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Abstract— This paper presents an improved approach to
servo control for nonlinear systems with constraints on inputs
and states using the fuzzy model-based control approach. In
our previous paper, servo control based on error dynamics
using error vector and input difference was proposed. Although
the approach can achieve servo control with constraints on
both of inputs and states, error dynamics with time-varying
extra terms cannot be applied. In this paper, time-varying
cancellation input is newly introduced. By using the cancellation
input, servo control for error dynamics with time varying extra
terms is achieved. We derive servo controller design conditions
and constraint conditions on inputs and states in the form of
LMI. Design examples illustrate the utility of this approach.

I. INTRODUCTION

Recently, a lot of researches on fuzzy model-based control

has been reported [1]–[4]. Most of them deal with Takagi-

Sugeno (T-S) fuzzy model [5] and LMI-based designs[6]. By

employing the T-S fuzzy model, which utilizes local linear

system description for each rule, we can devise a control

methodology to fully take advantages of linear control theory.

However, most of literature on fuzzy model based control

have mainly dealt with the regulation problem to discuss

stability analysis or fuzzy controller design satisfying a

variety of control performances and constraint conditions [7].

In our previous paper [8], servo and model following

control for a class of nonlinear systems using the fuzzy

model-based control approach was discussed. In order to

achieve servo control, firstly, augmented T-S fuzzy system

was constructed by differentiating the original nonlinear dy-

namics with respect to time and then the dynamic fuzzy servo

controller which can make outputs of the nonlinear systems

converge to target points was designed. But, this approach

cannot deal with nonlinear systems with constraint on control

inputs since time derivatives of control inputs were used

instead of control inputs in the augmented T-S fuzzy system.

In [9], input difference between current input and constant

steady input was introduced and servo control with input

constraint was achieved. But, this approach cannot be applied

to nonlinear systems with constraint on states. To overcome
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these problems, servo control for nonlinear systems with

constraints on both of inputs and states was proposed in [10].

In this approach, original nonlinear dynamics is converted

into error dynamics by using error vector between current

state and target point and input difference between current

input and steady input. Constant terms in the error dynamics,

which are caused by constant target point, are cancelled by

steady input. Then, T-S fuzzy model is constructed from

error dynamics. Although this approach employs constant

steady input to cancel extra constant terms, unfortunately,

extra terms may contain not only constant ones but also time-

varying ones. In such a case, this approach cannot be applied.

This paper presents an improved approach to servo control

for nonlinear systems with constraints using the fuzzy model-

based control approach. Time-varying cancellation input is

newly introduced to construct a different input difference

from [9], [10]. By using the cancellation input, servo control

for error dynamics with time-varying extra terms is achieved.

We derive servo controller design conditions and constraint

conditions on inputs and states in the form of LMI. Design

examples illustrate the utility of this approach.

II. LINEAR SERVO CONTROL

In [11], servo control utilizing time-derivative of linear

system is discussed. In this section, we explain the servo

control based on the error dynamics for continuous-time

linear systems. Consider the following linear system.

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) = [x1(t) x2(t) · · · xn(t)]T is the state vector

and u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector.

For the above linear system, we consider the servo control

problem, that is, the control problem to make the state x(t)
converge to the certain target point r, where r is the constant

vector, r = [r1, r2, · · · , rn]T . We assume that all states are

measurable.

Firstly, we define the error vector e(t) and its time

derivative as follows:

e(t) = x(t) − r (2)

ė(t) = ẋ(t) (3)

Next, we introduce the following input difference between

current input u(t) and steady input uf which is a bias input

to keep the state x(t) at a target point r after making the

state converge to the target point.

eu(t) = u(t) − uf (4)
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where uf = [u1(∞), u2(∞), · · ·um(∞)]T . Then, by

substituting (2), (3) and (4) into (1), we can obtain the

following error dynamics.

ė(t) = A(e(t) + r) + B(eu(t) + uf )

= Ae(t) + Beu(t) + Ar + Buf (5)

Note that Ar + Buf = 0 since e(t) and eu(t) go to 0 if

servo control for the linear system (1) can be achieved. In

other words, we have to select uf such that Ar +Buf = 0

with the preassigned r is satisfied. Therefore, (5) can be

rewritten as

ė(t) = Ae(t) + Beu(t) (6)

Finally, we design the following controller to stabilize the

error dynamics (6).

eu(t) = −Ke(t) (7)

where K is a feedback gain. By substituting (7) into (6), we

can obtain the following linear control system.

ė(t) = (A − BK) e(t) (8)

The feedback gain K is determined by solving Theorem 1.

Theorem 1: If there exist positive definite matrix X and

matrix M satisfying (9) and (10), then the error system (6)

can be stabilized by the controller (7).

X > 0, (9)

AX + XAT − BM − MT BT < 0, (10)

where K = MX−1.

The controller (7) can be converted into the following

equation.

u(t) = −K(x(t) − r) + uf (11)

By using the designed controller, we can make the state x(t)
of the linear system (1) converge to the target point r.

III. NONLINEAR SERVO CONTROL BASED ON ERROR

DYNAMICS

In this section, we propose the servo control based on

error dynamics for continuous-time nonlinear systems with

constraints on inputs and states.

Consider the following continuous-time nonlinear system.

ẋ(t) = f(x(t)) + g(x(t))u(t) (12)

where x(t) = [x1(t) x2(t) · · · xn(t)]T is the state vector

and u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector. We

assume that f and g are known.

A. Fuzzy Model Construction based on Error Dynamics

We recall the error vector e(t) and its time derivative.

e(t) = x(t) − r (13)

ė(t) = ẋ(t) (14)

Next, we newly define the following input difference between

current input u(t) and cancellation input uc(t).

eu(t) = u(t) − uc(t) (15)

where uc(t) = [uc1(t), uc2(t), · · ·ucm(t)]T . The roll of the

cancellation input will be explained later. We assume that

the cancellation input remains finite and satisfy the following

condition.

uc(t) → uf (t → ∞) (16)

where uf is the steady input, that is, a bias input to keep the

state x(t) at a target point r after making the state converges

to the target point.

By substituting (13), (14) and (15) into (12), we can obtain

the following error dynamics.

ė(t) = f(e(t) + r) + g(e(t) + r)(eu(t) + uc(t))

= F 1(e(t), r)e(t) + F 2(e(t), r)

+g(e(t) + r)eu(t) + g(e(t) + r)uc(t) (17)

= F 1(e(t), r)e(t) + F 2(e(t), r)

+g(e(t) + r)eu(t)

+G1(e(t), r,uc(t))e(t) + G2(e(t), r)uc(t)

(18)

= F̂ (e(t), r,uc(t))e(t) + g(e(t) + r)eu(t)

+Ĥ(e(t), r,uc(t)) (19)

where, for (17),

F̂ (e(t), r,uc(t))e(t) = F 1(e(t), r)e(t)

Ĥ(e(t), r,uc(t)) = F 2(e(t), r) + g(e(t) + r)uc(t).

For (18),

F̂ (e(t), r,uc(t))e(t) = F 1(e(t), r)e(t)

+G1(e(t), r,uc(t))e(t)

Ĥ(e(t), r,uc(t)) = F 2(e(t), r) + G2(e(t), r)uc(t)

F̂ (e(t), r,uc(t))e(t) and g(e(t) + r)eu(t) are functions

which linearly depend on e(t) and eu(t), respectively. This

means that these functions go to 0 when e(t) and eu(t) go to

0. In order to achieve servo control, the following condition

has to be satisfied at all times t ≥ 0.

Ĥ(e(t), r,uc(t)) = 0 (20)

The cancellation input uc(t) is selected such that (16) and

(20) with the preassigned r are satisfied.

By using the cancellation input uc(t) satisfying (20), (19)

can be rewritten as

ė(t) = F̂ (e(t), r,uc(t))e(t) + g(e(t) + r)eu(t) (21)
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By applying sector nonlinearity concept [7] to (21), we can

obtain the following T-S fuzzy model.

ė(t) =
r

∑

i=1

hi(e(t), r,uc(t))
(

Âie(t) + B̂ieu(t)
)

(22)

Example

Consider the following nonlinear system.
[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)
x1(t)

2 + x1(t)u(t)

]

(23)

We assume that the target point r = [r 0]T . Then, the

following error dynamics can be obtained from (13), (14)

and (15).
[

ė1(t)
ė2(t)

]

=

[

e2(t)
(e1(t) + r)2 + (e1(t) + r)(eu(t) + uc(t))

]

=





e2(t)
e2

1
(t) + 2re1(t) + r2 + (e1(t) + r)eu(t)
+(e1(t) + r)uc(t)



 (24)

For (24), the following cancellation input uc(t) is selected.

uc(t) = −
r2

e1(t) + r

Note that the assumption e1(t) 6= −r has to be considered.

Then, (24) can be rewritten by
[

ė1(t)
ė2(t)

]

=

[

e2(t)
e2

1
(t) + 2re1(t) + (e1(t) + r)eu(t)

]

By applying sector nonlinearity concept to the nonlinear

terms with the constraint |e1(t)| ≤ d, the T-S fuzzy model

is constructed as follows:

ė(t) =

2
∑

i=1

hi(e1(t))
(

Âie(t) + B̂eu(t)
)

(25)

where

Â1=

[

0 1
d + 2r 0

]

, Â2=

[

0 1
−d + 2r 0

]

,

B̂1=

[

0
d + r

]

, B̂2=

[

0
−d + r

]

,

h1(e1(t)) =
e1(t) + d

2d
, h2(e1(t)) =

d − e1(t)

2d

On the other hand, (24) can be also regarded as the following

nonlinear dynamics.

[

ė1(t)
ė2(t)

]

=





e2(t)
e2

1
(t) + 2re1(t) + r2 + (e1(t) + r)eu(t)
+uc(t)e1(t) + ruc(t)



(26)

For (26), the following cancellation input uc(t) can be

selected.

uc(t) = −r

Then, (26) can be rewritten by
[

ė1(t)
ė2(t)

]

=

[

e2(t)
e2

1
(t) + re1(t) + (e1(t) + r)eu(t)

]

By applying sector nonlinearity concept to the nonlinear

terms with the constraint |e1(t)| ≤ d, the T-S fuzzy model

is constructed as follows:

ė(t) =

2
∑

i=1

hi(e1(t))
(

Âie(t) + B̂eu(t)
)

(27)

where

Â1=

[

0 1
d + r 0

]

, Â2=

[

0 1
−d + r 0

]

,

B̂1=

[

0
d + r

]

, B̂2=

[

0
−d + r

]

,

h1(e1(t)) =
e1(t) + d

2d
, h2(e1(t)) =

d − e1(t)

2d

Note that the constructed fuzzy models are different de-

pending on the cancellation input.

B. Servo Controller Design

To stabilize the T-S fuzzy model (22), we employ the

following PDC controller.

eu(t) = −
r

∑

i=1

hi(e(t), r,uc(t))K̂ie(t) (28)

where K̂i is a feedback gain. By substituting (28) into (22),

we can obtain the following fuzzy control system.

e(t) =

r
∑

i=1

r
∑

j=1

hi(e(t), r,uc(t))hj(e(t), r,uc(t))

×
(

Âi − B̂iK̂j

)

e(t) (29)

The feedback gain K̂i is determined by solving Theorem 2.

Theorem 2: If there exist positive definite matrix X and

matrix M̂ i satisfying (30), (31) and (32), then the fuzzy

system (22) can be stabilized by the fuzzy controller (28).

X > 0, (30)

ÂiX + XÂ
T

i − B̂iM̂ i − M̂
T

i B̂
T

i < 0, ∀i, (31)

ÂiX + XÂ
T

i + ÂjX + XÂ
T

j

−B̂iM̂ j − M̂
T

j B̂
T

i − B̂jM̂ i − M̂
T

i B̂
T

j < 0, (32)

∀i, i < j,

where K̂i = M̂ iX
−1.

Based on (15) and the controller (28), the following servo

controller can be obtained.

u(t) = eu(t) + uc(t)

= −

r
∑

i=1

hi(e(t), r,uc(t))K̂i(x(t) − r) + uc(t)

(33)

By using (33), e(t) goes to 0. Therefore, we can make the

state x(t) of the nonlinear system (12) converge to r.
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C. Constraint Conditions on States and Inputs

State xℓ1(t) and control input uℓ2(t) are obtained as

follows, respectively.

xℓ1(t) = C1

ℓ1
e(t) + rℓ1 , ℓ1 = 1, 2, · · ·n (34)

uℓ2(t) = C2

ℓ2
eu(t) + ucℓ2(t), ℓ2 = 1, 2, · · ·m (35)

where C1

ℓ1
and C2

ℓ2
are vectors whose ℓ1th or ℓ2th element is

1 and all the other elements are 0 in order to determine which

state or control input is constrained. By using the following

theorems, |xℓ1(t)−rℓ1 | ≤ µ1ℓ1 and |uℓ2(t)−ucℓ2(t)| ≤ µ2ℓ2

are enforced. This means that state xℓ1 and control input

uℓ2(t) are limited in the following ranges.

−µ1ℓ1 + rℓ1 ≤ xℓ1(t) ≤ µ1ℓ1 + rℓ1

−µ2ℓ2 + ucℓ2(t) ≤ uℓ2(t) ≤ µ2ℓ2 + ucℓ2(t)

For satisfying the above input constraint, also the cancel-

lation input ucℓ2(t) should be constraint. Fortunately, the

constraint can be achieved by (20) and the above-mentioned

constraint on the state.

Theorem 3: Assume that initial condition e(0) is known.

The constraint |xℓ1(t) − rℓ1 | ≤ µ1ℓ1 is enforced at all times

t ≥ 0 if the following LMIs hold.
[

1 eT (0)
eT (0) X

]

≥ 0,

[

X (C1

ℓ1
X)T

C1

ℓ1
X µ2

1ℓ1
I

]

≥ 0,

Theorem 4: Assume that initial condition e(0) is known.

The constraint |uℓ2(t) − ucℓ2(t)| ≤ µ2ℓ2 is enforced at all

times t ≥ 0 if the following LMIs hold.
[

1 eT (0)
eT (0) X

]

≥ 0,

[

X (C2

ℓ2
M̂ i)

T

C2

ℓ2
M̂ i µ2

2ℓ2
I

]

≥ 0,

The proofs of Theorems 3 and 4 are similar to those of

Theorems 11 and 12 in [7].

IV. DESIGN EXAMPLE

To illustrate the utility of this servo control approach, we

show two simulation examples.

A. Example 1

Consider (23) again. Two kinds of T-S fuzzy models are

already constructed in Section III-A. Assume that r = [1 0]T ,

d = 0.9 and initial state is x(0) = [0.2 0]T . By solving

servo controller design conditions in Theorem 2, each servo

controller can be designed. For (25), feedback gains are

obtained as follows.

K1 = [8.08 6.70], K2 = [19.86 17.53]

For (27), feedback gains are obtained as follows.

K1 = [1.57 2.03], K2 = [1.92 2.89]

Figures 1 and 2 show the simulation results using designed

servo controllers based on (25) and (27), respectively. The

selection of cancellation inputs strongly affects control per-

formances.
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Fig. 1. Simulation result based on (25).
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Fig. 2. Simulation result based on (27).

B. Example 2

Consider the following nonlinear system.
[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)
x2

1
(t) − sin x1(t)u(t)

]

(36)

|u(t)| ≤ 15

We assume that the target point r = [r 0]T . Then, the error

dynamics can be obtained as follows.

[

ė1(t)
ė2(t)

]

=





e2(t)
e2

1
(t) + 2re1(t) + r2 − sin(e1(t) + r)eu(t)
− sin(e1(t) + r)uc(t)




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The following cancellation input uc(t) is selected.

uc(t) =
r2

sin(e1(t) + r)

Then, we can obtain the following error dynamics.
[

ė1(t)
ė2(t)

]

=

[

e2(t)
e2

1
(t) + 2re1(t) − sin(e1(t) + r)eu(t)

]

By applying sector nonlinearity concept to the nonlinear

terms with the constraint |e1(t)| ≤ d < r, the T-S fuzzy

model is constructed as follows:

ė(t) =

4
∑

i=1

hi(e1(t))
(

Âie(t) + B̂eu(t)
)

(37)

where

Â1=Â2=

[

0 1
d + 2r 0

]

, Â3=Â4=

[

0 1
−d + 2r 0

]

,

B̂1=B̂3=

[

0
− sin(−d + r)

]

, B̂2=B̂4=

[

0
−1

]

,

h1(e1(t)) =
e1(t) + d

2d
×

− sin(e1(t) + r) + 1

− sin(−d + r) + 1

h2(e1(t)) =
e1(t) + d

2d
×

− sin(−d + r) + sin(e1(t) + r)

− sin(−d + r) + 1

h3(e1(t)) =
d − e1(t)

2d
×

− sin(e1(t) + r) + 1

− sin(−d + r) + 1

h4(e1(t)) =
d − e1(t)

2d
×

− sin(−d + r) + sin(e1(t) + r)

− sin(−d + r) + 1

We select r = [1 0]T as the target point. Assume that

|e1(t)| ≤ 0.8. Then, 1.0 ≤ uc(t) ≤ 5.0. In order to achieve

the input constraint |u(t)| ≤ 15, the input difference has to

satisfy |eu(t)| ≤ 10. Unfortunately, the control result using

the controller designed by solving only Theorem 2 without

Theorems 3 and 4 did not satisfy the input constraint.

By solving Theorems 2, 3 and 4 with initial state x(0) =
[0.3 0]T , µ11 = 0.8 and µ21 = 10, we can obtain the

following feedback gains.

K1 = [−14.15 − 8.54], K2 = [−7.46 − 11.09]

K3 = [−10.21 − 11.66], K4 = [−4.79 − 12.89]

Figures 3 and 4 show the control result and the control

input. By using the designed controller, the state x(t) con-

verges to the target point, and e1(t) (= x1(t) − r) and u(t)
are in the required range.

V. CONCLUSIONS

This paper has presented improved approach to servo

control for nonlinear systems using the fuzzy model-based

control approach. Time-varying cancellation input has been

newly introduced. By using the cancellation input, servo

control for error dynamics with time varying extra terms has

been achieved. Moreover we have derived servo controller

design conditions and constraint conditions on inputs and

states in the form of LMI. Design examples have illustrated

the utility of this approach. Our future work is to apply this

approach to real complicated systems.
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