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Abstract— In this paper, we consider optimal hedges for a
class of derivative securities whose underlyings are untraded,
using the additive sum of smooth functions of traded assets
that minimizes the mean square error. Based on the necessary
and sufficient condition, we derive a methodology to compute
optimal smooth functions efficiently by solving a system of
linear equations. Moreover, we extend the idea to basket options
consisting of a portfolio of stocks, where individual payoff
functions of traded assets are optimally computed. We also
provide numerical experiments to illustrate our methodology.

I. INTRODUCTION

To explain the motivation of this work, let us consider the

(standard) minimum variance hedging problem given as

min
α

Var(∆Y −α∆S) , (1)

where ∆Y and ∆S are price changes of two assets, Y and S,

in a certain time period, and α ∈ ℜ is a hedge ratio. In a

typical situation, the asset Y can not be traded frequently in

the market, whereas S may be a liquidly traded asset.

It is known that the optimal hedge ratio, denoted by α∗,

provides the minimizer of

min
α ,c

E

[

{∆Y − (α∆S + c)}2
]

(2)

which may be solved as an ordinary linear regression given

empirical observation data. In this sense, the standard min-

imum variance hedge of (1) is equivalent to the simple

ordinary linear regression problem.

The standard minimum variance hedge may be generalized

for nonlinear case, in which a nonlinear smooth function f

is searched to minimize the following mean square error:

E

[

{∆Y − f (∆S)}2
]

. (3)

In the case where multiple assets are available, the problem

may be formulated as follows,

min
fi∈S

E





{

∆Y −
m

∑
i=1

fi (∆Si)

}2


, (4)

where ∆Si, i = 1, . . . ,m are price changes of asset Si and

S is a set of smooth functions. Obviously, the problem

addresses the standard minimum variance hedge (or more

generally, the multivariate minimum variance hedge using

multivariate linear regression) as a special case when fi is

linear, and therefore, we can expect to get the better hedge
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effect. This is our basic idea in our previous work [10], [11]

that we applied the generalized additive model (GAM; see

[5], [9]) for constructing optimal payoff functions of weather

derivatives given empirical observation data.

The objective of this paper is to provide a theoretical

framework for nonlinear minimum variance hedging in con-

tinuous time setting. For this objective, we first formulate the

nonlinear minimum variance hedging problem, and provide

a necessary and sufficient condition for the optimal smooth

functions. Then, we derive an algorithm to compute the op-

timal smooth functions based on the suitable discretization,

and demonstrate the optimal hedges. Moreover, we extend

the idea to the basket options case, whose underlying is

defined as the weighted average of many stocks.

II. PROBLEM FORMULATION

Let Yt (t ∈ [0, T ]) be the value of an asset (being nontraded

or illiquid), and Si,t , i = 1, . . . ,m the values of liquidly traded

m assets, under a probability space (Ω, F , P) and filtration

{Ft}t∈[0,T ]. We consider the problem of hedging the payoff

of derivative security on Yt using the additive sum of smooth

functions of Si,t , i = 1, . . . ,m. To this end, we define the

nonlinear minimum variance hedging problem as follows:

min
fi∈S

E





{

g(YT )−
m

∑
i=1

fi (Si,T )

}2


, (5)

where g(YT ) stands for the terminal payoff of a derivative

security with a given payoff function g. Note that Yt may

be the value of portfolio as in Section V. Also, note that

the problem formulation of (5) is slightly different from that

of (4) as it minimizes the mean square error between the

terminal payoff g(YT ) and the sum of fi (Si,T ) , i = 1, . . . ,m.

Although we do not know how to find the optimal smooth

functions yet, there exists a necessary and sufficient condition

for optimal smooth functions, f ∗1 , . . . , f ∗m, as follows:

Lemma 1: Smooth functions f ∗1 , . . . , f ∗m provide minimiz-

ers of the problem (5), if and only if the following conditions

are satisfied:

E [g(YT )|Si,T ]−
m

∑
j=1

E
[

f ∗j (S j,T )
∣

∣Si,T

]

= 0, i = 1, . . . ,m (6)

Proof: For the proof, see pp. 108 in [5].

In this paper, we demonstrate how to compute the smooth

functions, f ∗1 , . . . , f ∗m, satisfying Lemma 1.

Before showing the solution method for smooth functions,

we discuss how to replicate f ∗i (Si,T ) , i = 1, . . . ,m as cash

values. Since each f ∗i (i = 1, . . . ,m) is a smooth function,
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there are two approaches to attain f ∗i (Si,T ) , i = 1, . . . ,m. The

first approach is to use European type calls and puts with

maturity T and any strikes, where any twice continuously

differentiable function, f (x), of the terminal stock price ST =
x, can be replicated by a unique initial position of f (S0)−
f ′ (S0)S0 unit discount bounds, f ′ (S0) shares, and f ′′ (K)dK

out-of-the money options of all strikes K [3]:

f (x) =
[

f (S0)− f ′ (S0)S0

]

+ f ′ (S0)x

+
∫ S0

0
f ′′ (K)(K − x)+ dK +

∫ ∞

S0

f ′′ (K)(x−K)+ dK (7)

The advantage of this approach is that we do not have to

estimate any parameters such as volatilities or mean rates

of returns of the underlying assets once the target payoff

function f is specified.

The second approach is to dynamically trade Si,t to repli-

cate the terminal payoff f ∗i (Si,T ). For this approach to be

applicable, we need to introduce price dynamics for Yt and

Si,t , i = 1, . . . ,m, namely the “dynamic hedging model.”

Note that, in this framework, although the total market is

incomplete since Yt is not tradable, each payoff f ∗i (Si,T ) , i =
1, . . . ,m may be replicated by trading Si,t dynamically. We

further discuss this approach in Section IV.

III. SOLUTION METHOD FOR OPTIMAL SMOOTH

FUNCTIONS

Recall that, from Lemma 1, the problem reduces to finding

a set of real-valued functions, f ∗1 , . . . , f ∗m, satisfying

m

∑
j=1

E
[

f ∗j (S j,T )
∣

∣Si,T = xi

]

= E [g(YT )|Si,T = xi] , (8)

where

E [ f ∗i (Si,T )|Si,T = xi] = f ∗i (xi) , i = 1, . . . ,m. (9)

Assume that there exist joint PDFs of pairs, (Si,T , S j,T ) and

(YT , Si,T ), denoted by

φSi,S j
(xi, x j) , i, j = 1, . . . ,m, i 6= j (10)

and

φY,Si
(y, xi) , i = 1, . . . ,m, (11)

respectively. Also let φS j |Si
(x j|xi) and φY |Si

(y|xi) be condi-

tional PDFs defined as

φS j |Si
(x j|xi) :=

φSi,S j
(xi, x j)

φSi
(xi)

, φY |Si
(y|xi) :=

φY,Si
(y, xi)

φSi
(xi)

.

where φSi
(xi) , i = 1, . . . ,m are marginal PDFs. Then condi-

tion (8) may be rewritten as follows:

f ∗i (xi)+ ∑
j 6=i

∫

ℜ
f ∗j (x j) ·φS j |Si

(x j|xi)dx j

=
∫

ℜ
g(y) ·φY |Si

(y|xi)dy, i = 1, . . . ,m. (12)

We would like to find f ∗i , i = 1, . . . ,m such that (12) holds

for suitable domain of input variables. Here we provide a

solution method which consists of the following three steps:

1) Discretize condition (12) for y, xi and x j (i, j =
1, . . . ,m) dimensions to obtain a set of linear equations.

2) Solve the set of linear equations to find discretized

points of smooth functions.

3) Construct smooth functions using cubic splines.

Note that the above method may be applied if the joint PDFs

of pairs in YT and Si,T , i = 1, . . . ,m are specified.

First, we discretize condition (12) to approximate the

integrals as

f ∗i (xi)+ ∑
j 6=i

N

∑
l=1

[

f ∗j

(

x
(l)
j

)

·φS j |Si

(

x
(l)
j

∣

∣

∣
xi

)

δx j

]

=
N

∑
l=1

[

g
(

y(l)
)

·φY |Si

(

y(l)
∣

∣

∣
xi

)

δy

]

(13)

for given xi, i = 1, . . . ,m, where δx j
and δy are assumed to

satisfy

N

∑
l=1

φS j |Si

(

x
(l)
j

∣

∣

∣
xi

)

δx j
=

N

∑
l=1

φY |Si

(

y(l)
∣

∣

∣
xi

)

δy = 1.

Note that δx j
and δy may depend on xi as well, but we

will omit to specify that dependence for brevity. We then

discretize condition (13) for xi dimensions, e.g., x
(k)
i , k =

1, . . . ,N, as

f ∗i

(

x
(k)
i

)

+ ∑
j 6=i

N

∑
l=1

[

f ∗j

(

x
(l)
j

)

·φS j |Si

(

x
(l)
j

∣

∣

∣
x
(k)
i

)

δx j

]

=
N

∑
l=1

[

g
(

y(l)
)

·φY |Si

(

y(l)
∣

∣

∣
x
(k)
i

)

δy

]

.

Let f i ∈ ℜN (i = 1, . . . ,m) and g ∈ ℜN be vectors whose

k-th entries are, respectively, given as

f i [k] := fi

(

x
(k)
i

)

,

gi [k] := g
(

y(k)
)

, k = 1, . . . ,N.

Also, let Φi,y ∈ ℜN×N (i = 1, . . . ,m) and Φi, j ∈ ℜN×N (i, j =
1, . . . ,m, i 6= j) be matrices whose (k, l)-entries are given as

Φi, j[k, l] := φS j |Si

(

x
(l)
j

∣

∣

∣
x
(k)
i

)

δx j
,

Φi,y[k, l] := φY |Si

(

y(l)
∣

∣

∣
x
(k)
i

)

δy, k, l = 1, . . . ,N

With these definitions and notations, we have the following

proposition:

Proposition 1: For each i = 1, . . . ,m, condition (12) may

be discretized as

f i + ∑
j 6=i

Φi, jf j = Φi,yg. (14)

Consequently, we obtain the following system of linear

equations with respect to f :=
[

f⊤1 , . . . , f⊤m

]⊤
∈ ℜmN :

Φf = ĝ (15)
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where

Φ :=

















IN×N Φ1,2 Φ1,3 · · · Φ1,m

Φ2,1 IN×N Φ2,3 · · · Φ2,m

Φ3,1 Φ3,2 IN×N

. . . Φ3,m
...

...
. . .

. . .
...

Φm,1 Φm,2 Φm,3 · · · IN×N

















∈ ℜmN×mN

ĝ :=













Φy,1 0 · · · 0

0 Φy,2
. . .

...
...

. . .
. . . 0

0 · · · 0 Φy,m























g

g
...

g











∈ ℜmN .

Although the solution to (15) may not be unique, it can

be expressed using the generalized inverse matrix as

f = Φ⊤
[

ΦΦ⊤
]−1

ĝ. (16)

Then, the optimal smooth functions, f ∗i may be constructed

using cubic splines,

f ∗i (x) = c0 + c1x+
1

12

N

∑
k=1

θk

∣

∣

∣
x− x

(k)
i

∣

∣

∣

3

, i = 1, . . . ,m, (17)

where c0, c1 and θk, k = 1, . . . ,N are found to satisfy

f ∗i

(

x
(k)
i

)

= f
(k)
i and

N

∑
k=1

θk = 0,
N

∑
k=1

θkx
(k)
i = 0.

Remark 1: Although, we derived the set of linear equa-

tions based on the joint PDFs for Yt and Si,t , i = 1, . . . ,m,

it is often the case in derivative pricing problems that the

underlying stochastic processes, Yt and Si,t , i = 1, . . . ,m, are

expressed as the following type of geometric processes:

Yt = Y0eZt , Si,t = Si,0eXi,t , i = 1, . . . ,m, (18)

where Zt and Xi,t , i = 1, . . . ,m are adopted to Ft . In this case,

we can work on joint PDFs (or corresponding conditional

PDFs) for ZT and Xi,T , i = 1, . . . ,m instead of the ones for

YT and Si,T , i = 1, . . . ,m. Let joint PDFs of pairs, (Xi,T , X j,T )
and (ZT , Xi,T ), be given as

φXi,X j
(xi, x j) , i, j = 1, . . . ,m, i 6= j

and

φZ,Xi
(z, xi) , i = 1, . . . ,m,

respectively. Then, condition (12) is modified to

f ∗i (S0,ie
xi)+ ∑

j 6=i

∫

ℜ
f ∗j
(

S0, je
x j
)

·φX j |Xi
(x j|xi)dx j

=
∫

ℜ
g(Y0ez) ·φZ|Xi

(z|xi)dz, i = 1, . . . ,m, (19)

where

φX j |Xi
(x j|xi) :=

φXi,X j
(xi, x j)

φXi
(xi)

, φZ|Xi
(z|xi) :=

φZ,Xi
(z, xi)

φXi
(xi)

,

(20)

and φXi
(xi) , i = 1, . . . ,m are marginal PDFs. We see that the

same approach can be applied by discretizing (19) for each

dimension to derive the similar set of linear equations.

IV. DYNAMIC HEDGING MODEL

In this section, we introduce price dynamics for Si,t that

enable us to replicate the terminal payoff f ∗i (Si,T ) using

dynamic trading strategy. Assume that, under the probabil-

ity space (Ω, F , P), the values of liquidly traded assets

S1,t , . . . ,Sm,t and nontraded asset Yt are governed by the

following stochastic differential equations1,

dSi,t = µiSi,tdt +σiSi,tdWi,t , i = 1, . . . ,m (21)

dYt = µm+1Ytdt +σm+1YtdWm+1,t (22)

where W1,t , . . . ,Wm+1,t are correlated Brownian motions with

dWi,tdWj,t = ρi jdt, i, j = 1, . . . ,m+1, i 6= j.

For simplicity, let µi, σi and ρi j (i, j = 1, . . . ,m + 1, i 6=
j) be constant parameters, although the result can readily

be generalized for the case of deterministic functions of t.

Note that the advantage of considering the above model is

that there exists a dynamic trading strategy (see [2] and [6])

to replicate the terminal payoff f ∗i (Si,T ) once the optimal

smooth functions are specified.

A. Case m = 1

We first derive the optimal smooth function for the case

m = 1. The following proposition shows that f ∗1 is expressed

in a closed form for European call/put options with a strike

price K:

Proposition 2: The optimal smooth function, f ∗1 , is repre-

sented as

f ∗1 (x) = Y0 exp

{(

µ2 −
ρ2

12σ2
2

2

)

T +ρ12σ2b1(x)

}

×N(d1 (x))−KN(d2 (x)) (23)

when g(y) = (y−K)+ for European call options, or

f ∗1 (x) = −Y0 exp

{(

µ2 −
ρ2

12σ2
2

2

)

T +ρ12σ2b1(x)

}

×N(−d1 (x))+KN(−d2 (x)) (24)

when g(y) = (K − y)+ for European put options, where and

N is the standard normal distribution function, and

b1(x) :=
1

σ1

{

ln

(

x

S1,0

)

−

(

µ1 −
σ2

1

2

)

T

}

(25)

d1(x) :=
1

σ2

√

(

1−ρ2
12

)

T

×

[

ln

(

Y0

K

)

+ρ12σ2b1(x)+

(

µ2 +
σ2

2

2
−ρ2

12σ2
2

)

T

]

d2(x) :=
1

σ2

√

(

1−ρ2
12

)

T

×

[

ln

(

Y0

K

)

+ρ12σ2b1(x)+

(

µ2 −
σ2

2

2

)

T

]

.

Proof: For the proof, see [12].

1The problem setting in this paper addresses the one in [8] when m = 1.
Also, the problem is closely related to the pioneering work of [4] for hedging
the spot price using the self-financing portfolio of future price. Note that, in
our formulation, we intend to hedge the payoff of illiquid asset derivatives
using liquidly traded asset derivatives.
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B. General case

In the case with m traded assets, Si,T and YT are given as

Si,T = Si,0eνiT+σiWi,T , i = 1, . . . ,m,

YT = Y0eνm+1T+σm+1Wm+1,T ,

where νi := µi−σ2
i /2, i = 1, . . . ,m+1. Since the conditional

expectation given Si,t = xi corresponds to the one given Wi,t =
wi with suitable parameter changes, condition (8) may be

rewritten as

m

∑
j=1

E
[

f ∗j (S j,t)
∣

∣Wi,T = wi

]

= E [g(YT )|Wi,T = wi] , (26)

for i = 1, . . . ,m. Note that the right hand side of (26) can be

computed based on Proposition 2 as

E [g(YT )|Wi,T = wi] = E
[

g(YT )
∣

∣Si,T = Si,0eνiT+σiwi
]

= ĝi (wi) , i ∈ [1, m] (27)

using a smooth function ĝi. Also, since each Si,t is a function

of Wi,t , we write

f ∗i (Si,t) = f̂i (Wi,t) ,

and reformulate equation (26) as follows:

m

∑
j=1

E
[

f̂ j (Wj,t)
∣

∣Wi (T ) = wi

]

= ĝi (wi) , i = 1, . . . ,m. (28)

Let p j|i (w j|wi) , j 6= i be the conditional probability density

function of Wj,t given Wi,t , i.e.,

p j|i (w j|wi) :=
1

√

2π(1−ρ2
i j)T

exp







−
(w j −ρi jwi)

2

2
(

1−ρ2
i j

)

T







.

Then condition (28) may be written as follows:

f̂i(wi)+∑
j 6=i

∫ ∞

−∞
f̂ j(w j)p j|i (w j|wi)dw j = ĝi (wi) , i = 1, . . . ,m.

With the similar argument to the derivation of condition

(15), we can construct a set of linear equations by suitable

discretization for wi, w j, p j|i (w j|wi), f̂i (wi), and ĝi (wi) as











IN×N Φ1,2 · · · Φ1,m

Φ2,1 IN×N · · · Φ2,m
...

. . .
. . .

...

Φm,1 Φm,2 · · · IN×N





















f̂ 1

f̂ 2
...

f̂ m











=











ĝ1

ĝ2
...

ĝm











. (29)

Optimal smooth functions f ∗i , i = 1, . . . ,m are then obtained

using cubic splines.

V. BASKET OPTIONS

In the previous sections, we have assumed that Yt stands

for the value of nontraded asset and considered to hedge an

option on Yt using liquidly traded assets, Si,t , i = 1, . . . ,m.

Here we extend this idea to the problem of hedging basket

options using payoffs of options on individual assets.

Let us replace YT in (5) by the weighted sum of traded

assets, i.e.,

min
fi∈S

E





{

g(YT )−
m

∑
i=1

fi (Si,T )

}2


, YT :=
m

∑
i=1

αiSi,T , (30)

where αi, i = 1, . . . ,m are given weight parameters. Then the

minimum variance hedging problem (30) is to find smooth

payoff functions for terminal values of individual assets,

Si,T , i = 1, . . . ,m, that approximate the terminal payoff of

basket option as close as possible in the minimum mean

square sense.

Notice that the left hand side of equation (8) is indifferent

even for basket options, and hence, the left hand side of (15)

may be constructed similar to Proposition 1 if there are joint

PDFs for Si,T , i = 1, . . . ,m. using the conditional expectations

of g(YT ) given Si,T , i = 1, . . . ,m. We will demonstrate how

to compute these conditional expectations when the value

processes of Si,t , i = 1, . . . ,m are defined by (21).

Assume that Si,t , i = 1, . . . ,m follow the SDEs in (21), and

let ĝi be a function satisfying

ĝi (Wi,T ) = E [g(YT )|Wi,T ] , i = 1, . . . ,m.

We would like to express ĝi in a tractable form. The

following proposition shows that ĝi may be represented using

unconditional expectation and thus be computed efficiently:

Proposition 3: For each i ∈ [1, m] and a (nonrandom)

dummy variable wi ∈ ℜ, there exist a function hi and

independent Brownian motions, B2,t , . . . ,Bm,t , t ∈ [0, T ],
satisfying

ĝi (wi) = E [hi (wi,B2,T , . . . ,Bm,T )] . (31)

Proof: Here we consider the case i = 1, although the

same technique may be applied for i = 2, . . . ,m.

Let the covariance matrix of
[

dS1,t

S1,t
, . . . ,

dSm,t

Sm,t

]⊤

be decomposed as LL⊤dt, where L is a lower triangular

matrix defined by

L :=













σ11 0 · · · 0

σ21 σ22

. . .
...

...
...

. . . 0

σm1 σm2 · · · σmm













∈ ℜm×m, σ11 = σ1

based on the Cholesky decomposition. Then, we obtain the

following equivalent representation to (21):






dS1,t/S1,t
...

dSm,t/Sm,t






=







µ1

...

µm






dt +L







dB1,t
...

dBm,t






. (32)

where B1,t , . . . ,Bm,t are independent Brownian motions and

B1,t ≡W1,t . Since Si,T is expressed as

Si,T = Si,0 exp

(

νiT +
i

∑
j=1

σi jB j,T

)

, i = 1, . . . ,m,
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there exists a function h1 such that

g(YT ) = g

(

m

∑
i=1

αiSi,T

)

= h1 (W1,T ,B2,T , . . . ,Bm,T ) .

Hence, we have

E [g(YT )|S1,T ] = E [g(YT )|W1,T ]

= E [h1 (W1,T ,B2,T , . . . ,Bm,T )|W1,T ] .(33)

We discuss some properties of the conditional expectation

in (33). First, we note that S1,T is a function of W1,T

and is independent of the other factors, B2,T , . . . ,Bm,T . This

indicates that there exists a sigma algebra G1 (⊂ F ) such

that both W1,T and S1,T are G1-measurable and B2,T , . . . ,Bm,T

are independent of G1. Then we can apply the Independence

Lemma that a function ĥ1 of a dummy variable w1 ∈ ℜ,

ĥ1 (w1) := E [h1 (w1,B2,T , . . . ,Bm,T )] , (34)

satisfies the following condition:

ĥ1 (W1,T ) = E [h1 (W1,T ,B2,T , . . . ,Bm,T )|W1,T ]

= E [g(YT )|W1,T ] . (35)

Clearly, conditions (34) and (35) indicate that the statement

in the proposition holds with i = 1 and ĝ1 = ĥ1.

Similarly, we can obtain hi, i = 2, . . . ,m by reordering

S1,t , . . . ,Sm,t so that Si,t is the first entry when applying the

Cholesky decomposition. This completes the proof.

We see that, for any given real number wi ∈ ℜ, i =
1, . . . ,m, ĝi (wi) is computed by the unconditional expectation

in (34). In general, this computation involves multiple inte-

gration, but usually executed efficiently based on the Monte

Carlo method by generating independent Gaussian random

numbers for independent Brownian motions. Once a set of

random numbers is generated, we can compute ĝi (wi) for

different values of wi = w
(k)
i , k = 1, . . . ,N using the same

set of random numbers to construct a real-valued vector

ĝi ∈ ℜN in the right hand side of equation (29). Then, we

solve the set of linear equations for f̂ i, i = 1, . . . ,m to find

the optimal smooth functions using cubic splines. Note that

other properties of basket option’s hedge is discussed in [13].

VI. NUMERICAL EXPERIMENT

In this numerical experiment, we first consider a problem

of hedging an option whose underlying is a market index

(being nontraded) using several stocks, where each asset

dynamics is modeled as (21) and (22). We will formulate the

problem as nonlinear minimum variance hedging and solve

it by applying the proposed methodology.

We use the empirical data obtained from the Tokyo Stock

Exchange (TSE) in the period of 2003-2005 for estimating

the volatility and correlation parameters of stock returns,

where the market index is assumed to be TOPIX and five

stocks, S1, . . . ,S5, are chosen from those listed in the TSE.

The correlation and volatility parameters of stock returns

are estimated as in Table I, whereas we assume that each

expected stock return corresponding to the drift parameter

TABLE I

VOLATILITY AND CORRELATION OF THE STOCK RETURNS

INDEX S1 S2 S3 S4 S5

INDEX 1
S1 0.552 1
S2 0.636 0.298 1
S3 0.615 0.476 0.346 1
S4 0.557 0.291 0.406 0.341 1
S5 0.604 0.315 0.457 0.287 0.389 1

Volatility 0.176 0.549 0.227 0.421 0.307 0.232

TABLE II

DRIFT HAVING THE SAME SHARP RATIO (= 0.25)

INDEX S1 S2 S3 S4 S5

Drift 0.094 0.187 0.107 0.155 0.127 0.108

has the same sharp ratio (= 0.25) with risk free interest rate

r = 0.05. Then drift parameters are provided as in Table II.

We solve the problem (5) to find the minimizers f ∗1 , . . . , f ∗5
for hedging an at-the-money European call option with

maturity T = 1/4, where the initial prices (or initial values)

are set to be Y0 = 100 and Si,0 = 100, i = 1, . . . ,5. The

correlation coefficient between g(YT ) and ∑5
i=1 f ∗i (Si,T ) may

provide a hedge effect, and for this numerical experiment, it

is obtained as

Corr

(

g(YT ) ,
5

∑
i=1

f ∗i (Si,T )

)

= 0.805. (36)

Next, we discuss the initial cost of the hedge. To compute

the initial cost, we need to evaluate the initial price of the

options under a risk neutral probability measure. Here we

compute the minimal market price of risk (see e.g., [1]) to

specify a risk neutral probability measure P̃. Note that the

market prices of risk for the traded assets S1, . . . ,S5 are the

same and are given by their sharp ratios (= 0.25), whereas

the (minimal) market price of risk for the nontraded asset,

denoted by θ̂y, is found to be

θ̂y = 0.3026.

We see that the market price of risk for the index is higher

than those of traded assets, which may be interpreted as a

risk premium for the nontradability of the index.

Under the risk neutral probability measure, we computed

the initial value of call option written on Yt , which is given

as

V0 = e−rT
Ẽ [g(YT )] ≃ 4.01. (37)

On the other hand, initial values of options whose payoffs

are determined by f ∗i (Si,T ) are given as

e−rT
Ẽ [ f ∗i (Si,T )] , i = 1, . . . ,5. (38)

Since each payoff may be hedged by the corresponding self-

financing portfolio with the initial cost being equal to (38),

the total cost of the replicating portfolio is obtained as

X0 =
5

∑
i=1

e−rT
Ẽ [ f ∗i (Si,T )] . (39)
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In our numerical experiment, the initial value of portfolio,

X0, is obtained as

X0 ≃ 4.00, (40)

which is almost the same as V0 in this case.

When one takes a position to sell the option with V0 at

time t = 0 and construct a portfolio with X0 to hedge the

option, the initial cost of the hedged position is given by

X0 −V0. (41)

If X0 −V0 is positive, then she has to pay an extra cost

to construct the portfolio, and hence, X0 −V0 > 0 may be

interpreted as a premium for the hedge. Here we evaluate

the hedge cost using its ratio, and define the hedge cost ratio

(HCR) as

HCR :=
X0

V0
. (42)

Note that HCR > 1 corresponds to X0 −V0 > 0.

Fig. 1. Correlation coefficients (solid) & Hedge cost ratios (dashed)

To examine the relation of the hedge effect and the HCR

with respect to the number of traded underlyings, we varied

the number of traded underlying from m = 1 to m = 5 and

obtained Fig. 1, where the solid line refers to the values of

correlation coefficients with respect to m = 1, . . . ,5, and the

dashed to those of the HCRs. We see that both the hedge

effect and the HCR are improved as the number of traded

assets increases. Note that the hedge effect and the HCR

are both one for the complete market case as shown by the

dotted line in Fig. 1.

Next, we consider the basket option’s hedge, in which

the payoff depends on the weighted average of five stocks,

S1, . . . ,S5, with the same parameter values in Tables I and II.

We solve the nonlinear minimum variance hedging problem

(30) to approximate the payoff of basket option,

g(YT ) , YT =
1

5
(S1,T + · · ·+S5,T )

by the sum of individual options, f ∗i (Si,T ) , i = 1, . . . ,5.

Fig. 2 shows the scatter plot of g(YT ) vs. ∑5
i=1 f ∗i (Si,T ).

Similar to the first numerical experiment, we can evaluate

the hedge effect by correlation coefficient between g(YT )
and ∑5

i=1 f ∗i (Si,T ), which is obtained as

Corr

(

g(YT ) ,
5

∑
i=1

f ∗i (Si,T )

)

= 0.98. (43)

We see that the payoff of basket option may be approximated

well using individual options in this example.

Fig. 2. Scatter plot for basket option’s hedge in the ATM case

VII. CONCLUSION

In this paper, we demonstrated optimal hedges for a

class of derivative securities whose underlyings are untraded,

using the additive sum of smooth functions of traded assets

that minimizes the mean square error. At first, we derived

a methodology to compute optimal smooth functions effi-

ciently by solving a system of linear equations based on the

necessary and sufficient condition. Then, we extended the

idea to basket options consisting of multiple stocks, where

individual payoff functions of traded assets are optimally

computed in the minimum variance hedging problem. We

also provided numerical experiments to illustrate our pro-

posed methodology.
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