawing factor,

Pmi
= Imi

− (1/mi)1mi
1T
mi

is a matrix used to maintain

the summation of the elements in the vector v or w being

one. Y (k) is a unit vector corresponding to the actions of

the player 2. If the Ith action in the player 2’s action set is

selected at time k, then the Ith element in Y (k) is set to 1 and

the other elements in Y (k) are zeros. Similarly, X(k) is the

unit vector corresponding to the actions of player 1. R1 and

R2 are the reward matrices for player 1 and 2 respectively. In

a two-player zero-sum game with only Nash equilibrium in

fully mixed strategies, if each player uses the lagging anchor

algorithm, then the players’ strategies converge to a Nash

equilibrium as the step size η → 0 [6].

In this algorithm, the limitation on each player’s actions

to be two actions is removed and the convergence to the

Nash equilibrium in fully mixed strategies is guaranteed.

However, the convergence to the Nash equilibrium in pure

strategies in this algorithm has never been discussed. And the

lagging anchor algorithm in (5) requires full information of

the player’s reward matrices R1 and R2. For a qualified de-

centralized learning algorithm, the reward matrix is unknown

to the players during learning. Therefore, this algorithm is

not a decentralized learning algorithm.

We illustrate the applicability of these algorithms based

on the allowable number of actions for each player, the

convergence to pure strategies or fully mixed strategies and

the level of decentralization, given in Table II.

III. LR−I LAGGING ANCHOR ALGORITHM

In this section, we design a LR−I lagging anchor al-

gorithm that can be a completely decentralized learning

algorithm and also guarantee the convergence to the Nash

equilibrium in both pure and fully mixed strategies. The idea

of the LR−I lagging anchor algorithm is that we consider

both the player’s current strategy and the long-term average

of the player’s previous strategies at the same time. Then the

109

TABLE II

COMPARISON OF LEARNING ALGORITHMS IN TWO-PLAYER ZERO-SUM MATRIX GAMES

Applicability
Algorithms

Linear reward-inaction Linear reward-penalty WoLF-IGA The lagging anchor

allowable actions
no limit 2 actions 2 actions no limit

for each player

Convergence to the

pure NE

fully mixed NE

both fully mixed NEpure-strategy NE in the sense

or fully mixed NE of expected value

Decentralization decentralized decentralized not decentralized not decentralized

player’s current strategy and the long-term average will be

drawn towards the equilibrium point during learning.

We take the LR−I defined in (1) as the updating law of the

player’s strategy and add the lagging anchor term in (5) to

LR−I . Then the LR−I lagging anchor algorithm for player

i is defined as follows

pic(k + 1) = pic(k) + ηri(k)(1 − pic(k)) + η(p̄ic(k)

−pic(k)) (if aic is the action taken at time k)

p̄ic(k + 1) = p̄ic(k) + η(pic(k)− p̄ic(k))

pij(k + 1) = pij(k)− ηri(k)pij(k) + η(p̄ij(k)− pij(k))

(for all aij 6= aic)

p̄ij(k + 1) = p̄ij(k) + η(pij(k)− p̄ij(k)) (6)

where η is the step size.

To analyze the above LR−I lagging anchor algorithm, we

use the ODE method such that the behavior of the learn-

ing algorithm can be approximated by ordinary differential

equation as the learning rate goes to zero [4]. For the LR−I

part in this algorithm, the equivalent ODE can be given as

[4]

ṗic =

mi
∑

j=1

picp
i
j(d

i
c − dij) (7)

where dic is the expected reward given that the player i is

choosing action aic and the other players are following their

current strategies.

Based on the above ODE for LR−I , we can find the

equivalent ODE for our LR−I lagging anchor algorithm

ṗic =

mi
∑

j=1

picp
i
j(d

i
c − dij) + (p̄ic − pic)

˙̄pic = pic − p̄ic (8)

Based on the above LR−I lagging anchor algorithm, we

now introduce the following theorem.

Theorem 1: Consider a two-player two-action zero-sum

matrix game and each player uses the LR−I lagging anchor

algorithm. If we assume the game only has Nash equilib-

rium in mixed strategies or strict Nash equilibrium in pure

strategies, then the following is true.

• All Nash equilibria are asymptotically stable.

• Any equilibrium point which is not a Nash equilibrium

is unstable.

Proof: We first define the player’s reward matrix

R1 =

[

r11 r12
r21 r22

]

, R2 = −R1 (9)

We denote p1 as the probability of player 1 taking action 1

and q1 as the probability of player 2 taking action 1. Then

the LR−I lagging anchor algorithm becomes

ṗ1 =

2
∑

j=1

p1pj(d
1

1
− d1j) + (p̄1 − p1)

˙̄p1 = p1 − p̄1

q̇1 =

2
∑

j=1

q1qj(d
2

1 − d2j) + (q̄1 − q1)

˙̄q1 = q1 − q̄1 (10)

where d1
1
= r11q1+r12(1−q1) and d1

2
= r21q1+r22(1−q1).

Since our game is a two-player zero-sum game, we can get

d21 = −r11p1 − r21(1− p1) and d22 = −r12p1 − r22(1− p1).
Then (10) becomes

ṗ1 = p1(1− p1)[uq1 + r12 − r22] + (p̄1 − p1)

˙̄p1 = p1 − p̄1

q̇1 = q1(1− q1)[−up1 − r21 + r22] + (q̄1 − q1)

˙̄q1 = q1 − q̄1 (11)

where u = r11 − r12 − r21 + r22. If we let the right hand

side of the above equation equal to zero, we can get the

equilibrium points of the above equations as (p∗1, q
∗

1) =
(0, 0), (0, 1), (1, 0), (1, 1), ((r22 − r21)/u, (r22 − r12)/u) .To

study the stability of the above learning dynamics, we use

linear approximation of the above equations around the

equilibrium point (p∗
1
, q∗

1
, p∗

1
, q∗

1
) and the linearization matrix

J is given as

J =





























(1 − 2p∗
1
)(uq∗

1
+

r12 − r22)− 1
1 p∗1(1− p∗1)u 0

1 − 1 0 0

−q∗
1
(1− q∗

1
)u 0

(1− 2q∗
1
)(−up∗

1
−

r21 + r22)− 1
1

0 0 1 −1





























(12)

110

The above linearization matrix can be analyzed under the

following two cases.

Case 1: Nash equilibrium in pure strategies

We first consider the game only has strict Nash equilibrium

in pure strategies. Without loss of generality, we assume that

the Nash equilibrium in this case is p∗1 = 1 and q∗1 = 1. This

means that each player is choosing action 1 from its action

set as its “optimal” strategy. Then the above linearization

matrix becomes

J =





















−c1 − 1 1 0 0

1 − 1 0 0

0 0 − c2 − 1 1

0 0 1 − 1





















(13)

where c1 = r11 − r21 and c2 = −r11 + r12. The eigenvalues

of the above matrix are 0.5[−(c1 + 2) ±
√

c2
1
+ 4)] and

0.5[−(c2 + 2) ±
√

c2
2
+ 4)]. According to the definition of

a strict Nash equilibrium in [11], if the Nash equilibrium

strategies are both players’ first actions, we can get

r21 < r11 < r12. (14)

Then we can get c1 > 0, c2 > 0, c1+2 >
√

c2
1
+ 4 and c2+

2 >
√

c2
2
+ 4. This results in four negative real eigenvalues

for the linearization matrix. Therefore, the Nash equilibrium

point (1, 1) is asymptotically stable.

We now test the other equilibrium points. We first consider

the equilibrium point ((r22 − r21)/u, (r22 − r12)/u) where

u = r11−r12−r21+r22. To be a valid point in the probability

space (unit square), the equilibrium point must satisfy
{

0 ≤ (r22 − r21)/u ≤ 1
0 ≤ (r22 − r12)/u ≤ 1

⇒















r11 ≥ r12
r22 ≥ r21
r11 ≥ r21
r22 ≥ r12

if u > 0;















r11 ≤ r12
r22 ≤ r21
r11 ≤ r21
r22 ≤ r12

if u < 0 (15)

The above result conflicts with the inequality in (14). There-

fore, the equilibrium point ((r22 − r21)/u, (r22 − r12)/u) is

out of the probability space. We now try the equilibrium

point (0, 1). We substitute (0, 1) into (12) and get

J =





















−c′
1
− 1 1 0 0

1 − 1 0 0

0 0 − c′2 − 1 1

0 0 1 − 1





















(16)

where c′1 = −c1 and c′2 = r22 − r21. Based on the similar

analysis as we did for the Nash equilibrium point, in order

to obtain the negative eigenvalues for the above matrix, we

must have c′
1
> 0 and c′

2
> 0. Since we have c′

1
= −c1, we

get c1 < 0 ⇒ r11 < r21 which conflicts with the inequality

in (14). Therefore, the equilibrium point (0, 1) is unstable.

Based on the similar analysis, we can get the equilibrium

points (1, 0), (0, 0) are unstable as well. We ignore the details

in this paper.

Thus, the strict Nash equilibrium in pure strategies is

asymptotically stable while any equilibrium point which is

not a Nash equilibrium is unstable. Therefore, the solution of

(11) converges exponentially to the strict Nash equilibrium

in pure strategies (1, 1, 1, 1).
Case 2: Nash equilibrium in fully mixed strategies

We consider the game only has Nash equilibrium in fully

mixed strategies. According to [11], the Nash equilibrium in

fully mixed strategies for a two-player two-action zero-sum

matrix game can be found as

(p∗1, 1− p∗1) =
JR∗

1

JR∗

1
JT

, (q∗1 , 1− q∗1) =
R∗

1J
T

JR∗

1
JT

. (17)

where R∗

1 is the adjoint of R1 and J = (1, 1). Based on

(17) and (9), we can get p∗
1
= (r22 − r21)/u and q∗

1
=

(r22 − r12)/u (u 6= 0). Then we substitute (p∗
1
, q∗

1
) into (12)

and get

J =





















−1 1 p∗1(1− p∗1)u 0

1 − 1 0 0

−q∗
1
(1 − q∗

1
)u 0 − 1 1

0 0 1 − 1





















(18)

The characteristic equation of the above matrix is

λ4 + 4λ3 + (4 + c)λ2 + 2cλ+ c = 0 (19)

where c = q∗1(1− q∗1)p
∗

1(1−p∗1)u
2. Since all the coefficients

of (19) are positive, we use Routh-Hurwitz stability criterion

to analyze the locations of the roots in (19). We set up the

Routh table as follows

λ4 1 4+c c

λ3 4 2c

λ2 4+0.5c c

λ1 (c2 + 4c)/(4 + 0.5c)
λ0 c

where all the elements in the first column are positive.

Therefore, all the roots in (19) have negative real part. Thus

the Nash equilibrium in this case is asymptotically stable.

We now test the other equilibrium points. We try the

equilibrium point (0, 1). The linearization matrix around the

equilibrium point (0, 1) is given in (16). The condition of

stability for this matrix is c′
1

> 0, c′
2

> 0 ⇒ r11 <
r21, r22 > r21. Since the Nash equilibrium in this case is

in fully mixed strategies, we have p∗
1
= (r22 − r21)/u and

q∗
1
= (r22 − r12)/u which must satisfy the inequalities in

(15). But the condition of r11 < r21, r22 > r21 conflicts

with the inequalities in (15). Thus the equilibrium point (0, 1)
is unstable in this case. Following the same procedure, we

can find that the equilibrium points (0, 0), (1, 0), (1, 1) are

unstable in this case. We ignore the details in this paper.

Then we can conclude that the Nash equilibrium in fully

111

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

q
1

(p1(0),q1(0))

(a) Matching pennies game

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

q
1

(p1(0),q1(0))

(b) Modified matching pennies game

Fig. 1. Trajectories of the players’ strategies during learning

mixed strategies is asymptotically stable while the other

equilibrium points are unstable. Thus the solution of (11)

converges exponentially to the Nash equilibrium in fully

mixed strategies in case 2.

We now simulate the matrix games in Table I to show

the performance of the proposed LR−I lagging anchor

algorithm. We set the step size η = 0.001 in (6) and

p1(0) = q1(0) = 0.2. We run the simulation for 30000

iterations. In Fig. 1(a), the players’ strategies start from

(0.2,0.2) and move towards the equilibrium point (0.5,0.5) as

the learning proceeds for the matching pennies game. Figure

1(b) shows that the players’ strategies will converge to the

”optimal” actions if the game has Nash equilibrium in pure

strategies in the modified matching pennies game.

IV. CONCLUSION

In this paper, we investigate the existing learning algo-

rithms for two-player zero-sum matrix games. The analysis

of the learning algorithms shows that the learning automata

technique including LR−I and LR−P methods is a good

candidate for decentralized learning algorithms. The LR−I

learning algorithm can be applied for the game with only

Nash equilibrium in pure strategies. The LR−P algorithm can

only guarantee the expected value of the players’ strategies

converge to Nash equilibrium. Inspired by the concept of

lagging anchor, we propose a LR−I lagging anchor algorithm

as a completely decentralized learning algorithm in this

paper. We prove that the LR−I lagging anchor algorithm can

guarantee the convergence to the Nash equilibrium in pure

or fully mixed strategies in two-player two-action zero-sum

matrix games.

The LR−I lagging anchor algorithm can be a good can-

didate of designing a decentralized learning algorithm for

more sophisticated games. In the future, we will prove the

convergence of this algorithm to the Nash equilibrium for the

player with more than 2 actions in the game. Not only for

matrix games, we will also apply the LR−I lagging anchor

algorithm to Markov games and prove the convergence of

the algorithm to the Nash equilibrium in the game.

REFERENCES

[1] P. Stone and M. Veloso, “Multiagent systems: A survey from a
machine learning perspective,” Autonomous Robots, vol. 8, no. 3, pp.
345–383, 2000.

[2] L. Buşoniu, R. Babuška, and B. D. Schutter, “A comprehensive
survey of multiagent reinforcement learning,” IEEE Trans. Syst., Man,

Cybern. C, vol. 38, no. 2, pp. 156–172, 2008.
[3] P. Sastry, V. Phansalkar, and M. Thathachar, “Decentralized learning

of Nash equilibria in multi-person stochastic games with incomplete
information,” IEEE Trans. Syst., Man, Cybern., vol. 24, no. 5, pp.
769–777, 1994.

[4] M. Thathachar and P. Sastry, Networks of Learning Automata: Tech-

niques for Online Stochastic Optimization. Boston, Massachusetts:
Kluwer Academic Publishers, 2004.

[5] S. Lakshmivarahan and K. S. Narendra, “Learning algorithms for
two-person zero-sum stochastic games with incomplete information: a
unified approach,” SIAM Journal on Control and Optimization, vol. 20,
no. 4, pp. 541–552, 1982.

[6] F. A. Dahl, “The lagging anchor model for game learning — a
solution to the crawford puzzle,” Journal of Economic Behavior &

Organization, vol. 57, pp. 287–303, 2005.
[7] M. J. Osborne, An Introduction to Game Theory. Oxford University

Press, USA, 2003.
[8] S. P. Singh, M. J. Kearns, and Y. Mansour, “Nash convergence of

gradient dynamics in general-sum games,” in Proceedings of the 16th

Conference on Uncertainty in Artificial Intelligence, San Francisco,
CA, USA, 2000, pp. 541–548.

[9] M. Bowling and M. Veloso, “Multiagent learning using a variable
learning rate,” Artificial Intelligence, vol. 136, no. 2, pp. 215–250,
2002.

[10] F. A. Dahl, “The lagging anchor algorithm: reinforcement learning
in two-player zero-sum games with imperfect information,” Machine

Learning, vol. 49, pp. 5–37, 2002.
[11] G. Owen, Game Theory. San Diego, CA: Academic Press, 1995.

112

