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Abstract— The paper considers a distributed robust estima-
tion problem over a network with randomly changing topology.
The objective is to deal with these changes locally, by switching
observer gains at affected nodes only. We propose sufficient con-
ditions which guarantee a suboptimal H∞ level of disagreement
of estimates in such observer networks, both in the mean-square
sense and with probability 1. When the status of the network is
known globally these sufficient conditions enable the network
gains to be computed by solving certain LMIs. When the nodes
are to rely on a locally available information about the network
topology, additional rank constraints are used to condition the
gains, given this information.

I. INTRODUCTION

One of the motivations for using distributed multisensor

networks is to make the network resilient to loss of com-

munication. This has led to an extensive research into the

development of Kalman filtering techniques over unreliable

communication networks [13] and networks with limited

channel capacity [9]. Another emerging approach is con-

cerned with distributed Kalman filtering over networks with

time-varying and switching topology [14].

Recently, there has been a growing interest in Markovian

switching models to describe estimator networks, where the

probability of communication links to be active is governed

by a Markovian switching rule [15], [12], [8]. Such models

are widely used in the analysis of communication channels

with random data loss.

Unless the governing Markov process is composed from

independent two-state Markov processes describing the status

of individual links [6], [12], [15], the majority of references

employing Markovian network models rely on the assump-

tion that the complete state of the underlying Markov chain

is known to every controller or filter [7], [1]. In the context

of distributed filtering, this assumption requires each node

of the network to know the graph of the entire network in

order to deploy suitable gains.

On the other hand, it was noted in [6] that modelling com-

munication dropouts as independent Markov processes leads

to LMI problems whose complexity grows exponentially; see

e.g. [12], [15]. The issue was addressed in [6] by further

assuming that while the links are statistically independent

of each other the dropouts are governed by unknown (hence

arbitrary) Markovian probability distributions. However the

assumption of independence between communication links is

not satisfied in a number of practical situations, for example,
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when a communication path between two network hubs

is lost and packets are being re-routed; this may trigger

congestion and dropouts in other areas of the network. The

random processes describing the status of each node are

interdependent in this case. Furthermore, such processes

may not be Markov even if the overall network model

is Markovian. The objective of this paper is to develop

distributed filtering technique which overcomes the need for

broadcast of global communication topology and does not

require Markovian segmentation of the network.

The main contribution of this paper is the methodology of

distributed H∞ filter design which enables filters to be imple-

mented in a truly distributed fashion, by utilizing only locally

available information about the system’s connectivity, with-

out assuming independent status of communication links.

This design constraint referred to as the ‘locality constraint’,

is an important distinction of our methodology, compared

with, e.g., [15], [6]. To overcome difficulties arising from

partial knowledge of changing graph connectivity and non-

Markovian nature of the process ηi(t), we use the approach

previously developed for problems of decentralized control

of jump parameter systems [18]. It involves a two-step

design procedure. First, an auxiliary problem is solved under

simplifying assumption that the complete network topology

instantaneously available at each node. At the second step,

conditioning on the locally available information is carried

out.

In comparison with [15], our approach enables the node

estimators to reach relative H∞ consensus about the estimate

of the reference plant. This allows each filter to track the

reference state even when the reference is unobservable

from node’s measurements. To achieve this, we extend the

vector dissipativity theory [5] and the related LMI tech-

nique [16] to Markovian jump parameter systems; see also

[17]. This enables dissipativity of a large-scale Markovian

jump parameter system describing evolution of estimation

errors to be studied using vector storage functions and vector

supply rates. We establish both mean-square convergence and

convergence with probability 1 of the distributed filters under

consideration.

II. PROBLEM FORMULATION

A. Networks with Markovian switching topology

To describe the class of switching networks of estimators

under consideration we begin with a directed weakly con-

nected graph G = (V,E), where V = {1, . . . , N} is the set

of nodes, and E ⊆ V×V is the set of edges of G. The edge

originating at node j and ending at node i, will be denoted

(j, i). The graph does not contain self-loops, i.e., (i, i) 6∈ E.
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A subset B(t) ⊆ V consisting of nodes supplying in-

formation to node i at a particular time instant t forms an

instantaneous neighborhood of i. In this paper we consider

switching networks, so the instantaneous neighbourhood of

each node can change with time. Also, we allow for the

situation where sensors at each node can operate in several

regimes, which are chosen according to a probability law.

Hence, at every time instant, the state of each node’s neigh-

bourhood is determined by both the communication links

and the sensing regime active at this time instant. Formally,

we say that two neighbourhoods B(t1), B(t2) of node i, are

identical if B(t1) = B(t2) and the sensing regime of node i

at time t1 is the same as that at time t2. Otherwise, we say

that these neighbourhoods are distinct.

Suppose that node i can have Mi distinct neighbourhoods

denoted V
1
i , . . . ,V

Mi

i . The dynamic of the neighbourhood

set of i can be described as a mapping ηi : [0,∞) → Ii,

where Ii , {1, . . . ,Mi} is the index set of the collection

of distinct neighbourhoods.

We now look at the entire network. At any time, it can

be uniquely reconstructed by analysing the collection of

neighbourhoods of all its nodes, (Vm1
1 , . . . ,VmN

N ), mi ∈
Ii, i = 1, . . . , N . Thus, the instantaneous network graph can

be uniquely associated with an N -tuple (m1, . . . ,mN ), mi ∈
Ii. Owing to dependencies between the links, the number of

admissible graph topologies, M , may be substantially lower

than the maximum number
∏N

i=1 Mi of all N -tuples. Let

us consider all distinct admissible graph topologies G
m =

(V,Em), m ∈ I = {1, . . . ,M}, E
m ⊆ E. Each digraph

G
m is a subgraph of G. The set of these subgraphs will

be denoted G = {Gm,m ∈ I }. Clearly there is a one-

to-one mapping between the index set I and the set of all

admissible N -tuples (m1, . . . ,mN ); it will be denoted Φ:

(m1, . . . ,mN ) = Φ(m). An example illustrating how such a

mapping can be constructed can be found in [18]. Also, we

will write mi = Φi(m), whenever (m1, . . . ,mN ) = Φ(m).
Let A

m = [am
ij ]i,j=1,N be the adjacency matrix of the

digraph G
m, i.e., a

m
ij = 1 if (j, i) ∈ E

m, otherwise a
m
ij = 0.

When the network is in configuration G
m, the cardinality

of the neighbourhood of node i, known as the in-degree of

node i, is equal to pm
i =

∑N
j=1 a

m
ij , and the out-degree of

node i is qm
i =

∑N
j=1 a

m
ji . It is worth noting that

a
m
ij =

{

1 if j ∈ V
Φi(m)
i ;

0 otherwise.
(1)

Using the one-to-one mapping Φ, the dynamics of the

network topology can be described as the process η(t) =
Φ−1(η1(t), . . . , ηN (t)), so that at each time instance, ηi(t) =
Φi(η(t)). Throughout this paper, it will be assumed that

{η(t), t ≥ 0} is a stationary Markov random process taking

values in the finite set I ; cf. [8]. It is defined in a filtered

probability space (Ω,F , {Ft},P), where Ft denotes the

minimal right-continuous filtration with respect to which

{η(t), t ≥ 0} is adapted [3]. Also, the σ-algebra F is the

minimal σ-algebra which contains all measurable sets from

the filtration {Ft}. The transition probability rate matrix of

the Markov chain {η(t), t ≥ 0} is denoted Λ = [λkl]
M
k,l=1,

with λkl ≥ 0, k 6= l and λkk = −
∑

l 6=k

λkl ≤ 0,∀k ∈ I [3].

In Section IV it will be further assumed that the Markov

process η(t) is irreducible1 and has an invariant distribution

λ̄; i.e., there exists a row vector λ̄, λ̄l ≥ 0,
∑M

l=1 λ̄l = 1,

such that λ̄Λ = λ̄. For irreducible Markov processes, if an

invariant distribution exists, it is unique.

We will use the notation (η,G ,Φ) to refer to the switching

network described above. Since η(t) is stationary, then each

process ηi(t) is also stationary. However, in general ηi(t) is

not Markov, and the components of the multivariate process

(η1(t), . . . , ηM (t)) may statistically depend on each other.

Throughout the paper P
x0,m0 , E

x0,m0 denote, respectively,

the conditional probability and conditional expectation, given

x(0) = x0, η(0) = m0. Also, L2[0,∞) denotes the

Lebesgue space of vector-valued deterministic processes with

the property ‖z‖2 =
∫ ∞

0
‖z(t)‖2dt < ∞.

B. H∞ consensus estimation

Consider a plant described by the equation

ẋ = Ax + B2ξ(t), x(0) = x0, (2)

Here x ∈ R
n is the state, ξ(t) ∈ R

l is a deterministic

disturbance, ξ(·) ∈ L2[0,∞). We assume ξ(·) to be such

that x(t) exists on any finite interval [0, T ].
Also, consider a switching network {η,G ,Φ} of filters.

Suppose each node takes measurements

yi = C̃i(ηi(t))x+D̃i(ηi(t))ξ+ ˜̄Di(ηi(t))ξi, yi ∈ R
r, (3)

where ξi(t) ∈ R
li represents the measurement uncertainty

at sensing node i, ξi(·) ∈ L2[0,∞). The coefficients of

equation (3) take values in given sets of constant matrices of

compatible dimensions, C̃i(ηi(t)) ∈ Ci , {Ck
i , k ∈ Ii},

D̃i(ηi(t)) ∈ Di , {Dk
i , k ∈ Ii}, ˜̄Di(ηi(t)) ∈ D̄i ,

{D̄k
i , k ∈ Ii}. It is assumed that Ek

i = Dk
i (Dk

i )′ +
D̄k

i (D̄k
i )′ > 0 for all i and k ∈ Ii. We allow the coefficients

in (3) to depend on ηi to capture the situation where the

node’s sensors need to be adjusted in response to the changes

in the node’s communications. But there may be other

situations which may require the sensing regime to change.

The measurements yi are processed at node i according

to the following estimation algorithm (cf. [15]):

˙̂xi = Ax̂i + L̃i(ηi(t))(yi(t) − C̃i(ηi(t))x̂i)

+
∑

j∈V
ηi(t)

i

K̃ij(ηi(t))(vij − Hij x̂i), x̂i(0) = 0, (4)

where vij is the signal received at node i from node j,

vij = Hij x̂j + Gijwij , (5)

wij ∈ L2[0,∞) is a disturbance affecting the information

transmission from node j to i, and L̃i(·), K̃ij(·) are the

matrix valued functions defined on the index set Ii. It is

1A continuous-time stationary Markov chain is irreducible if for any two
states m, k there exists t > 0 such that P(η(t) = m|η(0) = k) > 0.
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assumed that Fij = GijG
′
ij > 0 for all i and j ∈ V

mi

i ,

mi ∈ Ii.

Remark 1: In equation (5), the matrices Hij and Gij do

not depend on ηi(t). On the other hand, the innovation

and coupling gains L̃i(·), K̃ij(·) depend on the node’s

neighbourhood and its sensing regime at time t. This is

to reflect a situation where node j always broadcasts its

information to node i, but node i may fail to receive this

information, or may choose not to accept it, e.g. due to

congestion. Therefore, the summation in (4) is over time-

dependent neighbourhoods. It is possible to consider a more

general situation where the matrices Hij and Gij also depend

on ηi(t). Technically, this more general case is no different

from the one pursued here.

At each time instance the node estimators (4) receive

information only from the neighbours they are currently

connected to. Therefore, the coupling and observer gains

L̃i(·), K̃i(·) are sought to be functions of the state of the

process ηi, rather than η. This enables the estimator nodes to

operate by relying on a partial information about the topology

of the communication graph encoded in the ‘local’ process

ηi. This is an additional ‘locality constraint’, compared to

the standard Markovian communication model, where the

complete communication graph is assumed to be known at

each node [15], [1].

We now formulate the distributed estimation problem with

H∞ consensus of estimates under consideration. Associated

with the system (2) and the set of filters (4) is the disagree-

ment function (cf. [10])

Ψ(x̂,m) =
1

N

N
∑

i=1

∑

j∈VΦi(m)

‖x̂j − x̂i‖
2, m ∈ I , (6)

x̂ = [x̂′
1 . . . x̂′

N ]′. Clearly, Ψ(x̂,m) = Ψ(e,m), where e =
[e′1 e′2 . . . e′N ]′, and ei = x− x̂i is the local estimation error

at node i.

Definition 1: The distributed filtering problem under con-

sideration is concerned with determining the sets of switch-

ing observer gains L̃k
i and interconnection coupling gains

K̃k
i , k ∈ Ii, for the filters (4) which ensure that the follow-

ing conditions are satisfied when we set L̃i(ηi(t)) = L̃
ηi(t)
i ,

K̃ij(ηi(t)) = K̃
ηi(t)
ij for all i = 1, . . . , N and j ∈ V

ηi(t):

(i) In the absence of the uncertainty, all node estimators

converge exponentially in the mean-square sense and

converge asymptotically with probability 1:

E
x0,m0‖ei(t)‖

2 ≤ ce−ǫt, (∃c, ǫ > 0),

P
x0,m0( lim

t→∞
‖ei(t)‖

2 = 0) = 1.

(ii) Given a constant γ > 0, the filter ensures the following

mean-square H∞ consensus performance

sup
x0,(ξ,ξi,wij) 6=0

E
x0,m0

∫ ∞

0
Ψ(e(t), η(t))dt

µ(x0, ξ, [ξi, wij ]i,j=1,...,N )
≤ γ2, (7)

µ(x0, ξ, [ξi, wij ]i,j=1,...,N ) , ‖x0‖
2
P + ‖ξ‖2

2

+
1

N

N
∑

i=1

(

‖ξi‖
2
2 +

M
∑

j=1

‖(āij(·))
1/2wij(·)‖

2
2

)

.

Here, āij(t) , E
m0a

ηi(t)
ij , ‖x0‖

2
P , x′

0Px0, P = P ′ >

0 is a fixed matrix to be determined.

(iii) All estimators converge in the mean-square and with

probability 1:

lim
t→∞

E
x0,m0

N
∑

i=1

‖x(t) − x̂i(t)‖
2 = 0, (8)

P
x0,m0( lim

t→∞
‖x(t) − x̂i(t)‖

2 = 0) = 1. (9)

To overcome difficulties arising from partial knowledge

of the graph connectivity and non-Markovian nature of

the process ηi(t), we adopt the two-step approach recently

proposed in [18]. First, in the next section we consider

an auxiliary distributed estimation problem. This problem

does not involve the ‘locality constraint’, but we will seek

a solution to this problem using a network of uncertain

estimators. Then in Section IV, we replace this uncertain

estimator network with an estimator network which satis-

fies the ‘locality constraint’ and retains performance of the

auxiliary design.

III. AN AUXILIARY GLOBAL NETWORK DEPENDENT

DISTRIBUTED ESTIMATOR

In this section, we focus on the network governed by the

Markov process η(t). Let us define matrices Ck
i , Dk

i , D̄k
i ,

k ∈ I , as follows

Ck
i = C̃

Φi(k)
i , Dk

i = D̃
Φi(k)
i , D̄k

i = ¯̃
D

Φi(k)
i . (10)

By letting Ci(η(t)) = C
η(t)
i , Di(η(t)) = D

η(t)
i , D̄i(η(t)) =

D̄
η(t)
i , the measurements at node i can be expressed as the

function of η(t):

yi = Ci(η(t))x + D(ηi(t))ξ + D̄i(η(t))ξi. (11)

The auxiliary problem in this section is concerned with

estimation of the state of the uncertain plant (2), (11) using

a network of uncertain node estimators of the form

˙̂xi = Ax̂i + Li(η(t))(yi(t) − Ci(η(t))x̂i)

+
∑

j∈VΦi(η(t))

Kij(η(t))(vij − x̂i)

+
∑

j∈VΦi(η(t))

(ω
(1)
ij + ω

(2)
ij ) + ωi, x̂i(0) = 0. (12)

Here, Li(·), Ki(·) are matrix valued functions of the state of

the Markov chain η to be found, and ω
(1)
ij , ω

(2)
ij , and ωi are

estimator perturbations. It is assumed that these perturbations

are random processes adapted to the filtration {Ft, t ≥ 0}
and such that the multivariate process (x̂1, . . . , x̂N , η) is

Markov with respect to that filtration. The introduction of

these perturbations is a critical step to allow us to replace,

at a later stage, the gains dependent on the global network

configuration with localized ones. In this section, we assume

that these perturbations satisfy the constraints:

‖ωi(t)‖
2

≤ α2
i

∥

∥Ci(η(t))ei(t) + Di(η(t))ξ(t) + D̄i(η(t))ξi(t)
∥

∥

2
,

‖ω
(1)
ij (t)‖2 ≤ β2

ij ‖Hijei(t) + Gijwij‖
2
,

‖ω
(2)
ij (t)‖2 ≤ β2

ij ‖Hijej(t)‖
2

a.s. ∀t ≥ 0, (13)
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where αi, βij are given constants, and ei = x − x̂i is

the estimation error of the auxiliary estimator at node i.

Since x(t) is a deterministic process, then the multivariate

process (e1, . . . , eN , η) is Markovian (since (x̂1, . . . , x̂N , η)

is Markovian due to the assumption on ω
(1)
ij , ω

(2)
ij , ωi.

Definition 2: The auxiliary distributed consensus estima-

tion problem is to determine the sets of switching observer

gains Lm
i and interconnection coupling gains Km

i , m ∈ I ,

for the filters (12) which ensure that the following conditions

are satisfied when we set Li(η(t)) = L
η(t)
i , Kij(η(t)) =

K
η(t)
ij for all i = 1, . . . , N and j ∈ V

Φi(η(t)).

(i) When (ξ, ξi, wij) ≡ 0, the large-scale system consist-

ing of subsystems describing evolution of estimation

errors in the auxiliary problem under consideration

must be exponentially stable in the mean-square sense

and asymptotically stable with probability 1 for all

estimator perturbations ω
(1)
ij , ω

(2)
ij , and ωi for which

correspondingly modified constraints (13) hold.

(ii) In the presence of exogenous disturbances ξ, ξi, wij , the

mean-square consensus performance condition in (7) is

satisfied for all admissible estimator perturbations ω
(1)
ij ,

ω
(2)
ij , and ωi subject to (13).

(iii) All estimators converge in the mean-square and with

probability 1.

To justify the introduction of the auxiliary distributed con-

sensus estimation problem, suppose a set of ‘neighbourhood

dependent’ gains L̃l
i, K̃

l
ij , i = 1, . . . , N , l ∈ Ii, j ∈ V

l
i, is

selected for each node and each distinct neighbourhood, and

consider the network of estimators (4) constructed with these

gains. Using (10) and (1), equation (4) can be rewritten as

follows

˙̂xi = Ax̂i + Li(η(t))(yi(t) − Ci(η(t))x̂i)

+

N
∑

j=1

a
η(t)
ij Kij(η(t))(vij − x̂i)

+ (L̃i(ηi(t)) − Li(η(t)))(yi(t) − Ci(η(t))x̂i)

+

N
∑

j=1

a
η(t)
ij (K̃ij(ηi(t))) − Kij(η(t))(vij − x̂i), (14)

where Ki(η(t)), Li(η(t)) are random matrix-valued pro-

cesses with values in a certain set of matrices {Km
i , Lm

i ,m ∈
I } to be determined. Equation (14) is a particular case of

the uncertain estimator (12) in which perturbation processes

are of particular form

ωi = (L̃i(ηi(t)) − Li(η(t)))

×(Ci(η(t))ei(t) + Di(η(t))ξ + D̄i(η(t))ξi),

ω
(1)
ij = (K̃ij(ηi(t))) − Kij(η(t))(Hijei + Gijwij),

ω
(2)
ij = −(K̃ij(ηi(t))) − Kij(η(t))Hijej . (15)

Suppose now that for every node i = 1, . . . , N and every

admissible neighbourhood configuration V
k
i , k ∈ Ii, ‘local’

gains L̃k
i , K̃k

ij , j ∈ V
k
i , are chosen which satisfy the

conditions

‖L̃
Φi(m)
i − Lm

i ‖2 ≤ α2
i ,

‖K̃
Φi(m)
ij − Km

ij ‖
2 ≤ β2

ij , ∀m ∈ I . (16)

It follows from (16) that the perturbations (15) satisfy (13).

Therefore the estimator (4) in which this particular set

of localized gains is employed, represents one instance of

the auxiliary estimator (12), corresponding to the particular

perturbation (15). Furthermore, if the matrices Km
i , Lm

i , m ∈
I solve the auxiliary H∞ consensus estimation problem

in Definition 2, then the distributed estimator (4) with the

local gains selected above, satisfying (16), solves the robust

consensus estimation problem in Definition 1, using only

locally available information about the network topology.

This discussion motivates us to solve the auxiliary problem

in Definition 2 as a stepping stone towards solving the

problem posed in Section II. This solution is given in

Lemma 1 below. The conditions of the lemma involve the

following linear matrix inequalities in the variables τk
i > 0,

θk
ij > 0, ϑk

ij > 0, Xk
i = (Xk

i )′ > 0, i = 1, . . . , N ,

k = 1, . . . ,M , j ∈ V
Φi(k)
i :

γ2I − τk
i α2

i E
k
i > 0, γ2I − θk

ijβ
2
ijFij > 0, (17)













Qk
i ⋆ ⋆ ⋆ ⋆

Nk
i −γ2I ⋆ ⋆ ⋆

Sk
i 0 −γ2I ⋆ ⋆

11+2Mi
⊗ Xk

i 0 0 −Ti ⋆

Ξ′
i 0 0 0 −Zi













< 0, (18)

where 1s , [1 . . . 1]′ ∈ R
s, ⊗ denotes the Kronecker

product, and Nk
i ,

(

I − (Dk
i )′(Ek

i )−1Dk
i

)

B′
2X

k
i , Sk

i ,

−(D̄k
i )′(Ek

i )−1Dk
i B′

2X
k
i ,

T
k
i , diag

[

τk
i , θk

i,j1 , . . . , θk
i,j

pk
i

, ϑk
i,j1 , . . . , ϑk

i,j
pk

i

]

,

Qk
i , Xk

i (A + δiI − B2(D
k
i )′(Ek

i )−1Ck
i )

+ (A + δiI − B2(D
k
i )′(Ek

i )−1Ck
i )′Xk

i + (pk
i + qk

i )I

+
∑

j:i∈V
Φj(k)

j

ϑk
jiβ

2
jiH

′
jiHji +

M
∑

l=1

λklX
l
i

− γ2(Ck
i )′(Ek

i )−1Ck
i − γ2

∑

j∈V
Φi(k)

i

H ′
ijFijHij ,

Ξi =
[

γ2H ′
ij1

F−1
ij1

Hij1 − I . . . γ2H ′
ij

pk
i

F−1
ij

pk
i

Hij
pk

i

− I
]

,

Zi = diag





2δj1

qk
j1

+ 1
Xk

j1 , . . . ,
2δj

pk
i

qk
j
pk

i

+ 1
Xk

j
pk

i



 .

Lemma 1: Suppose the network (η,G ,Φ) and the con-

stants γ > 0, αi, βij and δi > 0 are such that the coupled

LMIs (17) and (18) in the variables τk
i > 0, θk

ij > 0, ϑk
ij > 0,

Xk
i = (Xk

i )′ > 0, j ∈ V
Φi(k)
i , i = 1, . . . , N , k = 1, . . . ,M ,

are feasible. Then the network of observers (12) with

Kk
ij = γ2(Xk

i )−1H ′
ijF

−1
ij , (19)

Lk
i =

[

γ2(Xk
i )−1(Ck

i )′ + B2(D
k
i )′

]

(Ek
i )−1 (20)
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solves the auxiliary estimation problem in Definition 2. The

matrix P in conditions (7) and (8) corresponding to this

solution is P = 1
N

∑N
i=1 Xm0

i , where m0 = η(0).
As a by-product of Lemma 1 for the case where ωi =

ω
(1)
ij = ω

(2)
ij = 0 and αi = βij = 0, we obtain the following

result concerning distributed H∞ consensus estimation over

networks with Markovian switching topology.

Corollary 1: Suppose the network (η,G ,Φ) and the con-

stants γ > 0 and δi > 0 are such that the coupled LMIs in

the variables Xk
i = (Xk

i )′ > 0, j ∈ V
Φi(k)
i , i = 1, . . . ,M ,

k = 1, . . . ,M ,









Q̄k
i ⋆ ⋆ ⋆

Nk
i −γ2I ⋆ ⋆

Sk
i 0 −γ2I ⋆

Ξ′
i 0 0 −Zi









< 0, (21)

Q̄k
i , Xk

i (A + δiI − B2(D
k
i )′(Ek

i )−1Ck
i )

+(A + δiI − B2(D
k
i )′(Ek

i )−1Ck
i )′Xk

i + (pk
i + qk

i )I

+

M
∑

l=1

λklX
l
i − γ2(Ck

i )′(Ek
i )−1Ck

i − γ2
∑

j∈V
Φi(k)

i

H ′
ijFijHij

are feasible. Then the network of observers (12) with ωi =
ω

(1)
ij = ω

(2)
ij = 0 and Kk

ij , Lk
i defined in (19), (20) solves

the estimation problem in Definition 2. The matrix P in

conditions (7) and (8) corresponding to this solution is

P = 1
N

∑N
i=1 Xm0

i , where m0 = η(0).
It is worth noting that unlike similar LMIs in [15,

Lemma 3], the LMIs (21) are partitioned in a way which

makes possible to solve them in a fully distributed manner

using gradient descent algorithms such as that proposed

in [16].

IV. THE MAIN RESULT

In this section, the solution to the auxiliary distributed

estimation problem developed in Section III will be used

to obtain a distributed estimator whose nodes utilize only

locally available information. This will be achieved by taking

the expectation of the auxiliary node filters conditioned on

the node neighbourhood as time approaches infinity. Com-

putationally, our method is based on the following technical

result of [18].

Proposition 1: Suppose the Markov process η(t) is ir-

reducible and has a unique invariant distribution λ̄. Given

a matrix-valued function K(·) : I → {K1 . . . ,KM} ⊂
R

n×s, for every node i and for all k ∈ Ii we have:

lim
t→∞

E (K(η(t)) | ηi(t) = k) =

∑

l:Φi(l)=k λ̄lK
l

∑

l:Φi(l)=k λ̄l
. (22)

Now let Km
ij , Lm

i , m ∈ S be the coefficients of the

auxiliary distributed estimator obtained in Lemma 1. Using

Proposition 1, define K̃ij(ηi(t)) = K̃
ηi(t)
ij , L̃i(ηi(t)) =

L̃
ηi(t)
i , where for each i = 1, . . . , N and k ∈ Ii, we let

K̃k
ij =

∑

l:Φi(l)=k λ̄lK
l
ij

∑

l:Φi(l)=k λ̄l
, L̃k

i =

∑

l:Φi(l)=k λ̄lL
l
i

∑

l:Φi(l)=k λ̄l
. (23)

From Proposition 1, the processes K̃ij(ηi(t)), L̃i(ηi(t)) are

the asymptotic minimum variance approximations of the

corresponding processes Kij(η(t)), Li(η(t)) [2].

We have for all i = 1, . . . , N , m ∈ I , mi = Φi(m), and

j ∈ V
mi

i ,

Km
ij − K̃mi

ij =

∑

l:l 6=m,Φi(l)=mi
λ̄l

[

Km
ij − Kl

ij

]

∑

l:Φi(l)=mi
λ̄l

, (24)

Lm
i − L̃mi

i =

∑

l:l 6=m,Φi(l)=mi
λ̄l

[

Lm
i − Ll

i

]

∑

l:Φi(l)=mi
λ̄l

. (25)

Note that the expressions on the right-hand side of (24)

and (25) are linear matrix functions of Km
ij and Lm

i , respec-

tively. This enables the bounds on ‖Li(η(t)) − L̃i(ηi(t))‖
2,

‖Kij(η(t))−K̃ij(ηi(t))‖
2 to be established in the LMI form.

Indeed, consider the collection of the rank-constrained LMIs

in the variables τk
i , θk

ij , ϑk
ij , Xk

i and Y k
i , consisting of the

LMIs (17), (18), and the following additional LMIs,

[

α2
i I ∆L,k

i

(∆L,k
i )′ I

]

> 0,

[

β2
ijI ∆K,k

ij

(∆K,k
ij )′ I

]

> 0, (26)

rank

[

Y k
i I

I Xk
i

]

≤ n, (27)

where αi, βij are the same constants as those employed in

the LMIs (17), (18), and

∆L,k
i ,

∑

l:l 6=k,

Φi(l)=mi

γ2λ̄l

[

Y k
i (Ck

i )′(Ek
i )−1 − Y l

i (Cl
i)

′(El
i)

−1
]

∑

l:Φi(l)=mi
λ̄l

,

∆K,k
ij ,

∑

l:l 6=k,

Φi(l)=mi

γ2λ̄l

[

Y k
i − Y l

i

]

H ′
ijF

−1
ij

∑

l:Φi(l)=mi
λ̄l

.

Theorem 1: Given a Markovian switching network

(η,G ,Φ) and a collection of constants γ, αi, βij and

δi > 0, i = 1, . . . , N , associated with each node and

its admissible neighbourhoods. Suppose there exist matrices

Xk
i = (Xk

i )′ > 0, Y k
i = (Y k

i )′ > 0, and positive scalars τk
i ,

θk
ij , ϑk

ij , i = 1, . . . , N , k ∈ I , j ∈ V
Φi(k)
i which satisfy the

matrix inequalities (17), (18), (26), and the rank constraint

(27). Using the solution matrices Y k
i , construct the auxiliary

interconnection and innovation gains

Kk
ij = γ2Y k

i H ′
ijF

−1
ij , (28)

Lk
i =

[

γ2Y k
i (Ck

i )′ + B2(D
k
i )′

]

(Ek
i )−1, (29)

Then, using (23) and (28), (29), construct the estimator net-

work (4). The resulting distributed estimatior network solves

the distributed robust estimation problem in Definition 1.

Proof The result follows from Lemma 1 in manner similar

to the proof of Theorem 4 in [18]. 2

Remark 2: Due to the rank constraints (27), the solution

set to the matrix inequalities in Theorem 1 is non-convex.

In general, it is difficult to solve such problems. Fortunately,

several numerical algorithms have been proposed for this

purpose [4], [11].
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Fig. 1. Switching graph topology for the example.

TABLE I

i = 1 i = 2 i = 3 i = 4 i = 5
m = 1 C02 C02 C03 C02 C03

m = 2 C02 C03 C03 C02 C03

V. EXAMPLE

Consider a plant of the form (2), with A =
[

−3.2 10 0
1 −1 1
0 −14.87 0

]

, B2 =
[

−0.1246
−0.4461
0.3350

]

. The plant is observed

by a 5-node switching observer network which operates

intermittently in two regimes, whose graph topologies are

shown in Figure 1. The evolution of the network is therefore

modelled as a two-state Markov chain with the transition

probability rate matrix Λ =
[

−0.1 0.1
0.1 −0.1

]

. The matrices Cm
i

of the measurement equations are given in Table I, C02 =
[3.1923 − 4.6597 1], C03 = [−0.8986 0.1312 − 1.9703],
and we let Di = 0, D̄i = 0.01 for all nodes. In addition, we

let Hij = I3×3, and generated the matrices Gij randomly.

From Figure 1 and the above list of parameters, nodes

3, 4, and 5 have varying neighbourhoods, and node 2 has

varying sensor parameters. Therefore in this example, we

seek to obtain nonswitching observer gains for node 1 only.

To this end, the auxiliary distributed estimation problem

was solved numerically using Matlab, with additional norm-

bounded uncertainty constraints of the form (16) defined

for the communication link (3, 1) at node 1. This led to

three uncertainty constraints of the form (13), where we

set α2
13 = 500, β2

13 = 21. These constants, as well as

δ = 3.65 were chosen by trial and error, to ensure that

the corresponding minimum variance gains K̃13 and L̃1

computed according to (28), (29) with Y m
1 = (Xm

i )−1,

satisfy conditions (26) of Theorem 1 with γ2 = 7.3206. From

Theorem 1 we conclude that the constructed estimator solves

the distributed estimation problem under consideration.

It is worth noting a significant difference between the gains

obtained for the two modes at nodes 2 and 4. At the same

time, the gains of the observers 3 an 5 vary to a substantially

lesser extent. This suggests a possibility to use nonswitching

gains for these observers as well, even though this was not

the design requirement in this example. Such a phenomenon

needs to be further investigated.

VI. CONCLUSIONS

The paper has presented sufficient conditions for the syn-

thesis of robust distributed consensus estimators connected

over a Markovian switching graph. The proposed estimator

provides a guaranteed suboptimal H∞ disagreement of esti-

mates, while using only locally available information about

connectivity of the network. Our conditions allow a robust

filter network to be constructed by solving an LMI feasibility

problem. These LMIs are partitioned in a way which makes

possible to solve them in a fully decentralized fashion using

gradient descent algorithms such as that proposed in [16].

When the entire network graph is available at every node,

this feasibility problem is convex. Broadcast of the network

status has been eliminated by conditioning on the locally

available information. This has led to the introduction of

rank constraints additional to the LMI conditions.
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