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Abstract— Adaptive dynamic surface control is presented
for a class of nonaffine pure-feedback systems with unknown
time-delay using neural networks. The problem of ”explosion
of complexity” in the traditional backstepping algorithm is
avoided using dynamic surface control (DSC). The effects
of unknown time-delays are eliminated by using appropriate
Lyapunov-Krasovskii functionals in the design procedure. The
proposed control scheme guarantees that all the signals in
the closed-loop system are semi-globally uniformly ultimately
bounded. A simulation example is presented to demonstrate the
method.

I. INTRODUCTION

In the past decades, backstepping [1] based adaptive

control has been extensively investigated for uncertain non-

linear systems by using universal function approximators

such as neural networks or fuzzy logic systems to approx-

imate the unknown nonlinearities. Many remarkable results

have been obtained in those domains [2-4]. In [1], adap-

tive backstepping, as a breakthrough in nonlinear control

area, was introduced. In the paper, Kanellakopoulos et al.

proposed stable controllers for strict-feedback systems and

pure-feedback systems. After that, adaptive backstepping

approach, a recursive design procedure, has been found to

be particularly useful for nonlinear systems with trianguiar

structures. Representative work can be found in, to just name

a few, [5-7]. In particular, in [5], Zhang, Ge, and Hang

gave a controller for strict-feedback nonlinear systems using

backstepping design and the proposed controller guarantees

the uniform ultimate boundedness of the closed-loop adaptive

systems. In [6], Gong and Yao gave a neural network

based adaptive robust control design scheme for semi-strict

feedback nonlinear systems. Ge and Wang presented a semi-

global uniform ultimate bounded controller for the uncertain

nonlinear pure-feedback systems using backstepping design

technical in [7].

The backstepping technique has become one of the most

popular design methods for a class of nonlinear systems.

However, a drawback with the backstepping technique is
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the problem of ”explosion of complexity” [8-12]. In the

design procedure of the controller using the backstepping

technique, certain nonlinear functions such as virtual controls

are differentiated repeatedly. The increasing of the order n
of the systems will result in the increasing of the complexity

of the controller drastically. In [8], a dynamic surface control

(DSC) technique was proposed to overcome this problem by

introducing a first-order filtering of the synthetic input at each

step of the traditional backstepping approach. DSC for the

tracking problem of non-Lipschitz systems was considered

in [9]. In [10], a point controller (i. e., the reference input

is a constant) was designed using DSC and it drives the

system to the semi-global exponential stability. The design

procedure of the asymptotical tracking controller for a class

of strict-feedback nonlinear systems was given in [11] and

the controller guarantees that the solution of the closed-

loop is uniformly ultimately bounded. After this work, DSC

technique has been widely used in solving the difficulty of

”explosion of complexity” in the controller design of all

kinds of uncertainty systems with cascade structures such

as strict-feedback system [12-14], pure-feedback system [15-

17] and so on [18-23].

One of the challenging problems in control of nonlinear

systems is the nonlinear systems with time-delay. Time-delay

is often encountered in various systems, such as in recycled

reactors, recycled storage tanks, nuclear reactors, rolling

mills and chemical processes, etc [24]. The existence of time-

delays can destroy the stability or debase the performance

of control systems [25]. Therefore, the stability analysis and

controller design of time-delay systems are very important

both in theory and in practice. However, the control problem

and the stable analysis of the systems with time-delay are dif-

ficult. The Lyapunov-Krasovskii method [12,13,26,29] and

the Lyapuov-Razumikhin method [27] are widely employed

in the controller design of time-delay systems.

Pure-feedback system represents a class of lower-

triangular nonlinear systems which has a more representative

form than the strict-feedback systems [28]. In the past

decade, the control problem of various pure-feedback sys-

tems were investigated such as parameter-pure-feedback[1]

in which the parameters are uncertain, pure-feedback with

uncertain functions [3,16], uncertain nonaffine pure-feedback

systems [7,17,28], uncertain nonaffine pure-feedback sys-

tems with unknown dead zone [15], with unknown time-

delay [29] and with hysteresis input [30].

In this paper, neural network based adaptive control is

investigated for a class of nonaffine pure-feedback nonlinear

systems with time-delay by combining dynamic surface
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control with backstepping technique. The dynamic surface

control(DSC) technique is used to overcome the problem

of ”explosion of complexity” in the traditional backstep-

ping algorithm. The given appropriate Lyapunov-Krasovskii

function eliminates the effects of the unknown time-delay

in the system. The analysis based on the Lyapunov stability

theorem shows that under the appropriate assumptions, the

solution of the closed-loop system is globally uniformly

ultimately bounded. In addition, the output of the system

is proven to converge to a small neighborhood of the origin.

The rest of the paper is organized as follows: The problem

formulation and some preliminary results are presented in

section 2. Section 3 gives the adaptive dynamic surface

control by using backstepping technique and Nussbaum

control gain technique for discussional systems of our work.

The stability of the closed-loop system consisting of discus-

sional systems, control law and update laws is analyzed in

section 4. An example is given in Section 5 to illustrate the

effectiveness of our method. Finally, section 6 concludes this

paper.

II. PROBLEM FORMULATIONS AND PRELIMINARIES

We consider a single-input single-output pure-feedback

nonlinear system with unknown time -delay described by






ẋi = fi(x̄i, xi+1) + hi(x̄i(t− τi)), 1 ≤ i ≤ n− 1
ẋn = fn(x̄n, u) + hn(x̄n(t− τn))
y = x1.

(2.1)

where x̄i = [x1, x2, · · · , xi] ∈ Ri, i = 1, · · · , n, u ∈ R, y ∈
R are state variables, system input and output, respectively;

fi(·), hi(·) (i = 1, · · · , n) are unknown smooth functions;

τi(i = 1, · · · , n) is the unknown time-delay of state.

Remark 1: The structure of the discussional system is

different from the structure of the discussional system in [29].

The control problem for nonaffine pure-feedback systems

free of time-delay has been solved by [1,3,7,16,28].

Our objective is to design a robust adaptive controller for

(2.1) such that the closed-loop system is stable and the output

y(t) of the system tracks the reference signal yr(t).
According to the mean value theorem[31], function fi(·)

(i = 1, · · · , n) in (2.1) can be rewritten as:

fi(x̄i, xi+1) = fi(x̄i, x
∗
i+1) + gλi

(xi+1 − x∗
i+1) (2.2)

where gλi
= gi(x̄i, λixi+1 + (1 − λi)x

∗
i+1) =

∂fi(x̄i,xi+1)
∂xi+1

, 0 < λi < 1 (1 ≤ i ≤ n) and xn+1 = u
and x∗

i+1 ∈ R. By choosing x∗
i+1 = 0 [21-23], (2.2) can

be expressed as fi(x̄i, xi+1) = fi(x̄i, 0) + gλi
xi+1 and

gλi
= gi(x̄i, λixi+1).

Then the system (2.1) can be transform into the form as

follows:






ẋi = fi(x̄i, 0) + gλi
xi+1 + hi(x̄i(t− τi)), 1 ≤ i ≤ n− 1

ẋn = fn(x̄n, 0) + gλi
u+ hn(x̄n(t− τn))

y = x1.
(2.3)

For the design of the controller, we give some assumptions

as follows:

Assumption 1: The state x̄n of the system (2.1) is

available for feedback.

Assumption 2: There exist known constants 0 < gmin ≤
gmax such that gmin ≤| gλi

|≤ gmax.

Assumption 3: There exist known function him(·) and

known constant τm such that hi(·) ≤ him(·), τi ≤ τm
(1 ≤ i ≤ n), that is, function hi(·) (1 ≤ i ≤ n) and τi
are bounded.

Assumption 4: The reference signal yr(t) is a sufficiently

smooth function of t. yr, ẏr and y
(2)
r are bounded.

Before introducing our control design method, we first

recall the technique of Nussbaum control gain [32] and the

approximation property of the RBF NN [11].

An even differentiable function is called Nussbaum-type

function if it has the following properties:

lims→+∞ sup 1
s

∫ s

0
N(ζ)dζ = +∞ (2.4)

lims→+∞ inf 1
s

∫ s

0
N(ζ)dζ = −∞ (2.5)

The continuous functions ζ2 cos ζ, eζ
2

cos(π2 ) have those

two properties and they are Nussbaum functions. In this

paper, Nussbaum function ζ2 cos ζ is exploited.

The following lemma regarding the property of Nussbaum

function is used in the controller design and stability analysis

in next section.

Lemma 1 [32] : Let V and κ be smooth functions defined

on [0, ff ) with V (t) ≥ 0, ∀t ∈ [0, tf ) and N(κ) be an even

smooth Nussbaum-type function. The following inequality

holds:

0 ≤ V (t) ≤ c0 + e−c1t
∫ t

0
(G(x(τ))N(κ) + 1)κ̇ec1τdτ,

(2.6)

where c1 > 0 and t ∈ [0, tf ), G(x(t)) is a time-varying

parameter which takes values in the unknown closed intervals

I := [l−, l+] with 0 /∈ I , and c0 represents some suitable

constant, the V (t), κ(t) and
∫ t

0
g(x(τ))N(κ)κ̇dτ must be

bounded on [0, tf ).
The RBF neural networks take the form θT ξ where θ =

[θ1, θ2, · · · , θN ]T is called weight vector, ξ is a vector valued

function defined in RN . Denote the components of ξ by ρi
(i = 1, · · · , N), then ρi(x) (i = 1, · · · , N) is called a basis

function. A commonly used basis function is the so-called

Gaussian function of the following form:

ρi(x) =
1√
2πσ

exp(−
‖x−ζj‖2

2σ2 ), σ ≥ 0, j = 1, · · · , N.
(2.7)

where ζj (j = 1, · · · , N) ∈ Rn are the constant vectors

called the center of the basis function, and σ is a real

number called the width of the basis function. According

to the approxiamtion property of the RBF network, given a

continuous real valued function f : Ω 7→ R with Ω ∈ Rn a

compact set, and any δm > 0, by appropriately choosing σ
and ζj (j = 1, · · · , N) ∈ Rn for some sufficiently large

integer N , there exists an ideal θ∗ = [θ∗1 , θ
∗
2 , · · · , θ

∗
N ]T

such that the RBF network θ∗T ξ can approximate the given

function f(x) : Rm 7→ R with the approximation error

bounded by δm, i.e., f(x) = θ∗T ξ(x) + δ∗ with | δ∗ |≤ δm,

where δ∗ represents the reconstruction error and x ∈ Ωx.
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The ideal weigh vector θ∗ is an artificial quantity required

for analytical purposes. θ∗ is defined as the value of θ that

minimizes | δ | for all x ∈ Ωx ⊂ Rm, i.e.,

θ∗ ∼= argmin supx∈RN | f(x)− θT ξ(x) | . (2.8)

Assumption 5: θ∗ is bounded parameter, that is, there

exists a constant vector θM such that | θ∗ |≤ θM .

III. ROBUST ADAPTIVE CONTROL DESIGN

In this section, we will incorporate the DSC technique

into a neural network based adaptive control design scheme

for the nth-order system described by (2.3). Similar to

traditional backstepping, the design of adaptive control laws

is based on the adjusting of the errors s1 = x1−yr, · · · , si =
xi − zi (i = 2, · · · , n) where zi is the output of a first-order

filter with virtual controller αi−1 as the input. Finally, an

overall control law u is constructed at step n.

In the controller design procedure, we define θ̃i = θ̂i− θ∗i
(i = 1, · · · , n), where θ̂i is the estimation of θ∗i ; Γi (i =
1, · · · , n) is a constant matrix satisfying Γi = ΓT

i > 0;

ki1, ki2(i = 1, · · · , n), γ are positive constants; λmax(A)
denote the largest eigenvalue of a square matrix A; Giving

any a compact set Ωi, the set Ωsi(i = 1, · · · , n) is defined as:

Ωsi = {si || si |≥ csi , si + yr ∈ Ωi} and Ωi − Ωsi = {si |
si+ yr ∈ Ωi, si+ yr /∈ Ωsi}; Function q(si, csi)(1 ≤ i ≤ n)
is defined as follows and this function will be used in the

control design later:

q(si, csi) =

{

1, si ∈ Ωsi

0, si ∈ Ωi − Ωsi .
(3.1)

where csi is a positive design constant that can be chosen

arbitrarily small. Next is the controller design procedure.

Step i: At this step, we consider the first equation in (2.3).

We define si = xi−zi which is called the error surface with

zi as the desired trajectory and z1 = yr. Then,

ṡi = fi(x̄i, 0) + gλi
xi+1 + hi(x̄i(t− τi))− żi (3.2)

In order to design the control law, we define a smooth

scalar function as follows:

Vi =
1
2s

2
i +

1
2 θ̃

T
i Γ

−1
i θ̃i +

∫ t

t−τi
h2
im(x̄i(σ))dσ (3.3)

Differentiating Vi with respect to time t, we obtain:

V̇i = siṡi + θ̃Ti Γ
−1
i

˙̂
θi + h2

im(x̄i(t))− h2
im(x̄i(t− τi))

= si[fi(x̄i, 0) + gλi
xi+1 + hi(x̄i(t− τi))]

+θ̃Ti Γ
−1
i

˙̂
θi + h2

im(x̄i(t))− h2
im(x̄i(t− τi))

= sifi(x̄i, 0) + sihi(x̄i(t− τi))− siżi + sigλi
xi+1

+θ̃Ti Γ
−1
i

˙̂
θi + h2

im(x̄i(t))− h2
im(x̄i(t− τi))

≤ siFi +
s2i
4

+ sigλi
xi+1 − siżi + θ̃Ti Γ

−1
i

˙̂
θi (3.4)

where

Fi = fi(x̄i, 0) +
h2
im(x̄i(t))

si
. (3.5)

Define a compact set Ωi ⊂ R, let θ∗Ti and ε∗i be such that

for any xi ∈ Ωi

Fi = q(si, csi)(θ
∗T
i ξi + ε∗i ) (3.6)

where | ε∗i |≤ ε.

Note that if Fi is utilized to construct the controller,

controller singularity may occur since
h2
im(x̄i(t))

si
is not well-

defined at si = 0. Therefore, care must be taken to guarantee

the boundedness of the control as discussed in [17]. So, we

choose the virtual control αi+1 as follows:

αi+1 = q(si, csi)N(κi)[Kisi + θ̂Ti ξi − żi] (3.7)

with

κ̇i = q(si, csi)(Kis
2
i + θ̂Ti ξisi − żisi) (3.8)

˙̂
θi = q(si, csi)Γi(ξisi − γθ̂i) (3.9)

Define a new state variable zi+1 and let αi+1 pass through

a first-order filter with time constant βi+1 to obtain zi+1:

βi+1żi+1 + zi+1 = αi+1, zi+1(0) = αi+1(0) (3.10)

Step n : At this step, we consider the nth equation in

(2.3), i.e.,

ẋn = fn(x̄n, 0) + gλn
u+ hn(x̄n(t− τn)) (3.11)

We define sn = xn − zn, then

ẋn = fn(x̄n, 0) + gλn
u+ hn(x̄n(t− τn))− żn (3.12)

In order to design the control law, define a smooth scalar

function as follows:

Vn = 1
2s

2
n + 1

2 θ̃
T
nΓ

−1
n θ̃n +

∫ t

t−τn
h2
nm(x̄n(σ))dσ (3.13)

Differentiating Vn with respect to time t, we obtain

V̇n = snṡn + θ̃TnΓ
−1
n

˙̂
θn

+h2
nm(x̄n(t))− h2

nm(x̄n(t− τn))

= sn[fn(x̄n, 0) + gλn
u+ hn(x̄n(t− τn))]

+θ̃TnΓ
−1
n

˙̂
θn + h2

nm(x̄n(t))− h2
nm(x̄n(t− τn))

= snfn(x̄n, 0) + snhn(x̄n(t− τn))− snżn

+sngλn
u+ θ̃TnΓ

−1
n

˙̂
θn

+h2
nm(x̄n(t))− h2

nm(x̄n(t− τn))

≤ snFn +
s2n
4

+ sngλn
u− snżn + θ̃TnΓ

−1
n

˙̂
θn (3.14)

where

Fn = fn(x̄n, 0) +
h2
nm(x̄n(t))

sn
. (3.15)

Define a compact set Ωn ⊂ Rn, let θ∗n and ε∗n be such

that for any x̄n ∈ Ωn

Fn = q(si, csi)(θ
∗T
n ξn + ε∗n) (3.16)

where | ε∗n |≤ ε.

Similarly, we choose the control input u as follows:

u = q(sn, csn)N(κn)[Knsn + θ̂Tn ξn − żn] (3.17)

with

κ̇n = q(sn, csn)(Kns
2
n + θ̂Tn ξnsn − żnsn) (3.18)

˙̂
θn = q(sn, csn)Γn(ξnsn − γθ̂n) (3.19)
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IV. STABILITY ANALYSIS

In this section we show that the control law and update

law introduced in above design procedure guarantee the

uniform ultimate boundedness of the solution of the closed-

loop system.

Theorem 1: Under assumptions 1-5, consider the closed-

loop system consisting of the plant, the proposed robust

adaptive state feedback control law (3.17) and the adaptive

laws (3.9) and (3.19), it is guaranteed that all of the signal

of the closed-loop system are semi-globally uniformly ulti-

mately bounded and the output y(t) of the given system (2.1)

converges to the reference signal yr(t).
The proof is omitted due to the space limit.

V. SIMULATION EXAMPLE

To illustrate and clarify the proposed design procedure,

we apply the adaptive neural network controller developed in

section 3 to control a nonlinear system. Consider a nonlinear

system

ẋ1 = f1(x1, x2) + h1(x1(t− τ1))
ẋ2 = f2(x1, x2, u) + h2(x1(t− τ2), x2(t− τ2))
y = x1

(4.1)

For the purpose of simulation, following plant dynamics

are used: f1(·) = (1+x2
1)x2+x1e

−x2 , h1(·) = 2x2
1, f2(·) =

cos(x1x2) + x1x
2
2 + u + sin(u), h2(·) = sin(x1x2), τ1 =

τ2 = 1. And we choose h1m(·) = 2x2
1, h2m(·) = 1 and

τm = 2 for satisfying assumption 3. The initial values of

states are all 0.4. The initial value of Parameter θ1 is set to

0.1 and θ2 is set to 0.4. The initial value of Parameter κ1 is

set to 1.5 and κ2 is set to 0.4. The initial value of Parameter

z2 is set to 0. The controller parameter chosen for simulation

are : K1(t) = 20, K2(t) = 300, Γ1 = Γ2 = 0.0002I ,

γ = 0.001, csi = 0.001.

Simulation results are shown in Figures 1-6. Figure 1

shows that the given control input is bounded. Figure 2 gives

the output of the closed-loop system and the reference signal.

The output of the closed-loop system tracks the reference

input fairly well. After a short transient process the output

tracks the reference input at a high precision. Figure 3 is

the tracking error and the good performance is shown again.

The amplitude of the tracking error is about 0.04. Figure 4

shows that the error s2 is bounded. Figure 5-6 shows that

the parameter ζi(i = 1, 2) is bounded. The simulation results

show that the designed controller is workable.

VI. CONCLUSIONS

Adaptive neural control has been proposed for a class

of unknown SISO nonaffine pure-feedback systems with

0 5 10 15 20 25 30 35 40
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Fig. 1. The control input u for the augmented system
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Fig. 2. Output of the closed-loop system(dash line) and the reference
signal(solid line)

unknown time-delay. The DSC technique was used in the

design procedure for avoiding the problem of explosion of

complexity. By using the appropriate Lyapunov-Krasovskii

function, the effects of the unknown time-delays are elim-

inated. Since that the transformed system contain the un-

known virtual control coefficients, the technique of Nuss-

baum gain function control scheme is adopted. The proposed

control scheme guarantees that all the signals in the closed-

loop system are semi-globally uniformly ultimately bounded.

Simulation is given to show the effectiveness of the presented

method.
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