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Abstract— This paper presents a novel cooperative estimation
algorithm for visual sensor networks. We consider the situation
where multiple smart vision cameras with computation and
communication capability see a group of target objects. The
objective of the present algorithm is to meet two requirements:
averaging and tracking. In order to meet the requirements
simultaneously, we present a cooperative estimation algorithm
based on passivity of the kinematic model of rigid body motion.
We then provide an upper bound of the ultimate error between
the actual average and the estimates given by the present
algorithm. Finally the effectiveness of the present estimation
algorithm is demonstrated through experiments.

I. INTRODUCTION

A visual sensor network [1], [2] is a network consisting

of spatially distributed smart cameras, which is a kind of

sensor networks. Unlike the other sensors measuring some

values such as temperature and pressure, vision sensors do

not provide explicit data but combining image processing

techniques or human operators gives rich information which

the other sensors do not provide. Due to the nature, visual

sensor networks are useful in environmental monitoring,

surveillance, target tracking and entertainment.

A lot of research works have been devoted to combining

control techniques with visual information so-called visual

feedback control or images in the loop [3]–[7]. Among them,

we focus on an estimation problem of 3D rigid body motion.

In visual sensor networks, it is expected not only to give

an estimate but also to cooperate with each other camera

in a distributed fashion, which brings us new theoretical

challenges. The main advantages of cooperation are: (i)

accuracy of estimation by integrating rich information, (ii)

tolerance against obstruction, misdetection in image process-

ing and sensor failures and (iii) wide vision and elimination

of blind areas by fusing images of a scene from a variety of

viewpoints. To tackle such distributed control and estimation

problems, cooperative control and estimation schemes as in

[8]–[12] provide useful methodologies.

[12] presents distributed Kalman filters for sensor net-

works based on the consensus algorithm [8]. Unfortunately,

the algorithm is not applicable to our problem since the

object’s pose takes values in a non-Euclidean space. Mean-

while, [13], [14] present distributed estimation algorithms for

visual sensor networks, where [13] computes so-called Rie-

manian mean and [14] Euclidean mean which are averages

on Special Orthogonal Group [15]. However, [13] focuses

on the averaging by assuming that the target’s orientation

Takeshi Hatanaka and Masayuki Fujita are with the Department of
Mechanical and Control Engineering, Tokyo Institute of Technology, Tokyo
152-8552, JAPAN hatanaka@ctrl.titech.ac.jp

is obtained a priori and does not mention estimation from

vision data. Though [14] considers both estimation and

averaging and provides an upper bound on the error between

the actual mean and the estimates, the bound cannot be

computed a priori and can be obtained only after gaining

estimates.

In this paper, we present a novel cooperative estima-

tion algorithm for visual sensor networks. We consider the

situation where multiple vision cameras with computation

and communication capability see a group of target ob-

jects. The objective of the present algorithm is to meet

two requirements: (i) gaining estimates close to an average

pose for static objects and (ii) tracking of the estimates to

moving objects’ poses. For this purpose, we first present

a cooperative estimation algorithm based on the passivity-

based visual motion observer [7] and passivity-based pose

synchronization law [10]. Then, we provide an upper bound

of the ultimate error between the actual average and the

estimates given by the present algorithm. The result gives

an insight into the relation between the mean estimation

accuracy and the feedback gain in the visual motion observer,

namely the estimate becomes accurate as the gain becomes

small. The conclusion basically corresponds to that in works

on multi-agent optimization [16] if the estimation problem

is viewed as a distributed optimization problem on SE(3).
However, we see that unlike optimization problems on a

vector space an offset occurs with respect to the orientation

estimates in SO(3) regardless of the gain selection. We fi-

nally show the effectiveness of the present algorithm through

experiments.

We finally give some notations used in this paper, where

the readers are recommended to refer to [17] for details

on the terminologies. Throughout this paper, we use the

notation eξ̂θab ∈ R3×3 to represent the rotation matrix of

a frame Σb relative to a frame Σa, which is orthogonal

with unit determinant and hence an element of the Lie

group SO(3). ξab ∈ R3 specifies the rotation axis and

θab ∈ R is the rotation angle. For simplicity we use ξθab

to denote ξabθab. The notation ‘∧’ is the operator such that

âb = a× b for the vector cross-product ×. The vector space

of all 3× 3 skew-symmetric matrices is denoted so(3). The

notation ‘∨’ denotes the inverse operator to ‘∧’. We use

gab =

[

eξ̂θab pab

0 1

]

as the homogeneous representation of

gab = (pab, e
ξ̂θab) ∈ SE(3) := R3 × SO(3) describing the

configuration of Σb relative to Σa. The adjoint transformation

associated with gab is denoted by Ad(gab). Similarly to the
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Fig. 1. Visual Sensor Networks

definition of so(3), we define se(3) := {(v, ω̂) : v ∈ R3, ω̂ ∈
so(3)}. In homogeneous representation, we write an element

V := (v, ω) of se(3) as V̂ =

[

ω̂ v
0 0

]

.

II. VISUAL SENSOR NETWORKS

A. Relative Rigid Body Motion

Throughout this paper, we consider the situation where

n vision cameras see a group of target objects (Fig. 1).

The motivation to consider the situation will be explained

in Sections II-D. Suppose that each vision camera i ∈ V :=
{1, · · · , n} has communication and computation capability.

Let the coordinate frames Σw, Σi and Σoi
represent the

world frame, the i-th vision camera frame, and the frame of

the object which vision camera i sees, respectively. Then,

the pose of vision camera i and object oi relative to Σw are

denoted by gwi = (pwi, e
ξ̂θwi) and gwoi

= (pwoi
, eξ̂θwoi ).

Let pioi
∈ R3 and eξ̂θioi ∈ SO(3) be the position vector

and the rotation matrix from the vision camera frame Σi to

the object frame Σoi
. Then, the pose of Σoi

relative to Σi

can be represented by gioi
= (pioi

, eξ̂θioi ) ∈ SE(3) and

satisfies gioi
= g−1

wi gwoi
.

We next define the body velocity of the object Σoi
relative

to the world frame Σw as V b
woi

= (vwoi
, ωwoi

) or

V̂ b
woi

= g−1
woi

ġwoi
=

[

ω̂woi
vwoi

0 0

]

∈ R4×4, (1)

where vwoi
and ωwoi

represent the linear velocity of the

origin and the angular velocity of Σoi
relative to Σw,

respectively [17]. Similarly, vision camera i’s body velocity

relative to Σw will be denoted as V b
wi = (vwi, ωwi).

By using the body velocities V b
wi and V b

woi
, the body

velocity of the relative rigid body motion gioi
is written as

V b
ioi

= −Ad(g−1

ioi
)V

b
wi + V b

woi
. (2)

Equation (2) is a standard formula for the relation between

the body velocities of three coordinate frames [17].

B. Visual Measurement

In this subsection, we define the visual measurement of

the vision camera which is available for estimation of target
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Fig. 2. Block Diagram of the RRBM with Vision Camera (RRBM is an
acronym for Relative Rigid Body Motion)

objects’ motion. Throughout this paper, we use the pinhole

camera model with a perspective projection [17].

In this paper, we assume that each target object has m
feature points and each vision camera can extract them

from the visual data by using some techniques. The position

vectors of the target object i’s l-th feature point relative

to Σoi
and Σi are denoted by poil ∈ R3 and pil ∈ R3

respectively. Using a transformation of the coordinates, we

have pil = gioi
poil, where poil and pil should be regarded,

with a slight abuse of notation, as [pT
il 1]T and [pT

oil
1]T .

Let the m feature points of the object oi on the image

plane coordinate, denoted by fi := [fT
i1 · · · fT

im]T ∈ R2m,

be the measurement of the camera i. It is well known [17]

that the perspective projection of the l-th feature point onto

the image plane gives us the image data fil ∈ R2 as

fil = λi

[

xil/zil yil/zil

]

, (3)

where pil = [xil yil zil]
T and λi is a focal length of vision

camera i. It is straightforward to extend this model to m
image points fi and pi := [pT

i1 · · · pT
im]T ∈ R3m. Under

the assumption that each vision camera i knows poil ∈ R3,

the visual measurement fi depends only on the relative rigid

body motion gioi
. Fig. 2 shows the block diagram of the

relative rigid body motion with the camera model.

C. Communication Model

The vision cameras have communication capability with

the neighboring cameras and constitute a network. The com-

munication is modeled by a graph G = (V, E), where E ⊂
V × V . Namely, vision camera i can get some information

from j if (i, j) ∈ E . In addition, we define the neighbor set

Ni := {j ∈ V| (i, j) ∈ E}. Now, we assume the following.

Assumption 1: The communication graph G is fixed, bal-

anced and strongly connected.

D. Objectives

The main objective of this paper is to present a cooperative

estimation algorithm achieving

• Averaging: Each vision camera i estimates a pose close

to an average of {gioj
}j∈V for static objects.

• Tracking: The estimates track the pose gioi
for moving

objects with a finite tracking error.

Though the present algorithm embodies the tracking nature

from its structure, our theoretical interests are restricted to

the averaging in this paper.

The problem is motivated by scenarios such as estimation

of group behaviors, estimation under uncertainties including

noises, incomplete localization and parametric uncertainties

of vision cameras. For example, suppose that multiple vision
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cameras see a single target object, where each camera has

uncertainties. In theory, the feature points on the image

plane are given by Equation (3). However, as exemplified

in experiments [14], it is not always true due to parametric

uncertainties of the cameras and distortion of lenses. In such

a situation, all the individual cameras can do are to estimate

a pose consistent with the visual measurement. Since all

the cameras have uncertainties, the situation is interpreted

as if vision cameras see different target objects. A way to

gain an accurate estimate under the situation is averaging the

uncertain information among cameras [12].

Let us finally introduce the following means with respect

to positions and orientations as an average of {gwoj
}j∈V .

We employ the arithmetic mean p∗ = 1
n

∑

j∈V pwoj
as the

position average of {pwoj
}j∈V , and a so-called Euclidean

mean [15] as the orientation average of {eξ̂θwoj }j∈V . In

order to define the Euclidean mean, we introduce the energy

function on SO(3) φ(eξ̂θ) = tr(I3 − eξ̂θ) = 1
2‖I3 − eξ̂θ‖2

F ,

where ‖M‖F is the matrix Frobenius norm of matrix M .

Then, the Euclidean mean of {eξ̂θwoj }j∈V is defined by

eξ̂θ∗

:= arg min
eξ̂θ∈SO(3)

∑

j∈V

φ(e−ξ̂θeξ̂θwoj ). (4)

Hereafter, we use the notations g∗ = (p∗, eξ̂θ∗

) and g∗i =

(p∗i , e
ξ̂θ∗

i ) := g−1
wi g∗.

III. VISUAL MOTION OBSERVER

In this section, we consider the problem that a vision

camera i estimates the target object motion gioi
from the

visual measurements fi without considering communication.

For this purpose, we introduce the visual motion observer

presented in [7].

We first prepare a model of the actual rigid body motion

(2) similarly to the Luenberger-type observer. as

V̄ b
ioi

= −Ad(ḡ−1

ioi
)V

b
wi + uei, (5)

where ḡioi
= (p̄ioi

, e
ˆ̄ξθ̄ioi ) and V̄ b

ioi
are estimates of the

relative pose gioi
and its velocity respectively The input

uei = [vT
uei ωT

uei]
T is to be determined to drive the estimated

values ḡioi
and V̄ b

ioi
to their actual values. Once the estimate

ḡioi
is determined, the estimated measurement f̄i is also

computed by (3).

In order to establish the estimation error system, we define

the estimation error between the estimated value ḡioi
and the

actual relative rigid body motion gioi
as gei = (pei, e

ξ̂θei) :=

ḡ−1
ioi

gioi
. Using the notations eR(eξ̂θ) := sk(eξ̂θ)∨ and

sk(eξ̂θ) := 1
2 (eξ̂θ − e−ξ̂θ), the vector representation of the

estimation error is given by

eei := ER(gei), ER(gei) :=
[

pT
ei eT

R(eξ̂θei)
]T

. (6)

Note that eei = 0 iff gioi
= ḡioi

.

If we define the visual measurement error as fei :=
fi(gioi

)−f̄i(ḡioi
), then the relation between the actual vision

data and the estimated one can be approximately given by

fei = Ji(ḡioi
)eei [7], where Ji(ḡioi

) : SE(3) → R2m×6
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Fig. 3. Estimation Error System

is the well-known image Jacobian. Now, if m ≥ 4, the

estimation error vector is reconstructed by

eei = J†
i (ḡioi

)fei, (7)

where † denotes the pseudo-inverse.

Differentiating gei = ḡ−1
ioi

gioi
with respect to time and

using (2) and (5), we obtain the estimation error system

V b
ei = −Ad(g−1

ei
)uei + V b

woi
. (8)

Fig. 3 shows the block diagram of the system (8).

We next form the visual motion observer and analyze

stability of the closed-loop system based on passivity. [7]

proves that if V b
woi

= 0, then the estimation error system (8)

is passive from the input uei to the output −eei. Based on

the passivity property, we consider the following input

uei = −kei(−eei) = keieei, kei > 0. (9)

Then, we have the following facts from passivity-based

control theory.

Fact 1: [7] (i) If V b
woi

= 0, then the equilibrium point

eei = 0 for the closed-loop system (8) and (9) is asymptot-

ically stable. (ii) Given a positive scalar γ̃i, if kei satisfies

kei − 1
2γ̃2

i

− 1
2 > 0, then the system (8) and (9) with input

V b
woi

and output eei has L2-gain smaller than γ̃i.

Item (i) shows that the visual motion observer leads the

estimate ḡioi
to the actual relative pose for a static object.

Item (ii) implies that the observer works even for a moving

target object, and the parameter γ̃i is an index on estimation

accuracy.

IV. PASSIVITY-BASED COOPERATIVE ESTIMATION

In this section, we present a cooperative estimation algo-

rithm under the assumption of (i) each vision camera knows

relative pose gij = g−1
wi gwj with respect to the neighbors

j ∈ Ni and (ii) V b
wi = 0 ∀i ∈ V . Under V b

wi = 0, the relative

rigid body motion (2) is simply given by ġioi
= gioi

V̂ b
woi

.

Accordingly, the update procedure of the estimates in the

visual motion observer is formulated as

˙̄gioi
= ḡioi

ûei, uei = keeei, (10)

where we restrict the gain kei as kei = kej = ke ∀i, j ∈ V .
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A. Update Rule of Estimates

In this section, we present an update rule of the estimates

ḡioi
so as to estimate the mean g∗i based on the visual motion

observer [7] and passivity-based pose synchronization law

[11]. For this purpose, we first assume that each vision

camera i gains the estimate ḡjoj
from j ∈ Ni as messages.

Now, by multiplying known information gij from left, each

vision camera i gets ḡioj
:= gij ḡjoj

for all j ∈ Ni.

Let us define the update procedure of the estimate ḡioi

˙̄gioi
= ḡioi

ûei, uei = keeei +
∑

j∈Ni

ER(ḡ−1
ioi

ḡioj
). (11)

Since eei is reconstructed from the visual measurement fi

by (7) and ḡioj
is obtained through communication as stated

above, the update procedure (11) is implementable. The

block diagram of the total cooperative estimation algorithm

of vision camera i is illustrated in Fig. 4.

The present estimation algorithm is a kind of generaliza-

tion of [7] and [10]. Indeed, as depicted in Fig. 4, without the

second term, the update rule (11) is the same as that of the

visual motion observer (10). This implies that the present

algorithm structurally embodies the tracking property for

moving targets. In addition, without the first term keeei, the

update procedure (11), namely uei =
∑

j∈Ni
ER(ḡ−1

ioi
ḡioj

),
is essentially equal to the passivity-based pose synchroniza-

tion law [10] of a group of rigid bodies whose poses are

represented by ḡwoi
:= gwiḡioi

. Thus, under appropriate

assumptions, each ḡwoi
would converge to a state satisfying

ḡwoi
= ḡwoj

as time goes to infinity without the first term.

In the following, we mainly focus on the orientation part

ė
ˆ̄ξθ̄ioi = e

ˆ̄ξθ̄ioi ω̂uei, (12)

ωuei = keeR(e−
ˆ̄ξθ̄ioi eξ̂θioi ) +

∑

j∈Ni

eR(e−
ˆ̄ξθ̄ioi e

ˆ̄ξθ̄ioj ), (13)

of (11) and closeness of the ultimate estimates e
ˆ̄ξθ̄ioi to the

average eξ̂θ∗

i .

B. Auxiliary Results

In this subsection, we give some auxiliary results neces-

sary for proving the main result of this paper. Hereafter we

use the following assumption.

Assumption 2: There exists a pair (i, j) ∈ V×V such that

eξ̂θwoi 6= eξ̂θwoj and e−ξ̂θ∗

i eξ̂θioi > 0 for all i ∈ V .

We first have the following lemma for the update proce-

dure (12) and (13).

Lemma 1: Suppose that V b
woi

= 0 ∀i ∈ V and the

estimates e
ˆ̄ξθ̄ioi are updated according to (12) and (13). Then,

under Assumptions 1 and 2, if e−
ˆ̄ξθ̄ioi eξ̂θ∗

i > 0 ∀t ≥ 0, there

exists a finite T such that each estimate e
ˆ̄ξθ̄ioi satisfies

∑

i∈V

φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) ≤

∑

i∈V

φ(e−ξ̂θ∗

i eξ̂θioi ) ∀t ≥ T. (14)

Since the visual motion observer correctly estimates the

pose eξ̂θioi without communication (Fact 1(i)), the right-

hand side of (14) is equal to the sum of the energy function

of the errors between the average eξ̂θ∗

i and the ultimate
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estimates e
ˆ̄ξθ̄ioi without communication, i.e. the estimation

accuracy of the mean without communication. Thus, (14)

means that the accuracy of the estimates as a group improves

by using communication and cooperation. Though checking

e−
ˆ̄ξθ̄ioi eξ̂θ∗

i > 0 for all time t ≥ 0 is not easy, the subsequent

Lemma 2 gives a solution to the problem.

Lemma 1 does not imply that each estimate e
ˆ̄ξθ̄ioi becomes

close to eξ̂θ∗

i . In terms of the individual estimates e
ˆ̄ξθ̄ioi , we

get the following result.

Lemma 2: Suppose that V b
woi

= 0 ∀i ∈ V and the

estimates e
ˆ̄ξθ̄ioi are updated according to (12) and (13). Then,

under Assumption 1 and e−
ˆ̄ξθ̄ioi eξ̂θ∗

i > 0 ∀t ≥ 0, there exists

a finite T1(c) satisfying

φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) ≤ φ(e−ξ̂θ∗

eξ̂θwoh ) + c ∀t ≥ T1(c), i ∈ V,
(15)

for any scalar c > 0, where h := arg maxj φ(e−ξ̂θ∗

eξ̂θwoj ).

This lemma implies that individual estimates e
ˆ̄ξθ̄ioi get closer

to the mean eξ̂θ∗

i at least than the object with the farthest ori-

entation from the mean. In addition, the proof of this lemma

also means that the set S = {(eˆ̄ξθ̄woi )i∈V | e−
ˆ̄ξθ̄ioi eξ̂θ∗

i >
0 ∀i ∈ V} is positively invariant for (12) and (13) under

Assumption 2 if the object is static. Namely, if e−
ˆ̄ξθ̄ioi eξ̂θ∗

i >
0 is satisfied at the initial time and Assumption 2 is true, then

e−
ˆ̄ξθ̄ioi eξ̂θ∗

i > 0 holds for all subsequent time and we do not

need to check it in transient states. Hereafter, we use the

notation δ := φ(e−ξ̂θ∗

eξ̂θwoh ), δc = δ + c for notational

simplicity. Note that these parameters are fixed values.

Let us now define the following subsets of S for some ε ∈
[0, 1], where ρ :=

∑

i∈V φ(e−ξ̂θ∗

i eξ̂θioi ) and β := 1−
√

2δc.

S1 :=
{

(e
ˆ̄ξθ̄ioi )i∈V ∈ S

∣

∣

∣

∑

i∈V

φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) > ρ

}

,

S2(ke) :=
{

(e
ˆ̄ξθ̄ioi )i∈V ∈ S \ S1

∣

∣

∣

∑

i∈V

∑

j∈Ni

φ(e−
ˆ̄ξθ̄woi e

ˆ̄ξθ̄woj ) ≥ keρ

β

}

S3(ke, ε) :=
{

(e
ˆ̄ξθ̄ioi )i∈V ∈ S \ (S1 ∪ S2(ke))

∣

∣

∣
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∑

i∈V

φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) > ρε

}

.

Then, Lemma 1 says that the function V =
∑

i∈V φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) is strictly decreasing in the set

S1 along with the trajectories of (12) and (13). In the other

regions, we obtain the following lemma.

Lemma 3: Suppose that all the assumptions in Lemma 1

hold and β > 0. Then, the function V is strictly decreasing

in the region S2(ke). In addition, in the region S3(ke, ε),
there exists an i ∈ V such that

φ(e−
ˆ̄ξθ̄woi e

ˆ̄ξθ̄woj ) ≤ ke

diam(G)2

β

∑

i∈V

φ(e−ξ̂θ∗

eξ̂θwoi ) (16)

for all j ∈ V , where diam(G) is the diameter of the graph

G [9].

Note that the assumption β > 0 means that the absolute

value of the rotation angle of e−ξ̂θ∗

eξ̂θwoi is smaller than

about 41[deg] for all i ∈ V .

C. Main Result

Now, we are ready to state the main result of this paper

which gives a quantitative evaluation on the closeness of the

ultimate estimates e
ˆ̄ξθ̄ioi to the mean eξ̂θ∗

i .

Theorem 1: Suppose that all the assumptions in Lemma 1

hold. Then, for any ǫ ∈ (0, 1), there exists a finite T (ǫ) > 0
such that

∑

i∈V

φ(e−ξ̂θ∗

i e
ˆ̄ξθ̄ioi ) ≤ α

∑

i∈V

φ(e−ξ̂θ∗

eξ̂θwoi ) ∀t ≥ T (ǫ), (17)

where α is a function of β and ke > 0 given by

α(β, ke) = 1 − (1 − ǫ)
(

√

β −
√

kendiam(G)
)2

(18)

for positive β > 0 and ke satisfying

ke ≤ β

ndiam(G)2
. (19)

and otherwise α(β, ke) = 1.

Inequality (17) says that if the parameter α is small enough,

the mean estimation becomes accurate. Under (19), α gets

small as the term
√

kendiam(G) approaches to 0. Now, if

we use a sufficiently small gain ke in (11), then the term

is approximated by 0. In addition, if we take ǫ sufficiently

close to 0, then (18) is approximately given by 1 − β =√
2δc. From the definition of δc := φ(e−ξ̂θ∗

eξ̂θwoh ) + c, if

the target object’s orientation eξ̂θwoh is sufficiently close to

the mean e−ξ̂θ∗

, i.e. if eξ̂θwoi and eξ̂θwoj are close enough

among all i, j ∈ V , then it becomes close to 0 and the mean

is accurately estimated by the present update procedure (12)

and (13). Otherwise, the accuracy might degrade, though it

is more accurate at least than the case in the absence of

cooperation. The parameter ǫ is associated with the speed

of convergence T (ǫ) and for a small ǫ the time to take for

reaching the region satisfying (17) becomes long.

D. Relation to Multi-agent Optimization

In this subsection, we give a relation between the above

result and the multi-agent optimization technique in [16].

The multi-agent optimization problem is formulated as

min
x∈Rn

F (x) :=
N

∑

i=1

Fi(x) (Fi : convex), (20)

where agent i does not know any Fj , j 6= i. For the problem,

[16] presents the update rule of the estimate of solution

xi[t], xi[t + 1] = −kegradxi[t]Fi +
∑

j∈V aijxj [t], where

gradxi[t]Fi is a gradient of Fi at xi[t], aij = aji, aij = 0
if (i, j) /∈ E and

∑

j∈V aij = 1 ∀i ∈ V . This rule consists

of the consensus [8] and gradient descent of the individual

objective function Fi. [16] also derives an upper bound εt,i

of the error between F (x∗) and F (xi[t]), where x∗ is an

actual optimal solution to (20). In addition, they show that

an upper bound for ultimate estimates, εi := limt→∞ ǫt,i,

can be arbitrarily small as ke becomes small.

Now, we consider the multi-agent optimization on SO(3)

min
eξ̂θ∈SO(3)

∑

i∈V

φ(e−ξ̂θeξ̂θwoi ). (21)

The solution to (21) is given by the Euclidean mean eξ̂θ∗

.

If the update procedure (12) and (13) is viewed as that of

e
ˆ̄ξθ̄woi in the world frame, we get

ė
ˆ̄ξθ̄woi = kee

ˆ̄ξθ̄woi eR(e−
ˆ̄ξθ̄woi eξ̂θwoi )

+e
ˆ̄ξθ̄woi

∑

j∈Ni

eR(e−
ˆ̄ξθ̄woi e

ˆ̄ξθ̄woj ). (22)

The first term of (22) gives the gradient decent of the

individual objective function φ(e−ξ̂θeξ̂θwoi ) on SO(3) [18].

Since the consensus algorithm [8] is not implementable on

SO(3), we instead use the attitude synchronization law [11]

achieving convergence of the orientations to a common value

though the convergence value is not equal to the average of

the initial orientations.

The conclusion in Subsection IV-C basically corresponds

to [16], i.e. the estimates get close to the mean as ke becomes

small. However, unlike problems on a vector space as in [16],

the present scheme yields an offset of the estimate from the

average regardless of the gain ke. This is reasonable from

the fact that the attitude synchronization law does not always

drive the orientations to the average of the initial values.

V. EXPERIMENTS

Finally, we demonstrate the effectiveness of the present

algorithm through experiments with three vision cam-

eras. For detailed information on the experimental envi-

ronment, the readers are recommended to refer to [14].

Let the camera poses relative to the world frame be

set as pw1 = [−0.3 0.18 0.00]T , pw2 = 0, pw3 =
[0.22 0.18 0.00]T , ξθw1 = [0.00 0.38 0.00]T , ξθw2 =
0, ξθw3 = [0.00 − 0.44 0.00]T . We also assume the

communication graph E = {(1, 2), (2, 1), (1, 3), (3, 1)}.

We set a single real target object. Even for a single

object, the visual motion observer gives different estimates
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Fig. 5. Time Responses of Estimates

among cameras due to the distortion of lenses or para-

metric uncertainties of cameras. A way to improve esti-

mation accuracy under such uncertainties is averaging the

poses, namely the problem is reduced to that under con-

sideration in this paper by letting the estimates without

communication be gioi
. In this experiment, the estimates

without communication converge to the poses pwo1
=

[0.05 0.16 0.70]T , pwo2
= [0.07 0.13 0.74]T , pwo3

=
[0.01 0.14 0.76]T , ξθwo1

= [−0.11 0.20 −0.01]T , ξθwo2
=

[0.07 0.12 − 0.03]T , ξθwo3
= [0.00 0.00 0.00]T . The

Euclidean mean eξ̂θ∗

of the orientations {eξ̂θwoi}i∈{1,2,3} is

given by ξθ∗ = [−0.01 0.11 − 0.02]T . Then, the parameter

β in Theorem 1 is given by β = 0.8 > 0 for c = 10−4.

We run the present algorithm for two different gains

ke = 0.01 and ke = 0.8, where the former satisfies (19)

and the latter does not. For ke = 0.01, α in (18) is given

by 0.70 with ǫ = 10−4 and for ke = 0.8 it is 1. Though

we cannot show all the responses due to page constraints,

Fig. 5 shows the time responses of estimates and Fig. 6

those of the objective function, where blue curves are the

responses with ke = 0.01 and red ones with ke = 0.8.

In Fig. 5, the solid, dashed and dotted curves illustrate the

estimates of camera 1, 2 and 3 respectively. We see from the

figure that a small gain ke gives more accurate estimate of

the mean (ξθ∗)2 = 0.11 than a large gain, which validates

the statement just after Theorem 1. In Fig. 6, the black line

shows the value of
∑3

i=1 φ(e−ξ̂θ∗

eξ̂θ
woi

) and the green one is

the right hand side of (18) with ke = 0.01. We see from the

figure that the validity of Theorem 1 is demonstrated, i.e. the

inequality (18) is really satisfied for both gains. However, the

case of ke = 0.8 also gets lower than the green line, which

indicates conservatism of Theorem 1 and its reduction should

be tackled in the future.

VI. CONCLUSIONS

This paper has presented a novel cooperative estimation

algorithm for visual sensor networks. We have considered

the situation where multiple smart vision cameras with com-

putation and communication capability see different target

objects. We first have presented an estimation algorithm to

meet two requirements, averaging and tracking. Then, we

have provided an upper bound of the ultimate error between

the actual average and the estimates given by the present

algorithm. Finally the effectiveness of the present estimation

algorithm has been demonstrated through experiments.

Fig. 6. Time Responses of Objective Function
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