
A Process-Theoretic Approach to Supervisory Control Theory

J.C.M. Baeten, D.A. van Beek, B. Luttik, J. Markovski, and J.E. Rooda

Abstract— We revisit the central notion of controllability in
supervisory control theory from process-theoretic perspective.
To this end, we investigate partial bisimulation preorder, a be-
havioral preorder that is coarser than bisimulation equivalence
and finer than simulation preorder. It is parameterized by a
subset of the set of actions that need to be bisimulated, whereas
the actions outside this set need only to be simulated. This
preorder proves a viable means to define controllability in a
nondeterministic setting as a refinement relation on processes.
The new approach provides for a generalized characterization
of controllability of nondeterministic discrete-event systems.
We characterize the existence of a deterministic supervisor
and compare our approach to existing ones in the literature.
It helped identify the coarsest minimization procedure for
nondeterministic plants that respects controllability. At the end,
we define the notion of a maximally permissive supervisor,
nonblocking property, and partial observability in our setting.

I. INTRODUCTION

To keep products competitive, development costs and
time-to-market need to be optimized, while satisfying ever-
increasing demands for better quality, performance, safety,
and ease of use. This puts high demands on the development
of control software. Traditionally, software engineers write
control software based on specification documents that con-
tain informal requirements. This is a time-consuming process
as the requirements are often ambiguous and they constantly
change during product development. This issue in control
software design gave rise to supervisory control theory of
discrete-event systems [1], [2], where high-level supervisory
controllers are synthesized automatically based upon formal
models of the hardware and control requirements.

The supervisory controller observes the discrete-event
behavior of the machine by receiving sensor signals from
ongoing activities. Based upon these signals it makes a
decision which activities are allowed to be carried out
and sends back control signals to the hardware actuators.
Under the assumption that the supervisory controller can
react sufficiently fast on machine input, one can model this
feedback loop as a pair of synchronizing processes. The
model of the machine, referred to as plant, is restricted by
the model of the controller, referred to as supervisor.

Traditionally, the plant is modeled as a set of observable
traces of events, given as a set of synchronizing automata,
whose joint recognized language corresponds to the observed
traces. The events are split into controllable events, which
can be disabled by the supervisor in the synchronous com-
position, and uncontrollable events, which must always be
allowed by the supervisor. The control requirements specify

Eindhoven University of Technology P.O. Box 513, NL-5600 MB Eind-
hoven, The Netherlands. Supported by C4C EU project (FP7-ICT-223844).

allowed behavior again as sequences of events, leading to
event-based supervisory control theory [1], [2].

In this paper, we model the feedback loop in a process-
theoretic setting. We revisit the central notion of control-
lability, as constituted in [1], [2]. Controllability identifies
sufficient and necessary conditions for existence of a super-
visor for a given plant that satisfies the control requirements.
Afterwards, we discuss related work and elaborate on the mo-
tivations and contributions of a process-theoretic approach.

A. Controllability

We introduce some preliminary notions of language the-
ory [2]. Let A = C ∪ U be the set of events that can be
observed in the plant, with C being the set of controllable
events and U the set of uncontrollable events, such that
C ∩ U = ∅. We form traces and languages in a standard
manner, i.e., t ∈ A∗ is a trace and L ⊆ A∗ is a language,
where A∗ , {a1a2 . . . an | ai ∈ A for 0 ≤ i ≤ n, n ∈ N}
and ε denotes the unique empty trace a1 . . . an for n = 0.
By t·t′ we denote the concatenation of the traces t, t′ ∈ A∗
and by L·L′ , {t·t′ | t ∈ L, t′ ∈ L′} the concatenation
of languages. We say that a language is prefix-closed if
L = L, where L , {t | there exists t′ such that t·t′ ∈
L}. Suppose that P = (S,A, 7−→, s0) is a discrete-event
automaton, where S is a set of states, A a set of events,
7−→ ∈ S × A × S the transition relation, and s0 the initial
state. We define 7−→∗ ∈ S × A∗ × S as s

ε7−→∗ s for all
s ∈ S, and s

at7−→∗ s′ for a ∈ A and t ∈ A∗, if there
exists s′′ ∈ S such that s

a−→ s′′
t7−→∗ s′. By s

t7−→∗ we
denote that there exists s′ ∈ S such that s

t7−→∗ s′. Now,
the recognized (prefix-closed) language of automaton P =

(S,A, 7−→, s0) is given by L(P) , {t | s0
t7−→∗ }. By

P1 | P2 , (S1 × S2,A, 7−→, (s1, s2)) we denote the
synchronous parallel composition of P1 = (S1,A, 7−→1, s1)
and P2 = (S2,A, 7−→2, s2), where (s′, s′′)

a7−→ (s′, s′′) if
s′

a7−→1 s
′ and s′′

a7−→2 s
′′ for s′, s′ ∈ S1, s′′, s′′ ∈ S2, and

a ∈ A. We have that L(P1 | P2) = L(P1) ∩ L(P2).
Now, we define the property of controllability for prefix-

closed languages. Suppose that the plant is given by au-
tomaton P = (SP ,A, 7−→P , sP) and the control require-
ments by R = (SR,A, 7−→R, sR). An automaton S =
(SS ,A, 7−→S , sS) is a supervisor for P that achieves R if
L(P | S) = L(R), where we refer to P | S as the supervised
plant. We ensure that S does not disable uncontrollable
events by requesting that R is controllable with respect to P ,
expressed as L(R)·U∩L(P) ⊆ L(R) [1], [2]. Controllability
is interpreted as follows. If we observe a desired trace
in the plant followed by an uncontrollable event, then the
control requirements cannot request that this uncontrollable

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 4496

event should be disabled after allowing that trace. If R is
controllable with respect to P , then one can guarantee the
existence of a supervisor S, achieving the desired controlled
behavior R by restricting the plant P , i.e., L(P | S) = L(R).

In supervisory synthesis additional properties of P | S
are considered as well, e.g., notions of controllability that
prevent deadlock and livelock. To this end, marked states are
added to the automata to specify non-blocking behavior [1].
In our setting, we employ so-called successful termination
option predicates [3]. Partial observability is another impor-
tant property, where the assumption is that some events are
hidden from the supervisor, e.g., due to lack of sensors [2].
Nonetheless, the supervisory controller must synchronize
with the plant on unobservable events as well to achieve the
desired behavior. We emphasize that in this paper we do not
discuss supervisor synthesis algorithms and we investigate
process-theoretic aspects of controllability.

B. Related Work

In a way, partial observability introduced nondeterminism
in supervisory control theory. Nondeterministic automata
are not disallowed in [1], but the semantics is still in
terms of accepted languages. Nondeterminism naturally oc-
curs in systems with multiple parallel components and it
enables abstract (under)specifications and greater modeling
convenience [3]. However, it introduces complications as
controllability is originally a language-based property. This
issue spawned investigations into the supervisory control of
nondeterministic discrete-event systems.

In general, the supervisor is desired to be deterministic,
as it should send unambiguous control signals and dutifully
follow the state of the plant. An exception is [4], and
references therein, where nondeterministic supervisors are
considered under strong structural restrictions. State control-
lability is a notion tailored for such a setting [4], [5] and
it requires all states of the control requirements reachable
by a given trace to enable all outgoing uncontrollable events
of states in the plant reachable by the same trace. Denote
by E(s) , {a ∈ A | s

a7−→ } the enabled events of
s and by E∗(s, t) ,

⋃
{E(s′) | s

t7−→∗ s′} the enabled
events at all states reachable from s by the trace t. Then,
control requirements R are state controllable with respect
to a plant P , if for all t ∈ L(R) and r′ ∈ SR such that
sR

t7−→∗ r′ it holds that E∗(sP , t) ∩ U ⊆ E(r′).
State controllability induces language controllability in

the deterministic case. Nonetheless, it is a restrictive notion
since, e.g., a plant may not be state controllable with respect
to itself, even though a supervisor enabling all events always
exists [4]. We ponder on this issue in more depth later, and
stipulate the need for state controllability. Other works tackle
nondeterministic systems as a set of deterministic systems,
by requiring controllability of all underlying deterministic
systems to induce controllability of the nondeterministic
system [6]. Nondeterminism is also modeled as a choice be-
tween unobservable events [7], hinting that the definition of
state controllability might be inspired by partial observability.

An early approach that applies process theory to su-
pervisory control synthesis is given in [8], where failure
trajectories are employed and a CSP-like axiomatization of
a specialized prioritized synchronization operator is given.
Failure trajectories are extensions of failure semantics on
whole traces, supporting compositionality of the prioritized
synchronization that is employed to define controllability [8].
This operation is tailored to model the plant-supervisor com-
munication and ensures that the supervisor cannot disable
uncontrollable events. Followup works [7], [9] focus on
deepening the understanding of the failure trajectories model
and the prioritized synchronization. An alternative path is
taken in [10], where instead of a new operator, a refinement
relation � based on failure semantics characterizes nonde-
terministic supervised behavior. For the automata P1 and P2

from above, P1 � P2 holds, if L(P1) ⊆ L(P2), and for all
t ∈ L(P1) it holds that A\E∗(s1, t) ⊆ A\E∗(s2, t), where
A\E∗(s1, t) and A\E∗(s2, t) are the unions of refusal sets
of all states reachable in P1 and P2, respectively, following a
trace t. Now, in addition to imposing language controllability,
in [10] it is required that P | S � R as well.

In [5] the refinement � is given in terms of bisimulation
(simulation in [11]), relying on state controllability. The
use of (bi)simulation is also advocated in [12], [13], where
nondeterminism arises due to inability of the controller
to observe internal choices of the plant. Similarly to the
approach of partial observability, all indistinguishable events
are either always enabled or always disabled. There is no
differentiation on controllable and uncontrollable events,
and it is conjectured in [13] that some type of alternating
(bi)simulation relation might be useful in such a setting.

C. Motivation and Contributions

A coalgebraic approach to supervisory control theory in-
troduced partial bisimulation as a behavioral relation suitable
to define controllability [14]. In essence, it states that con-
trollable events should be simulated, whereas uncontrollable
events should be bisimulated. It serves as a refinement
relation between the supervised and the original plant, similar
to the approach of [10], but for bisimulation semantics. Even
though it is argued that refinements for failure and bisimu-
lation semantics have similar properties [15], we consider
(bi)simulation as a more elegant notion to capture nondeter-
minism [3], [16]. Refinements in failure semantics deal with
traces and inclusion of refusal sets [10], whereas our notion
relates states locally based on their outgoing transitions.
Moreover, there exist efficient partitioning algorithms for
minimization by (bi)simulation [17], already employed in
the deterministic setting to optimize supervisor synthesis by
imposing bisimulation over uncontrollable events [18].

Partial bisimulation is closely related to the notion of
strong refinement of modal transition systems [19], where
from each state there are so-called may and must transitions,
corresponding to controllable (simulated) and uncontrollable
(bisimulated) transitions. Then supervisor synthesis can also
be seen as solving a process algebraic equation in the modal
transition systems realm [20]. Nonetheless, refinement by

4497

partial bisimulation is a special type of modal refinement,
where the labels of the may and must transitions are fixed,
admitting elegant process-algebraic characterization.

The contributions of this paper are as follows. First, we
propose a process theory based on the preorder induced by
partial bisimulation and we show some interesting properties
of it and its induced equivalence. Using the obtained results
we cast the control problem in a process-theoretic setting
and we define a notion of a controllability using the partial
bisimilarity preorder as a refinement between the supervised
plant and the control requirements. The induced equivalence
is basis for a minimization for (nondeterministic) plants
that respects controllability. Furthermore, we characterize the
existence of a deterministic supervisor given a nondetermin-
istic plant and control requirements and relate it to similar
notions in the literature. Finally, we discuss the existence of
a maximally permissive supervisor and we cast nonblocking
properties and partial observability in our setting. For tech-
nical details we refer to the supporting technical report [21].

II. PROCESS THEORY BSP|(A,B)

We define a basic sequential process theory BSP|(A,B)
with full synchronization and a partial bisimilarity preorder,
following the nomenclature of [3]. The theory is parameter-
ized with a finite set of actions A and a bisimulation action
set B ⊆ A, which plays a role in the behavioral relation.

The process terms T is induced by P ::= 0 | 1 | a.P |
P + P | P |P for a ∈ A. The constant process 0 cannot
execute any action and it can only deadlock, whereas 1
denotes the option to successfully terminate. The process
corresponding to a.p executes the action a and continues
behaving as p. The alternative composition p + q makes a
nondeterministic choice by executing an action and continues
to behave as the remainder of p or q. The synchronous
parallel composition p | q synchronizes all actions of p and q,
and if no actions can be synchronized, it deadlocks.

We give semantics in terms of a successful termination
option predicate ↓ ⊆ T and a transition relation −→ ⊆ T ×
L×T . We write p↓ for p ∈ ↓ and p

a−→p′ for (p, a, p′) ∈ −→.
We use the predicates p

a−→ and p
aY−→ to denote that p has

or does not have a transition labeled by a, respectively. We
define ↓ and −→ using structural operational semantics [3]:

1
1↓

2
p↓

p + q↓
3

q↓
p + q↓

4
p↓, q↓
p | q↓

5
a.p

a−→ p

6
p

a−→ p′

p + q
a−→ p′

7
q

a−→ q′

p + q
a−→ q′

8
p

a−→ p′, q
a−→ q′

p | q a−→ p′ | q′
.

Next, we revisit the notion of the partial bisimulation [14].
Def. 1: A relation R ⊆ T × T is a partial bisimulation

with respect to the bisimulation action set B ⊆ A if for all
p, q ∈ T such that (p, q) ∈ R it holds that:

1) if p↓, then q↓;
2) if p

a−→ p′ for some a ∈ A, then there exists q′ ∈ T
such that q a−→ q′ and (p′, q′) ∈ R;

3) if q
b−→ q′ for some b ∈ B, then there exists p′ ∈ T

such that p b−→ p′ and (p′, q′) ∈ R.

We say that p is partially bisimilar to q with respect to the
bisimulation action set B, notation p�B q, if there exists a
partial bisimulation R with respect to B such that (p, q) ∈ R.
If q �B p holds as well, then p and q are mutually partially
bisimilar with respect to B and we write p↔B q.

Note that �B is a preorder relation, making ↔B an
equivalence relation for all B ⊆ A [14]. If B = ∅, then �∅
coincides with strong similarity preorder and ↔∅ coincides
with strong similarity equivalence [16], [3]. When B = A,
both �A and ↔A turn into strong bisimilarity [16], [3].
Moreover, if p�B q, then p�C q for every C ⊆ B.

Thm. 1: Suppose p�B q with B ⊆ A and p, q ∈ T . Then:
(1) a.p�B a.q; (2) p+r�B q+r and r+p�B r+q; and (3)
p | r �B q | r and r | p�B r | q, for all a ∈ A and r ∈ T .

Thm. 1 states that �B is a precongruence, making ↔B

a congruence for T and providing for substitution rules.
We build the term model P(BSP|(A,B))/↔B

[3], where
P(BSP|(A,B)) = (T , 0, 1, a. for a ∈ A, + , |). The
theory admits sound and ground-complete axiomatization for
�B , whereas ↔B is not finitely axiomatizable. Due to lack
of space, we refer to [21] for technical details and extensions
with recursion and modal characterization.

An important aspect of similarity-like equivalences, which
plays an important role in their characterization are the so-
called little brother terms [17], [22]. Their characterization
makes possible a minimization procedure for mutual partial
bisimilarity, which is the basis for plant aggregation that
respects controllability. Two similar terms that do not contain
little brothers are actually strongly bisimilar [22], implying
the same property for partially bisimilar terms.

Def. 2: Let p a−→ p′ and p
a−→ p′′ for some a ∈ A and

p, p′, p′′ ∈ T . If p′�B p′′ holds, but p′′�B p′ does not hold,
then we say that p′ is the little brother of p′′.

The following equivalences shows how to eliminate little
brothers provided that p�B q �B r for p, q, r ∈ T :

a.p + a.q↔B a.q if a 6∈ B LB1,
b.p + b.q + b.r↔B b.p + b.r if b ∈ B LB2.

We note that LB1 is equivalent to the characteristic similarity
relation a.(p+q)+a.q↔∅ a.(p+q) when B = ∅ [16]. Since
the prefix action does not play a role in strong similarity, the
relation there always holds. However, when the little brothers
are prefixed by a bisimulation action b ∈ B, the ‘littlest’ and
‘biggest’ brother must be preserved, as given by LB2.

III. A PROCESS-THEORETIC APPROACH

We define controllability from a process-theoretic perspec-
tive in terms of partial bisimilarity preorder. We split A into a
set of uncontrollable actions U ⊆ A, and a set of controllable
actions C = A\U . We use p ∈ T to denote the plant and r ∈
T for the control requirements. The supervised plant is given
by p | s for a supervisor s ∈ T . Intuitively, the uncontrollable
transitions of the plant should be bisimilar to those of the
supervised plant, so that the reachable uncontrollable part
of the former is indistinguishable from that of the latter.
The controllable transitions of the supervised plant may only
be simulated by the ones of the original plant, since some
controllable transitions are suppressed by the supervisor.

4498

Def. 3: Let p ∈ T be a plant and r ∈ T control
requirements. We say that s ∈ T is a supervisor for p that
satisfies r if p | s�U p and p | s�∅ r.

As expected, Def. 3 ensures that no uncontrollable actions
have been disabled in the supervised plant, by including
them in the bisimulation action set. Moreover, it takes into
account the nondeterministic behavior of the system. It
suggests that the control requirements model the allowed
behavior, independently of the plant. We opt for an ‘external’
specification in process-theoretic spirit and we require that
the supervised plant has a behavior that is allowed, i.e., that
can be simulated, by the control requirements.

This setting is also a preparation for future work, where
we intend to relax the condition in the vein of [5], [11],
abstracting in the control requirements from irrelevant inter-
nal actions, as advocated from process-theoretic perspective
as well. Moreover, such an abstraction should preserve
branching behavior, unlike the approach of [5], [11]. The
goal in [5] is to achieve bisimilarity with the control require-
ments (similarity in [11]), again insinuating that the control
requirements are seen as the (abstracted) desired behavior
of the supervised plant to be achieved. The approach of [4]
proposes a more closer coupling, requiring that the control
requirements play the role of the supervisor as well.

If we assume that the control requirements coincide with
the desired supervised behavior, i.e., r ↔U p | s, then we
only require that r�U p, as r�∅ r always holds, conforming
to the original setting of [1]. Moreover, when p and r are
deterministic, this coincides with language controllability,
which was the original purpose of partial bisimilarity in [14].

Since we chose bisimilarity as an underlying notion that
captures nondeterminism, one would expect that when we
take the plant as the control requirements, the corresponding
conditions p | s �U p and p | s �∅ p would amount to
bisimilarity. The conditions collapse to p | s �U p, since
p | s�Up implies p | s�∅p. Now, we seek the largest possible
supervised plant, i.e., p�U p | s, leading to p | s↔U p. Note,
however, that the plant may have redundant behavior in the
form of little brothers, which prevents bisimilarity between p
and p | s. By eliminating the little brothers using LB1 and
LB2, we have that p | s↔U p implies p | s↔A p [22].

A. State Controllability and Nondeterministic Supervisors

Relating our notion to state controllability [4], [5], it is
known that some plants are not state controllable when the
control requirements coincide with the plant, even though a
trivial supervisor that enables all events always exists. For
instance, let p and r coincide with p , u.v.0 + u.w.0,
where U = {u, v, w}. Then the enabled uncontrollable events
following the trace u are given by E∗(p, u) = {v, w} (here
we overload the definitions of E∗ and E from the introduc-
tion). Following the same trace in the control requirements,
we reach r

u−→ v.0 or r
u−→ w.0 with E(v.0) = {v} and

E(w.0) = {w}. Since, {v, w} ∩ U 6⊆ {v}, we conclude
that the plant is not state controllable with respect to itself.
However, a non-restrictive supervisor s , u.(v.0 + w.0),
induced by the determinized version of the plant, always

exists. This is supported by Def. 3, since when p | s coincides
with p, we trivially have that p �U p and p �∅ p, implying
that s is a supervisor for p that satisfies p.

However, a truly nondeterministic supervisor, i.e., one
having a choice between two transitions labeled by u
that do not lead to partially bisimilar states, does not ex-
ist. To illustrate, the minimal nondeterministic supervisor
s′ is given by the plant itself, i.e., s′ , p. We have
p | s′↔Uu.0+u.v.0+u.w.0 implying that p | s′�Up does not
hold. We conclude that state controllability is not a suitable
characterization of an existence of a deterministic supervisor
for a nondeterministic plant and control requirements.

Def. 3 also admits nondeterministic supervisors in the vein
of [4], [5]. As an illustration, suppose that p , a.(b.0 + c.0)
and r , a.b.0 + a.c.0 with C = {a, b, c}. Obviously,
a deterministic supervisor that achieves r does not exist,
whereas a nondeterministic supervisor s that coincides with
r, i.e., s , a.b.0 + a.c.0, trivially satisfies both state
controllability, as there are no uncontrollable events, and
Def. 3, as p | s↔A r and r�∅p. Intuitively, nondeterministic
supervisors increase plant nondeterminism in the sense that
they increase the number of states with nondeterministic
choices that are reachable by the same trace. In the litera-
ture [4], [7], [5], [11], this is needed in order to satisfy some
nondeterministically weaker control requirements as in the
example above.

B. Process-Theoretic Definition of Controllability

As illustrated above, a usual suspect for a deterministic su-
pervisor is the determinized version of the desired supervised
behavior. We define a determinized process det(p) ∈ T as
the minimal process that enables all possible traces of p ∈ T :

9
p↓

det(p)↓
10

p
a−→

det(p)
a−→ det(

∑
{p′ ∈ T | p a−→ p′})

Rule 9 states that the original and determinized version of a
process have the same termination options. Rule 10 merges
a nondeterministic choice over equally labeled transitions to
a single transition modulo bisimilarity, of which the target
is the alternative composition of all original target processes
modulo commutativity and associativity. For example, sup-
pose that the only outgoing transitions of p that are labeled
by a are p

a−→p′ and p
a−→p′′. Then, det(p)

a−→p′+p′′ and
det(p)

a−→p′′+p′, and clearly p′+p′′↔Ap′′+p′. Now, we can
define a deterministic process to be one that is bisimilar to its
determinized version, i.e., p is deterministic if p↔A det(p).
Clearly, all determinized processes are deterministic.

Thm. 2: For all p, q ∈ T it holds that (1) p | det(p)↔A p
and (2) if p�B q then det(p) | q �B q for B ⊆ A.
Property (1) states that the synchronization of a process with
its determinized version does not restrict its behavior. If two
processes are partially bisimilar, then their determinized ver-
sions are partially bisimilar as well, as stated by property (2).
Note that the other direction does not hold in general.

Now, suppose that the desired supervised behavior is given
by q ∈ T . It can be achieved if there exists a supervisor
s ∈ T , such that p | s ↔U q. Since Def. 3 requires that

4499

p | s�U p and p | s�∅ r, we have that q�U p and q�∅ r are
necessary conditions. As discussed above, a good supervisor
candidate is s , det(q), since from q �U p we have that q |
det(q)�U p | det(q), implying q�U p | det(q) using property
(1) of Thm. 2. Furthermore, according to property (2) of
Thm. 2 we have that p | det(q)�U p. Next, we characterize
when a desired behavior is controllable.

Def. 4: Process q ∈ T is controllable with respect to plant
p ∈ T and control requirements r ∈ T , if q �U p, q �∅ r,
and p | det(q)�U q.

Def. 4 requires that the plant partially bisimulates and the
control requirements simulate the supervised behavior. This
ensures that Def. 3 is satisfied. By property (2) of Thm. 2,
this implies that the deterministic behavior of the supervised
plant, i.e., its language, is partially bisimilar to the plant.
Thus, the supervised behavior is language-controllable with
respect to plant, fortifying it as a choice for a deterministic
supervisor. In return, it partially bisimulates the supervised
plant, lifting the notion of language closure [1] and implying
that they are mutually partially bisimilar.

Thm. 3: If q ∈ T is controllable with respect to a plant
p ∈ T and control requirements r ∈ T , then det(q) is a
supervisor for p with respect to r such that p | det(q)↔U q.

The minimal deterministic supervisor s for p such that
p | s contains the behavior of q, i.e., q�U p | s, is s = det(q).
So, for any other supervisor det(s′) ∈ T we must have that
det(q)�∅ det(s′) and p | det(s′)�U p. Furthermore, we can
also demand that the control requirements r are controllable.
In this case, the conditions of Def 4 amount to r�U p and p |
det(r)�U r, comparable to the approaches of [1], [10], [5],
[11], [12], [13]. For deterministic systems, the first condition
of Def. 4 coincides with language controllability of [1], as
shown in [14].

Finally, satisfiability of the requirements can be efficiently
checked using an algorithm that computes the mutual partial
bisimilarity quotient, see [21]. Moreover, we can replace p
by every p′ ∈ T such that p′↔U p. Thus, minimization by
mutual partial bisimilarity provides for the coarsest plant that
preserves controllability, a notion lacking in previous work.

To relate more closely our notion to state controllability,
we reformulate Def. 4 in terms of traces. Assuming that
q �U p, the existence of a supervisor depends on whether
p | det(q)�U q. In terms of traces, we require that for every
trace t = a1a2 . . . an ∈ A∗ and every pn ∈ T such that
p

a1−→ p1
a2−→ . . .

an−→ pn, there exist q1, . . . , qn ∈ T such that
q

a1−→ q1
a2−→ . . .

an−→ qn and E(pi) ∩ E∗(det(q), ti) ⊆ E(qi)
and E(pi) ∩ U = E(qi) ∩ U with ti = a1 . . . ai for
i ∈ {1, . . . , n}. Recall that state controllability requires that
every state of q has to be able to ‘simulate’ the uncontrollable
behavior of all states of p reachable by the same trace. In
contrast, our notion requires the same uncontrolled behavior
only for related states of p and q that are reachable by the
same trace. We observe, however, from the reformulation
that when resorting to truly nondeterministic supervisors, the
above must hold for every trace of the supervisor, ultimately
amounting to state controllability.

C. Maximal Permissiveness, Nonblocking Property,
and Partial Observability

When the desired supervised behavior is not achievable, in
the sense that every other achievable supervised behavior is
partially bisimilar to the maximal permissive one, we have to
resort to the notion of maximally permissive supervisors [1],
[2]. In the language setting, the maximal permissive behavior
is achieved as a union of the languages of all possible
controllable behaviors. Here, the role of the union is taken
by the alternative composition that introduces additional
traces. Suppose that q = q1 + q2, where both q1 and q2
are controllable. Then, according to Def. 4, we have that
p | det(q1)↔U q1 and p | det(q2)↔U q2, i.e., deterministic
supervisors det(q1) and det(q2) exist. It follows that
p | (det(q1) + det(q2))↔U q1 + q2. However, for q1 + q2 to
be controllable, it must be that p | det(q1 + q2)↔U q1 + q2.
Thus, we need p | det(q1 + q2)�U p | (det(q1) + det(q2)),
since p | (det(q1) + det(q2)) �U p | det(q1 + q2) always
holds. The former relation characterizes when maximal
permissiveness of two controllable processes is achievable.
Accordingly, we can define a maximally permissive super-
vised plant given a plant p and control requirements r as
q↑C,

∑
{q ∈ T | q is controllable with respect to p and r},

provided that p | det(q1 + q2)�U p | (det(q1) + det(q2)) for
all q1, q2 ∈ T that are controllable with respect to p and r.

It is not difficult to show that when the plant and the
control requirements are deterministic, every controllable
behavior is deterministic as well, and the above requirements
is satisfied. Thus, in the deterministic case, there always
exists a maximally permissive supervised behavior, con-
forming to [1], provided that the minimal supervised plant
behavior with respect to the partial bisimilarity preorder �U
is controllable. According to Def. 3, the minimal supervised
plant is the initial uncontrollable reach of the plant, i.e., the
reachable part of the plant by taking only uncontrollable
prefixes. For example, the minimal supervised behavior of
p , u.v.0 + c.u.0 + v.c.0, with U = {u, v} and C = {c},
is u.v.0 + v.0. The deadlock process can be taken as the
minimal supervised behavior only if the initial state of the
plant does not have outgoing uncontrollable transitions.

Next, we remark that the non-blocking property of [1], [2]
can be specified in our setting as a reachability property. If
we suppose that some states in the plant automaton P are
defined as marked, given by the set M , we can define the
marked language of P as LM = {t ∈ A∗ | there exists s′ ∈
M such that s t7−→∗P s′}. Then, the supervised plant is non-
blocking if Lm(P | S) = L(P | S), i.e., we can extend
every trace with a trace that ends in a marked state [1],
[2]. To this end, we can employ the successful termination
predicate and denote a ‘state’ p ∈ T to be marked if p↓. Then
a given controllable supervised behavior q is nonblocking if
for every q′ ∈ T such that q t−→∗ q′ for some t ∈ A∗, there
exists q′′ ∈ T and t′ ∈ A∗ such that q′ t′−→∗ q′′ and q′′↓.

Finally, we cast the notion of partial observability in our
setting [2]. In supervision under partial observability it is
assumed that not all events are observable by the supervisor.

4500

They are split to observable events O ⊆ A and unobservable
events A \ O. Partial observability is a global property that
states that in all states of the control requirements that
reachable by the same observable trace, an observable event
that is also allowed in the plant following that trace, must be
either always enabled or disabled. The difficulty in capturing
this property in a process-theoretic setting lies in the fact that
the states that are reachable by the same trace do not have to
be otherwise related. An attempt was made in [23] to capture
this notion as a separate state-partitioning relation that was
later coupled to controllability. Here, we will rely on a set
of relevant states of the control requirements to keep track
that events in all states are enabled or disabled.

Def. 5: A relation R ⊆ T ×T × 2T is a partial bisimula-
tion with partial observability with respect to the bisimulation
action set B ⊆ A and observable action set O ⊆ A if for all
p, q ∈ T and Ω ⊂ T such that (p, q,Ω) ∈ R it holds that:

1) if p↓, then q↓;
2) if p a−→ p′ for some a ∈ O, then there exist q′ ∈ T and

Ω′ ⊂ T such that q a−→ q′ and p̄
a−→ for all p̄ ∈ Ω, and

Ω′ = {p̄′ | p̄ a−→ p̄′, p̄ ∈ Ω} with (p′, q′,Ω′) ∈ R;
3) if p

a−→ p′ for some a 6∈ O, then there exist q′ ∈ T
and Ω′ ⊂ T such that q

a−→ q′ and Ω′ = Ω ∪
{p̄′ | p̄ a−→ p̄′, p̄ ∈ Ω} with (p′, q′,Ω′) ∈ R;

4) if q b−→ q′ for some b ∈ B ∩O, then there exist p′ ∈ T
and Ω′ ⊂ T such that p b−→p′ and p̄

b−→ for all p̄ ∈ Ω,
and Ω′ = {p̄′ | p̄ b−→ p̄′, p̄ ∈ Ω} with (p′, q′,Ω′) ∈ R;

5) if q
b−→ q′ for some b ∈ B \ O, then there exist p′ ∈

T and Ω′ ⊂ T such that p
b−→ p′ and Ω′ = Ω ∪

{p̄′ | p̄ b−→ p̄′, p̄ ∈ Ω} with (p′, q′,Ω′) ∈ R.
The set Ω in Def. 5 keeps track of all states of the control

requirements that can be reached by the same observable
trace as the current state and it ensures that all observable
actions are also available for all reachable states as they
are simulated by the plant. Given a plant p and a desired
supervised behavior q, we require that there exists a partial
bisimulation with partial observability relation R such that
(q, p, {q}) ∈ R to ensure that no uncontrollable events are
disabled and partial observability is retained.

IV. CONCLUDING REMARKS

We successfully employed partial bisimilarity preorder
to define controllability of nondeterministic processes. Our
definition is finer than existing notions in the literature
and it reduces to language controllability for deterministic
systems. To support this investigation we developed a process
theory in which we casted standard notion from supervisory
control theory. Furthermore, we characterized the existence
of a deterministic supervisor and a maximally permissive
supervised behavior, and we discussed the relation with
other notions in the literature. Our investigation identified
minimization by mutual partial bisimilarity as the coarsest
controllability-preserving minimization.

As future work, we aim to improve existing algorithms for
supervisor synthesis based on the obtained insights and apply
them to existing case studies. Further on, we plan to apply

the prominent process-theoretic techniques of abstraction
and hiding to supervisory control. Other interesting topics
are modular control, as concurrency is dealt with elegantly
in process algebra, as well as extensions with quantitative
aspects like time or probabilities.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[2] C. Cassandras and S. Lafortune, Introduction to discrete event systems.
Kluwer Academic Publishers, 2004.

[3] J. C. M. Baeten, T. Basten, and M. A. Reniers, Process Algebra:
Equational Theories of Communicating Processes, ser. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
2010, vol. 50.

[4] M. Fabian and B. Lennartson, “On non-deterministic supervisory
control,” Proceedings of the 35th IEEE Decision and Control, vol. 2,
pp. 2213–2218, 1996.

[5] C. Zhou, R. Kumar, and S. Jiang, “Control of nondeterministic
discrete-event systems for bisimulation equivalence,” IEEE Transac-
tions on Automatic Control, vol. 51, no. 5, pp. 754–765, 2006.

[6] S.-J. Park and J.-T. Lim, “Nonblocking supervisory control of nonde-
terministic systems based on multiple deterministic model approach,”
IEICE Transactions on Information and Systems, vol. E83-D, no. 5,
pp. 1177–1180, 2000.

[7] M. Heymann and F. Lin, “Discrete-event control of nondeterministic
systems,” IEEE Transactions on Automatic Control, vol. 43, no. 1, pp.
3–17, 1998.

[8] M. Heymann and G. Meyer, “Algebra of discrete event processes,”
NASA Ames Research Center, Technical Report NASA 102848, 1991.

[9] R. Kumar and M. A. Shayman, “Nonblocking supervisory control
of nondeterministic systems via prioritized synchronization,” IEEE
Transactions on Automatic Control, vol. 41, no. 8, pp. 1160–1175,
1996.

[10] A. Overkamp, “Supervisory control using failure semantics and partial
specifications,” IEEE Transactions on Automatic Control, vol. 42,
no. 4, pp. 498–510, 1997.

[11] R. Kumar and C. Zhou, “Control of nondeterministic discrete event
systems for simulation equivalence,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 4, no. 3, pp. 340–349, 2007.

[12] P. Madhusudan and P. S. Thiagarajan, “Branching time controllers for
discrete event systems,” Theoretical Computer Science, vol. 274, no.
1-2, pp. 117–149, 2002.

[13] P. Tabuada, “Controller synthesis for bisimulation equivalence,” Sys-
tems and Control Letters, vol. 57, no. 6, pp. 443–452, 2008.

[14] J. J. M. M. Rutten, “Coalgebra, concurrency, and control,” Center for
Mathematics and Computer Science, Amsterdam, The Netherlands,
SEN Report R-9921, 1999.

[15] R. Eshuis and M. M. Fokkinga, “Comparing refinements for failure
and bisimulation semantics,” Fundamenta Informaticae, vol. 52, no. 4,
pp. 297–321, 2002.

[16] R. J. v. Glabbeek, “The linear time–branching time spectrum I,”
Handbook of Process Algebra, pp. 3–99, 2001.

[17] R. Gentilini, C. Piazza, and A. Policriti, “From bisimulation to simu-
lation: Coarsest partition problems,” Journal of Automated Reasoning,
vol. 31, no. 1, pp. 73–103, 2003.

[18] G. Barrett and S. Lafortune, “Bisimulation, the supervisory control
problem and strong model matching for finite state machines,” Discrete
Event Dynamic Systems, vol. 8, no. 4, pp. 377–429, 1998.

[19] K. G. Larsen, “Modal specifications,” in Automatic Verification Meth-
ods for Finite State Systems, ser. LNCS, vol. 407. Springer, 1990,
pp. 232–246.

[20] K. G. Larsen and L. Xinxin, “Equation solving using modal transitions
systems,” in Proceedings of LICS. IEEE, 1990, pp. 108–117.

[21] J. C. M. Baeten, D. A. van Beek, B. Luttik, J. Markovski, and J. E.
Rooda, “Partial bisimulation,” Eindhoven University of Technology,
SE Report 10-04, 2010, available from http://se.wtb.tue.nl.

[22] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[23] J. Komenda and J. H. van Schuppen, “Control of discrete-event
systems with partial observations using coalgebra and coinduction,”
Discrete Event Dynamic Systems, vol. 15, pp. 257–315, 2005.

4501

