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Abstract— This paper presents an identification technique to
identify models for Parameter-Varying Spatially Interconnected
systems. The main focus of the note is the case when there
is additive colored noise in the output of the data generating
system. A Refined Instrumental Variable method is proposed
to identify parameter-varying spatially interconnected models
with Box-Jenkins structure. The technique allows identification
of models for general multi-dimensional systems, which may
be separable or non-separable, causal, semi-causal (spatially
interconnected systems) or non-causal. The effectiveness of the
method is shown with application to simulation example.

I. INTRODUCTION

Distributed control of complex engineering systems has

attracted the attention of researchers for several decades.

These systems fall under the category of multi-dimensional

(m-D) systems and are composed of similar subsystems

that interact with their closest neighbours. Examples of

such systems include vehicle platoons, automated highway

systems, spatially distributed flexible structures, fluid flow

as well as systems that are governed by partial differential

equations.

Methods for controller design of such systems exist see

e.g. [1] and [2] and the references therein. A sufficiently

accurate model is needed to synthesize optimal and/or

robust controllers for such systems. One way is to obtain

such a model analytically from a physical description that

govern such systems, followed by estimating the physical

parameters, see e.g.[3]. In many practical situations however,

such physical models are either not available or are too

complex.

An alternative is to employ system identification. Few results

are available in this regard, however. In [4], identification

of a two-dimensional (2-D) causal system transfer function

identification from input output data is presented. The

identification of non-causal multidimensional systems is

presented in [5], [6]. Subspace based methods to identify

2-D state-space models for separable-in-denominator causal

filters are discussed in [7] and [8]. Methods to identify

spatially distributed interconnected systems are proposed in

[9] and [10]. We refer to these methods as decentralized

subspace identification of spatially interconnected systems,

where the authors identified each subsystem as multi input

and single output (MISO) systems. For spatially invariant

m-D systems a basic IV method has been introduced in [11],
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which provides unbiased estimates that are non optimal in

term of minimum variance.

As practically distributed parameter systems may have

spatially and temporally varying parameters, recently,

distributed gain scheduling control approaches have been

proposed [12],[13]. An identification method for identifying

parameter varying models for spatially interconnected

systems has been recently proposed in [14]. However this

method does not consider noise corrupted data which is

usually the case in practice.

In this paper identification of models using noise corrupted

data is considered. Basic Instrumental Variable (IV) methods

can provide unbiased estimates but not optimal in terms of

minimum variance. By considering a Box-Jenkins model

structure for Parameter-Varying Spatially Interconnected

(PVSI) systems (which is the case in may practical

applications), statistically optimal IV estimates can be

achieved. In this context we extend the Refined Instrumental

Variable (RIV) and the simplified RIV (SRIV) methods

presented in [15] for linear parameter varying systems to

m-D PVSI systems for obtaining the parameters estimates

in terms of minimum bias and variance in the presence of

colored noise. The method is fairly general in the sense that

it makes no assumption on separability, further it can equally

be applied to causal, semi-causal (spatially interconnected)

and non-causal 2-D systems. Moreover an additional benefit

is that one can easily include various boundary conditions.

The paper is organized as follows: in section II the method to

identify parameter-varying models for 2-D spatially varying

systems is described. Identification of Box-Jenkins models

for parameter-varying spatially interconnected systems is

given in Section III. Section IV presents the application

of the proposed method on a simulation example, and

conclusions are drawn in section V.

II. P

In this note for notational simplicity we are considering

2-D systems, but the method is valid for m-D systems.

Let u(n1,n2) be the two-dimensional discrete input signal to

a SISO linear PVSI 2-D system. Then its output y(n1,n2) can

be represented as follows, and this forms our data generating

system:

A0(p(n1,n2),q1,q2)x0(n1,n2) = B0(p(n1,n2),q1,q2)u(n1,n2)

y(n1,n2) = x0(n1,n2)+ v0(n1,n2)

(1)
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where x0 is noise-free output, v0 is additive colored noise,

n1 and n2 represent the discrete instances of the two dimen-

sions respectively, q1 and q2 are the shift-operators in both

dimensions. As we are considering linear PVSI systems, the

model coefficients are assumed to be functions of measurable

temporal or spatial signals, the so called scheduling variable

p : Z → P, where Z represents the set of integers. The

compact set P ⊆ R
np denotes the admissible region in the

scheduling space. A0 and B0 are given as

A0(p(n1,n2),q1,q2) = 1+
∑

(i1,i2)∈My\(0,0)

a0
i1,i2

(p(n1,n2))q
−i1
1

q
−i2
2

(2a)

B0(p(n1,n2),q1,q2) =
∑

(i1 ,i2)∈Mu

b0
i1,i2

(p(n1,n2))q
−i1
1

q
−i2
2

(2b)

where My and Mu denote the support regions (masks) for

output and input terms, respectively, and n1 and n2 are

independent variables (usually time and space). The support

region (mask) is defined as a subset of the two-dimensional

space in which the indices of the coefficients of input and

output terms in the difference equation lie. For more details

see [14].

A general support region for 2-D systems lies in the 2-D

plane. For causal systems the support region is a subset of

the first quadrant of the 2-D plane, for semi-causal systems

it is a subset of the right half plane, and for non-causal

systems it lies in all four quadrants of the 2-D plane. Let M

represent a general support region (mask) for a 2-D system

consisting of a union of intervals

M =

l1⋃

i1=k1

m(i1) (3)

m(i1) = {(i1, i2) : k2(i1) ≤ i2 ≤ l2(i1)} (4)

where

l1 = max {i1 : (i1, i2) ∈ M}

k1 = min {i1 : (i1, i2) ∈ M}

l2(i1) = max {i2 : (i1, i2) ∈m(i1)}

k2(i1) = min {i2 : (i1, i2) ∈ m(i1)}

With the above notation, we shall represent support

regions for output and input as My and Mu respectively.

Also v0(n1,n2) = H0(q1,q2)e(n1,n2) where H0 is a 2-D linear

filter and e(n1,n2) is a 2-D zero-mean random white-noise

process with normal distribution.

A two-dimensional linear PVSI-ARX model structure for

SISO systems can be defined as

y(n1,n2) = −
∑

(i1,i2)∈My\(0,0)

ai1,i2(p(n1,n2))y(n1− i1,n2− i2)

+
∑

(i1,i2)∈Mu

bi1,i2(p(n1,n2))u(n1− i1,n2− i2)+ e(n1,n2) (5)

(i1,k2(i1))

l1

(i1, l2(i1))

k1

i2

i1

Fig. 1. Two-dimensional lattice, filled circles show the mask M

The coefficient functions ai1,i2 ,bi1,i2 have static dependence

on p(n1,n2), i.e. dependence on the instantaneous values of

p at the discrete indices n1 and n2 of the two independent

variables, and are parameterized as

ai1,i2(p(n1,n2)) = ai1,i2,0 +

s∑

j=1

ai1,i2 , jψi1 ,i2, j(p(n1,n2)) (6)

bi1,i2(p(n1,n2)) = bi1,i2,0 +

s∑

j=1

bi1,i2 , jψi1 ,i2, j(p(n1,n2)) (7)

Here ψi1,i2 , j(p(.)) : P→ R are user-defined functions of the

scheduling variables and they are non-singular on P. s

represents the number of functions, which can be different

for different coefficients, but here we are assuming that all

coefficients depend on same number of functions.

Assuming a general support region (see [14]) the difference

equation (5) can be written as

y(n1,n2) = −

l
y

1∑

i1=k
y

1

l
y

2
(i1)
∑

i2=k
y

2
(i1)

ai1,i2 (p(n1,n2))y(n1− i1,n2− i2)

+

lu
1∑

i1=ku
1

lu
2
(i1)
∑

i2=ku
2
(i1)

bi1,i2 (p(n1,n2))u(n1− i1,n2− i2)+ e(n1,n2)

(8)

where for the first term of (8) on the right hand side we

have the condition that (i1, i2) , (0,0). The coefficients ai1,i2 ,

bi1,i2 are given in (6) and (7). The data column vectors

and the corresponding system parameter vectors which

are associated with the support region My and Mu are

constructed as follows:

Output data corresponding to My is

∀i1 ∈
[

k
y

1
, l

y

1

]
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ymy(i1)(n1,n2) =

−

[

y(n1− i1,n2− i2)⊗

[

1

ψi1 ,i2, j(.)

]

j=1:s

]

i2=k
y

2
(i1),...,l

y

2
(i1)

amy(i1) =

[[

ai1,i2 , j

]

j=0:s

]

i2=k
y

2
(i1),...,l

y

2
(i1)

(9)

Here we exclude on the right hand side the terms

corressponding to point (0,0). Finally

YMy (n1,n2) =
[

ymy(i1)(n1,n2)
]

i1=k
y

1
,...,l

y

1

(10)

AMy =
[

amy(i1)

]

i1=k
y

1
,...,l

y

1

Input data corresponding to Mu is

∀i1 ∈
[

ku
1
, lu

1

]

umu(i1)(n1,n2) =
[

u(n1− i1,n2− i2)⊗

[

1

ψi1,i2 , j(.)

]

j=1:s

]

i2=ku
2

(i1),...,lu
2
(i1)

bmu(i1) =

[[

bi1,i2 , j

]

j=0:s

]

i2=ku
2
(i1),...,lu

2
(i1)

(11)

Finally

UMu (n1,n2) =
[

umu(i1)(n1,n2)
]

i1=ku
1
,...,lu

1

(12)

BMu =
[

bmu(i1)

]

i1=ku
1
,...,lu

1

Then (5) can be written in linear regression form as

y(n1,n2) = ϕ⊤(n1,n2)θ+ e(n1,n2) (13)

where the regressor vector ϕ is given as

ϕ(n1,n2) =

[

YMy (n1,n2)

UMu(n1,n2)

]

(14)

and the parameter vector θ is given accordingly as

θ =

[

AMy

BMu

]

(15)

If measured data of size N1 × N2 is available as input,

output and scheduling signal, then output and regressors are

respectively constructed as

Y =
[

y(1,1) . . . y(N1,1) y(1,2) . . . . . . y(N1,N2)
]⊤

(16)

Φ =
[

ϕ(1,1) . . . ϕ(N1,1) ϕ(1,2) . . . . . . ϕ(N1,N2)
]T

(17)

and the parameter vector is computed using the Least

Squares (LS) method as

θ = (Φ⊤Φ)−1Φ⊤Y. (18)

Equation (18) gives consistent estimates of the parameter

if v0(n1,n2) = A
†

0
(p(n1,n2),q1,q2)e(n1,n2) (where ‘†’ denotes

pseudoinverse) in (1) that is data generating system has

ARX structure; if this is not the case, then there is colored

noise in generated output instead of e(n1,n2), thus using the

LS method leads to bias in the estimates. To get unbiased

estimates we have to consider different model structures other

than the ARX one; this is the main contribution of this paper.

If we have colored noise ν̃(n1,n2) in the output data then (13)

can be written as

y(n1,n2) = ϕ⊤(n1,n2)θ+ ν̃(n1,n2) (19)

where

ν̃(n1,n2) = A(p(n1,n2),q1,q2)ν(n1,n2) (20)

where ν is colored noise. Next the Box Jenkins model

structure which has been used in LTI system identification,

is extended to PVSI systems.

III. B-JM I 

P-V S I S

A. Non optimality of the IV approach and dynamic depen-

dence

The LS approach has been extended for spatially varying

interconnected systems in [14]. In this case an ARX type

model has been assumed. On the other hand, if the model

of disturbances acting on the system is misspecified, the

Instrumental Variable(IV) method can be used to provide

consistent estimates; this has been extended recently to

2-D systems in [11]. Nevertheless, it is generally known

that the estimates obtained through IV methods are not

optimal. Therefore the Box-Jenkins model structure should

be considered to obtain such optimal estimates in terms of

minimum variance in the estimated parameters.

Another problem appears when PVSI systems are consid-

ered, namely the non-commutativity of its parameter-varying

coefficients with the shift operators, e.g. q1a(p(n1,n2)) ,

a(p(n1,n2))q1 but q1a(p(n1,n2)) = a(p(n1 + 1,n2))q1. This

problem has been discussed for LPV systems in [16]. This

problem prevents the identification problem to be written

in linear regression form if a model type other than ARX

is considered. Here an approach which has been proposed

recently in [16] to handle such problems in the LPV case

is extended to multidimensional interconnected systems. To

handle the non-commutativity, the model equations in (21)

are reformulated, and to provide estimates with the minimum

variance an RIV method is proposed.

B. Box-Jenkins Model

A Box-Jenkins model for parameter-varying spatially in-

terconnected system can be represented as:

A(p(n1,n2),q1,q2, θ)x(n1,n2) = B(p(n1,n2),q1,q2, θ)u(n1,n2)

ν(n1,n2) = H(q1,q2,η)e(n1,n2)

y(n2,n2) = x(n1,n2)+ ν(n1,n2)

(21)
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where

H(q1,q2,η) =
C(q1,q2)

D(q1,q2)
(22)

is a 2-D filter and

C(q1,q2) = 1+
∑

(i1,i2)∈Mc ,(i1 ,i2),(0,0)

ci1,i2 q
−i1
1

q
−i2
2

D(q1,q2) = 1+
∑

(i1,i2)∈Md ,(i1 ,i2),(0,0)

di1,i2 q
−i1
1

q
−i2
2

(23)

with C(q1,q2) and D(q1,q2) being stable polynomials. Mc

and Md here correspond to the support region for numer-

ator and denominator of the 2-D filter, respectively. The

associated parameters of H(q1,q2), i.e. ci1,i2 ,∀i1, i2 ∈ Mc and

di1,i2 ,∀i1, i2 ∈ Md , are stacked columnwise in the parameter

vector η ∈ Rnη . Let H = {Hη | η ∈ R
nη } denote the collection

of all noise models in the form

Hη : (H(q1,q2,η)) (24)

Now let the process model be denoted as Gθ, and G =

{Gθ |θ ∈R
nθ } be the set of all process models. The parameters

corresponding to a given process and noise model (Gθ,Hη)

can be collected as

ρ = [θ⊤ η⊤ ]⊤ (25)

Let Mρ denote the model. Parametrized independently

with process (Gθ) and noise (Hη) model, the model set is

Mρ = {(Gθ,Hη) | col(θ,η) = ρ ∈ Rnθ+nη } (26)

This set corresponds to the set of candidate models in which

we seek our model corresponding to the data generating

system.

C. Reformulation of the model equations

Based on the above discussion, in order to write the model

(21) in a linear regressor form to be able to use the IV or

LS method, the relation in (21) is rewritten as

x(n1,n2)+
∑

(i1,i2)∈My\(0,0)

ai1,i2 ,0x(n1− i1,n2− i2)

︸                                                       ︷︷                                                       ︸

F(q1 ,q2)x(n1 ,n2)

+
∑

(i1 ,i2)∈My\(0,0)

s∑

j=1

ai1,i2, jψi1 ,i2, j(p(n1,n2))x(n1− i1,n2− i2)
︸                                     ︷︷                                     ︸

xi1 ,i2 , j
(n1,n2)

=
∑

(i1 ,i2)∈Mu

s∑

j=0

bi1,i2 , jψi1,i2 , j(p(n1,n2))u(n1− i1,n2− i2)
︸                                     ︷︷                                     ︸

ui1 ,i2 , j
(n1,n2)

ν(n1,n2) = H(q1,q2)e(n1,n2)

y(n1,n2) = x(n1,n2)+ ν(n1,n2)

(27)

where F(q1,q2) = 1+
∑

(i1 ,i2)∈My\(0,0) ai1,i2,0q
−i1
1

q
−i2
2

. The Box-

Jenkins model of PVSI system is written in this way as a

Multi-Input Single-Output (MISO) system. As the polyno-

mial operator commutes in this representation, (27) can be

rewritten as

y(n1,n2) = −
∑

(i1,i2)∈My\(0,0)

s∑

j=1

ai1,i2 , j

F(q1,q2)
xi1,i2, j(n1,n2)

+
∑

(i1,i2)∈Mu

s∑

j=0

bi1,i2, j

F(q1,q2)
ui1,i2 , j(n1,n2)+H(q1,q2)e(n1,n2)

(28)

which is an invariant spatially interconnected (ISI) system

representation. equations (28) and (21) are equivalent to each

other, where the former is nothing more than a MISO-ISI

system representation of the latter. Based on the formulation

given in (28), optimal prediction error minimization (PEM)

is possible to be achieved by using linear regression and

extending the Refined Instrumental Variable (RIV) approach

of the LTI identification framework. A similar approach has

been taken in [15] for 1-D parameter varying systems.

D. Optimal PEM for PVSI-BJ models

Using (28), y(n1,n2) can be written in the linear regressor

form as

y(n1,n2) = ϕ⊤(n1,n2)θ+ ν̃(n1,n2) (29)

where

ν̃(n1,n2) = F(q1,q2)ν(n1,n2) (30)

It is important to keep in mind that (19) and (29) are not

equivalent, as the extended regressor in the latter equation

contains noise free terms. Using a conventional PEM ap-

proach on (29), the prediction error ε(n1,n2) is given as

ε(n1,n2) =
D(q1,q2)

C(q1,q2)F(q1,q2)
{F(q1,q2)y(n1,n2)

−
∑

(i1,i2)∈My\(0,0)

s∑

j=1

ai1,i2, jxi1,i2 , j(n1,n2)

+
∑

(i1,i2)∈Mu

s∑

j=0

bi1,i2 , jui1,i2 , j(n1,n2)} (31)

where
D(q1,q2)

C(q1,q2)
can be seen as the inverse of the ARMA

noise model in (21). However, as the system written in (28)

is equivalent to an ISI system, the polynomial operators

commute and (31) can be written in an alternative form as

ε(n1,n2) = F(q1,q2)y f (n1,n2)

−
∑

(i1,i2)∈My\(0,0)

s∑

j=1

ai1,i2, jx
f

i1,i2 , j
(n1,n2)

+
∑

(i1,i2)∈Mu

s∑

j=0

bi1,i2 , ju
f

i1,i2 , j
(n1,n2) (32)

where y f (n1,n2), x
f

i1,i2 , j
(n1,n2) and u

f

i1,i2, j
(n1,n2) represent

the outputs of the prefiltering operation using the filter

Q(q1,q2) =
D(q1,q2)

C(q1,q2)F(q1,q2)
(33)

148



Based on (32), the associated linear-in-the-parameters model

takes the form

y f (n1,n2) = ϕ⊤f (n1,n2)θ+ ν̃ f (n1,n2) (34)

where

ν̃ f (n1,n2) = F(q1,q2)ν f (n1,n2) =

F(q1,q2)
D(q1,q2)

C(q1,q2)F(q1,q2)
ν(n1,n2)

= e(n1,n2) (35)

and ϕ f (n1,n2) contains associated filtered terms. This means

that if the optimal filter (33) is known a priori, it is possible

to filter the data such that a simple LS algorithm applied to

the data pre-filtered with (33) leads to the statistically optimal

estimate. Since the filter Q(q1,q2) is unknown in advance,

the RIV estimates involves an iterative algorithm, in which

at each iteration an auxiliary model is used to generate the

instrumental variables and the prefilter.

E. The Iterative RIV Algorithm

Step 1 ARX model estimation

Compute an initial ARX estimate using the LS approach.

This gives Â(0) and B̂(0). Set D̂(0)(q1,q2) = 1,Ĉ(0)(q1,q2) = 1

and i = 0

Step 2 Generate data

Compute an estimate of the noise free output x̂(n1,n2) by

simulating the auxiliary model

Â(i)(p(n1,n2),q1,q2, θ̂
(i))x̂(n1,n2) =

B̂(i)(p(n1,n2),q1,q2, θ̂
(i))u(n1,n2)

based on the estimated parameters θ̂(i) of the previous

iteration.

Step 3 Compute the estimated filter

Q̂(q1,q2) =
D̂(i)(q1,q2)

Ĉ(i)(q1,q2)F̂(i)(q1,q2)

along with obtaining the associated filtered signals

{u
f

i1,i2, j
(n1,n2)},y f (n1,n2) and {x

f

i1,i2, j
(n1,n2)}.

Step 4 Build the estimated regressor

Define

U f (n1,n2) =





u
f

i1,i2,0
(n1,n2)

u
f

i1,i2,1
(n1,n2)

...

u
f

i1,i2 ,s
(n1,n2)





∀(i1 ,i2)∈Mu

X
f

1
(n1,n2) =

[

x
f

i1,i2 ,0
(n1,n2)

]

∀(i1 ,i2)∈My

X
f

2
(n1,n2) =





x
f

i1,i2 ,1
(n1,n2)

...

x
f

i1,i2 ,s
(n1,n2)





∀(i1 ,i2)∈My

Y f (n1,n2) =
[

y f (n1− i1,n2− i2)
]

∀(i1 ,i2)∈My

Proceed to build the filtered estimated regressor as

ϕ f (n1,n2) =





Y f (n1,n2)

X
f

2
(n1,n2)

U f (n1,n2)





(36)

with the filtered instrument given as

ς f (n1,n2) =





X
f

1
(n1,n2)

X
f

2
(n1,n2)

U f (n1,n2)





(37)

With measured data size N1 × N2, the filtered regressor

becomes

Φ̂ f =
[

ϕ f (1,1) . . .ϕ f (N1,1) ϕ f (1,2) . . . ϕ f (N1,N2)
]⊤

(38)

The filtered instrument as

ζ̂ f =
[

ς f (1,1) . . . ς f (N1,1) ς f (1,2) . . . ς f (N1,N2)
]⊤

(39)

also the filtered output is represented as

Y f =
[

y f (1,1) . . . y f (N1,1) y f (1,2) . . . y f (N1,N2)
]⊤

(40)

Step 5 Compute the IV estimate

The IV estimate is computed as

θ̂(i+1) = (ζ̂⊤f Φ̂ f )−1ζ̂⊤f Y f (41)

where θ̂(i+1)is the IV estimate of the process model pa-

rameter vector at iteration i+1 based on prefiltered data.

Step 6 Noise model estimate

Estimate the noise signal as

ν̂(n1,n2) = y(n1,n2)− x̂(n1,n2) (42)

Based on this, the noise model parameter vector η̂(i+1) is

estimated using the ARMA estimation algorithm of the

MATLAB identification toolbox. If we take H(q1,q2) = 1

at this step and avoid noise model estimation, the method is

referred as simplified RIV (SRIV).

Step 7 Stopping criteria

If convergence has occured or the maximum number of

iterations reached then stop, else set i= i+1 and go to Step 2.

Remarks: The above algorithm gives optimal estimates if

the noise filter is known and if the algorithm converges.

As the filter is unknown in practice, optimality can not

be guaranteed. However, our experience shows that the

algorithm converges most of the time.

IV. I E

As a practical example for the approach discussed in the

previous section, a spatially-varying interconnected system

is considered. It is heat flow in a rod having thermal con-

ductivity of the material varying with the spatial dimension.

Such a system is governed by the equation

ρc
∂y(t, x)

∂t
=
∂

∂x
K(x)

∂y(t, x)

∂x
+u(t, x), (43)
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TABLE I

E       SNR

Method 15dB 10dB 5dB

LS
Bias Norm 0.0979 0.2225 0.3308

Variance Norm 0.0001 0.0002 0.0006

SRIV
Bias Norm 0.0002 0.0005 0.0012

Variance Norm 6×10−6 2×10−5 5×10−5

RIV
Bias Norm 0.0001 0.0002 0.0005

Variance Norm 3.6×10−6 1.3×10−5 3.6×10−5

where y is the temperature, u is a linear heat source, ρ is

the density, c is the specific heat and K is the thermal con-

ductivity of the material. Here we are assuming that thermal

conductivity varies linearly along the spatial dimension (x)

as

K(x) = K0(1− ǫ
x

L
)

where L is the length of the rod, and we take K0, ρ and c

as unity. ǫ is a constant having value between zero and one;

we take it here as 0.5. The rod is divided spatially into 10

subsystem. The scheduling parameter, which only depends

on the spatial dimension, is defined as

p(x) =
2x

L
−1

or in discrete domain

p(n2) =
2n2

L
−1

The scheduling function is taken as

ψi1,i2,1(.) = ψ1(.) = p(n2) =
2n2

L
−1

The model for the mentioned system is identified using the

approach given in [14], without considering any additive

output noise. The parameters of this identified model are

considered as the true values. The sampling time is 0.001s.

Noisy data is generated from this system by considering a

structure as in (1) and (2) with H0(q1,q2) = 1

1+d1q−1
1
+d2q−2

1

.

The true parameter values are given in Table ??. The inputs

u(n1,n2) and e(n1,n2) are taken as 2-D zero-mean normally

distributed white-noise. The data used for identification is

of size 4000× 10. The model structure is given as in (21).

Monte-Carlo simulations of 100 runs are carried out at

different signal-to-noise ratios (SNR). True values of filter

parameters are d1 = −0.4 and d2 = 0.8. Mean of both the

parameters is d1 =−0.404 and d2 = 0.7996 when RIV method

is employed at an SNR of 10 dB. Similarly the standard

deviation is d1 = 0.011 and d2 = 0.0115 and shows that the

algorithm identifies the filter in an efficient method. Table

I shows the comparison of estimated parameters, bias norm

(‖θ0 −E[θ̂]‖2) and variance norm (‖E[(θ̂−E[θ̂])2]‖2), where

θ0 is the true and θ̂ the estimated parameter vector. The

results show that RIV gives the estimate with a minimum

bias and variance. Further SRIV also gives reasonable results

for this example.

V. CONCLUSIONS

A method to identify linear PVSI input-output model

of multi-dimensional parameter-varying spatially intercon-

nected system is proposed. The method identifies Box-

Jenkins models for such systems. The method can give esti-

mates with minimum bias and variance. It can be used for the

identification of a general class of multi-dimensional linear

PVSI systems which may be separable or non-separable.

The method is equally valid for causal, semi-causal and

non-causal systems. Furthermore, boundary conditions can

be easily included in the algorithm. Simulation example

demonstrates the effectiveness of the method.
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