
  

  

In this paper, a model predictive control (MPC) approach is 

presented for solving the energy management problem in a 

parallel hydraulic hybrid vehicle.  The hydraulic hybrid vehicle 

uses a variable displacement pump/motor combination to 

transfer energy between the mechanical and hydraulic domains 

and a high pressure accumulator for energy storage.  The 

proposed controller observes the gas and brake pedal positions 

to estimate the desired wheel torque.  It regulates the engine 

throttle command, pump/motor displacement, and applied 

brake force to track this desired torque while optimizing the 

powertrain efficiency.  Simulation studies were conducted to 

evaluate the effects of engine dwell time and accumulator 

capacity versus on the overall vehicle fuel economy. 

I. INTRODUCTION 

ydraulic hybrid powertrain architectures present an 

opportunity to improve vehicle operating efficiency 

through the use of energy storage via a high pressure 

accumulator.  This form of alternative energy storage has 

received growing attention due to its superior power density to 

electrical storage [1]-[4].  Furthermore, the accumulator can be 

safely charged and discharged repeatedly over the full range of 

storage capacity, allowing for greater flexibility in vehicle 

operation.  To take advantage of the additional degrees of 

freedom present within the hydraulic hybrid powertrain, a 

supervisory control or energy management strategy (EMS) is 

needed to regulate the generation, storage, and distribution of 

energy within the powertrain.   

Many approaches have been developed for defining such 

strategies.  Most notably; rule based, stochastic dynamic 

programming (SDP), and model predictive control (MPC).  

Rule based EMS’s use a set of rules or logic to control the 

powertrain [2], [5].  They are typically extrapolated from global 

optimization assessment performed using deterministic dynamic 

programming over an assumed drive cycle.  Since the 

optimization is not causal, it is approximated with a causal 

logic.  This logic can then be implemented in real time but it is 

suboptimal [3].  Due to the cycle-dependent nature of this 

derivation, the performance cannot be guaranteed under 

arbitrary driving.  Stochastic dynamic programming uses 

probability maps in place of an assumed drive cycle to make an 
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estimate of what the vehicle will be required to do in the future 

and optimizes using this estimate [3], [6].  The benefits of this 

approach over the rule based design are that the solution is not 

limited to a specific drive cycle and a causal control strategy is 

determined without further analysis of the results.  However, 

this optimization procedure still includes some implicit 

assumption of the drive cycle. 

Model predictive control is an attractive control method for 

passenger vehicle applications where the drive cycle is not 

known apriori, environmental variables can have a significant 

impact on driver behavior, and driver behavior can vary 

significantly between individuals.  Unlike the rule based and 

SDP solutions, MPC uses no knowledge of the future drive 

cycle, or its statistical nature, to compute the control solution.  

Rather, a model of the system is used to predict how the 

powertrain will respond to a sequence of inputs.  This enables 

one to transform a finite horizon objective function expressed 

in terms of the states and controls as just a function of the 

control.  Therefore, the trajectory which minimizes the 

objective function is reduced to a sequence of control decisions.  

Since the MPC algorithm can be implemented without future 

knowledge, it has seen recent application in design of EMS’s 

for hydraulic hybrids [7].   

In this work, a model predictive controller will be presented 

for regulation of a parallel hydraulic hybrid vehicle (PHHV).  

The controller will regulate the engine throttle command, 

pump/motor displacement, and force applied to the brakes in 

order to ensure satisfaction of the operator’s torque demand 

while imposing efficient operation of the overall powertrain.  

This work expands upon the previous study of MPC applied to 

the PHHV, [7], by incorporating engine and pump efficiency 

measures into the online optimization and introducing a driver 

within the loop. 

The model of the PHHV will be described in section II.  In 

section III, the model predictive control design will be 

explained.  In section IV, simulation results will be given.  

Finally, section V provides conclusions and discussion points. 

II. POWERTRAIN MODEL 

The parallel hydraulic hybrid powertrain uses a variable 

displacement pump/motor connected in parallel with the 

transmission to regulate the transfer of energy to/from the 

accumulator.  This enables the storage of energy generated by 

the engine.  This stored energy can be used to assist the engine 

or completely supply the operator’s power demand.  In addition, 

energy which is normally dissipated by mechanical brakes can 
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be captured in the accumulator when decelerating.  A schematic 

of the PHHV is presented in Fig. 1. 

The parallel powertrain model presented here was designed 

for analysis of control performance and use in real time 

simulation.  As such, it lacks the detail of high fidelity models 

but still captures the relevant dynamics of power transfer 

between the engine, wheels, and accumulator. It is an extension 

of a model, described in [7], which was developed using the 

Simscape/Simhydraulics toolboxes. In contrast with the model 

of [7], the pump/motor response in this work is captured in a 

look-up table and the Simscape and Simhydraulics toolboxes 

are no longer needed. 

The proposed model represents a small passenger vehicle 

(similar in size to a Polaris Ranger) with a 2 gear transmission 

and a parallel hydraulic hybrid powertrain [8].  See appendix A 

for a list of the model parameters. 

 
Fig. 1. Parallel Hydraulic Hybrid Vehicle 

A. Mechanical Elements 

The engine model employed in the PHHV model represents a 

Perkins 403C-11 Diesel engine. The dynamics of this engine 

were captured using the engine model presented in [9] with the 

torque output being scaled by 0.57.  The efficiency 

characteristics of the engine were derived using the Willans line 

model and data provided by the manufacturer [10], see Fig. 2.  

Due to the limited data available when constructing the engine 

efficiency map, it was found that this mapping did not 

accurately characterize fuel consumption under idle conditions.  

Therefore, an experimentally validated fuel consumption rate of 

0.08 kg/s is used when the engine is idling.  The engine is 

connected to the powertrain via the clutch.  This relationship is 

given by (1). 
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Fig. 2. Engine efficiency map with color bar indicating efficiency (ideal 

engine efficiency = 1).  Blue circles indicated data points used to evaluate 

Willians line model. 

Here Ie is the engine inertia, De is the engine damping 

coefficient, ωe is the engine angular velocity, Te is the engine 

torque, and Tc is the friction torque from the clutch. 

 The clutch friction torque, (2) and (3), is used to equilibrate 

the angular velocities of the clutch input and output shafts.  The 

interaction between the flywheel and clutch plate is 

characterized by viscous and static friction.    

 ( )2 3
c c app e c

T r F signµ ω ω= ⋅ ⋅ ⋅ ⋅ −  (2) 

 ( )c e c c
v cµ ω ω= ⋅ − +  (3) 

Here rc is the radius of the clutch plate, Fapp is the normal 

force applied to the clutch, ωc is the angular velocity of the 

clutch output shaft, vc is the viscous friction coefficient, and cc 

is the coulomb friction coefficient. 

The torque balance at the wheels is given by (4) through (7).  

Here R is the transmission ratio, TH is the hydraulic load torque, 

Tb is the brake torque, It and Dt are the inertia and damping 

coefficients of the transmission input shaft, respectively, Iw and 

Dw are lumped inertial and damping coefficients of the wheel 

and transmission output shaft, respectively, and ω is the angular 

velocity of the wheels.  The vehicle load (mass and air drag) are 

contained within TLoad, see (11).  

  ωω ⋅−−−⋅−⋅=⋅ LbLoadHcL DTTTRTRI &  (4) 

 
wtL IIRI +⋅=  (5) 

 
wtL DDRD +⋅=  (6) 

 
c

Rω ω=  (7) 

The transient behavior of the transmission is modeled as a first 

order system with unity gain and a time constant of 1 second.  

This time constant was chosen based on survey results of 

automated manual transmissions [11]. 

The brake torque is computed using a reduced version of the 

model posed by Gerdes and Hedrick [12].  Their model is 

approximated as a first order system whose time constant is 

consistent with that of the original model for a median applied 

force.  Equation (8) defines the relationship between applied 

force (Fb) and pressure (Pb).   

 ( ) ( )sF
s

sP bb
1015.0

12000

+
=  (8) 

The pressure is then translated into braking torque via the 

friction model given by (9) and (10). 

 ( )2 3
b pad b

T A P signµ ω= ⋅ ⋅ ⋅ ⋅  (9) 

 bb cv +⋅= ωµ  (10) 

Here Apad is the area of the brake pad, ω is the angular velocity 

of the wheels, vb is the viscous friction coefficient, and cb is the 

coulomb friction coefficient. 

Finally, the load torque, (11), accounts for the effect of 

vehicle mass (m), longitudinal tire force (Fx), and air drag (drag 

coefficient: Cd, vehicle area: Aveh, air density: ρair).  The 

equation of motion for the vehicle operating under these loads 

is given by (12). 

 xLoad FrT ⋅=  (11) 
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veh x air d veh veh
v F C A v mρ = − ⋅ ⋅ ⋅ ⋅ &  (12) 

Here r is the wheel radius and vveh is the vehicle linear velocity. 

The longitudinal tire force is computed using a simple linear 

tire model given in (13).  The linear tire model assumes good 

surfaces and low slip, thereby enabling the use of a linear 

relationship between the slip ratio and tractive force.  To 

compensate for small wheel velocities, a lower bound on the 

denominator is applied (vmin). 
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Here K is the slip coefficient, r is the wheel radius, ω is the 

angular velocity of the wheels.   

B. Hydraulic Elements 

There are three elements to the hydraulic circuit: the variable 

displacement pump/motor, the 2 way directional valve, and the 

high pressure accumulator.  The variable displacement 

pump/motor is modeled using a map of data points for a 28 

cc/rev Sauer-Danfoss variable displacement axial piston pump.  

This map reads in the angular velocity of the pump drive shaft 

(ωp), pressure (P), and displacement (x  [0,1]) and outputs the 

required torque (TH) and volumetric flow (Q).  Equations (14) 

and (15) capture this relationship. 

 ( )xPMapT pTH ,,ω=  (14) 

 ( )xPMapQ pF ,,ω=  (15) 

When operating as a hydraulic motor (x  [-1,0]), a separate set 

of data points are used but the inputs are the same.   

The 2 way directional valve is used to connect the high 

pressure accumulator with the hydraulic circuit.  This valve is 

used strictly in an on/off fashion.  As such, its dynamics have 

been ignored at present.  The logic for when the valve is open 

and closed is presented in section III. 

The accumulator model represents a gas charged accumulator 

in which high pressure fluid is used to compress gas which is 

separated from the fluid via a flexible membrane.  When the 

pressure at the inlet of the accumulator falls below the gas 

pressure, fluid is forced out of the accumulator as the gas 

expands.  Equation (16) captures this relationship assuming 

ideal gas behavior.  To prevent a discontinuity in accumulator 

pressure, a linear approximation is made for small oil volumes. 

 ( ) ( )( )
( )

max max

max max

     for 

                           for 

pr acc nom nom acc nom

pr acc acc nom

P V V V V V V V
P

P V V V V V

 ⋅ ⋅ − ≤
= 

⋅ − >

 (16) 

Here Vacc is the fluid volume within the accumulator, Vmax is 

the maximum accumulator capacity, Ppr is the gas precharge 

pressure, P is accumulator pressure, and Vnom is the small 

volume at which the linearized approximation ends. 

C. Driver Model 

The driver model consists of a pair of PI controllers, one for 

each pedal, with integral anti-windup.  A relay, given by (17), is 

used to switch between applying the gas and brakes. 

 ( )
( )
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e

e
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Here e is the difference between desired and actual vehicle 

velocity.  When Mode is equal to one the gas is applied, when 

Mode is equal to minus one, the brakes are applied. 

III. CONTROL DESIGN 

The goal of the proposed controller is track the operator’s 

desired torque at the wheels while imposing efficient operation 

of the engine and variable displacement pump\motor.  To 

accomplish this regulation, a discrete model predictive control 

was designed.  Discrete MPC is a feedback controller which 

utilizes a discrete model of the system to predict how the 

system will respond to a sequence of inputs over a finite 

horizon.  In this way, the value of an objective function at each 

time step within the prediction horizon is a function of the 

current and previous control decisions within the prediction 

horizon.  Thus, minimization of an objective function is 

reduced to selecting the appropriate sequence of inputs.  The 

first element of the input sequence is applied to the system, and 

then the process is repeated at the next time step.  For additional 

details, the reader is referred to [13].  This type of control has 

seen recent application to both the electric and hydraulic hybrid 

vehicles [7], [14]. 

The controller is composed of 3 main parts; pedal 

interpretation, prediction model, and optimization routine with 

supervisor.  See Fig. 3 for a schematic of the controller.  

Measurements of the wheel angular velocity, accumulator state 

of charge (pressure), transmission gear ratio, displacement, and 

desired engine torque from the controller are made in order to 

perform the linearization and optimization. 

Fig. 3. Schematic of MPC 

A. Pedal Interpretation 

The operator communicates his or her desired performance to 

the EMS via the pedal positions, which are interpreted as a 

desired torque.  The gas pedal position is translated into a 

desired wheel torque via a map which relates the pedal position 

and engine speed to engine torque.  The resulting engine torque 

is multiplied by the transmission gear ratio.  The mapping was 

derived by evaluating the torque output of the engine model for 

fixed engine speeds and throttle commands.  The brake pedal 

position is translated to desired wheel torque via multiplication 

of the constants from the brake model given in section II, see 

(8) through (10), minus the coulomb friction term.  The pedal 

position, θb (deg), is translated into force applied to the brakes 

via a constant. 
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B. Prediction Model 

The prediction model used within the MPC contains 

simplified powertrain dynamics to facilitate rapid on-line 

solutions to the optimization problem.  These dynamics are 

given by (18) through (25).  This prediction model simplifies 

the previous vehicle model as follows:  it ignores the engine 

and brake dynamics; the vehicle loads are reduced to a single 

inertia and damping term; the pump/motor dynamics are 

approximated by bilinear expressions based on the current 

operating conditions; and the accumulator dynamics are 

approximated as a collection of linear relationships. 

 eng H bI R T R T T Dω ω= ⋅ − ⋅ − −&  (18) 

 QMP ⋅=&  (19) 

 
TTH BPxAT +⋅⋅=  (20) 

 
QQ BRxAQ +⋅⋅⋅= ω  (21) 
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 ( ) ooToooTT xPAxPMapB −= ,,ω  (25) 

Here I is the lumped vehicle inertia, ω is the angular velocity 

of the wheels, R is the transmission ratio, Teng is the engine 

torque, TH is the hydraulic load torque, Tb is the brake torque, D 

is the lumped damping coefficient, P is the accumulator 

pressure, M is defined by the linearized accumulator dynamics, 

Q is the flow rate into the accumulator, x is the displacement 

command (x  [-1,1]), and subscript o denotes operating point.  

See appendix A for values used to define the prediction model. 

To reduce the computational complexity of the optimization, 

the prediction model is linearized using a first order Taylor 

series approximation, (26) through (29).  Here ωo, xo, and Po 

denote the operating point with respect to angular velocity, 

displacement, and pressure.  Note that this model is not fixed, 

the transmission ratio, M, and the pump/motor coefficients, see 

(22) through (25), are also dependent on the current operating 

condition.  The linearized system is then discretized using the 

zero order hold method. 
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 { }21 LLxTTU beng
T =  (27) 

 
TooT BRxPARL ⋅−⋅⋅⋅=1

 (28) 

 
QooQ BxRAML +⋅⋅⋅⋅−= ω2

 (29) 

The prediction model showed good agreement with the 

model described in section II.  Fig. 4 shows a comparison of the 

two models, when the prediction model is updated every 5 

seconds.  For this simulation, the engine torque was stepped 

from 0 to 40 Nm at time 0 and the displacement was held 

constant at 0.1.  This represents a moderate acceleration while 

slowly charging the accumulator.  

0 20 40 60 80 100
0

5

10

V
e
lo

c
ity

 (
m

/s
)

 

 

Nonlinear

Linear

0 20 40 60 80 100
1.6

1.8

2

2.2
x 10

7

P
re

s
s
u
re

 (
P

a
)

Time (sec)  
Fig. 4. Comparison the simulated vehicle velocity and accumulator pressure 

between the model from section II and prediction model. 

C. Objective Functions 

Two objective functions are utilized within the MPC; one for 

when the desired torque is positive and one for when the 

desired torque is negative.  They are denoted by JA and JB 

respectively and are defined by (30) through (33).  The integral 

of the cumulative deviation from the desired values over the 

prediction horizon is used when evaluating the cost of a policy.  

This more heavily penalizes deviation from the desired values 

at the beginning of the prediction horizon, thereby improving 

tracking performance.  The primary goal of JA and JB is to track 

the desired wheel torque as interpreted by the pedal positions. 

The definition of the secondary objective used within JA and 

JB was motivated by an analysis of the component efficiencies.  

When the wheel torque demand is positive, power can be 

supplied with or without the engine.  When engine power is 

used, to maximize its efficiency for a prescribed velocity, its 

torque output should also be maximized, see Fig. Fig. 2.  

Similarly, to maximize pump/motor efficiency, its displacement 

should be maximized.  These two objectives are complimentary 

since maximizing engine torque maximizes excess power 

generation thereby forcing the pump to operate at higher 

displacement.  When engine power is not needed, the system no 

longer has excess degrees of freedom and the pump/motor 

displacement is constrained by the operator’s demand.  

Therefore, when the desired wheel torque is positive the 

efficiency objective of the control will focus solely on tracking 

a desired engine torque. 

When the desired wheel torque is negative, one wishes to 

maximize the captured energy, therefore the secondary 

objective is formatted as tracking the maximum pump/motor 

displacement xDes = 1.  

 ( ) ( )

SecondaryPrimary

22
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1 2
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 ( ) ( ) ( ) ( )( )( )A eng T o o o o T
T i R T i R A x P i P x i x P B= ⋅ − ⋅ + ⋅ − +  (32) 
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 ( ) ( ) ( ) ( )( )( )B b T o o o o T
T i T i R A x P i P x i x P B= + ⋅ + ⋅ − +  (33) 

Here n is the number of steps in the prediction horizon, 

subscript Des denotes the desired value, and subscript max 

denotes maximum value.  The desired torque tracking term and 

the engine torque term are divided by their respective maximum 

values to normalize the resulting cost.  The final objective 

functions are quadratic and were solved using the “quadprog” 

command from the Matlab optimization toolbox. 

A supervisory logic is applied to prevent high frequency 

cycling of the engine on and off.  If the JA objective function is 

used, the default desired engine torque is Teng,Des = 0 Nm.  This 

penalizes engine use forcing the system to run on stored energy.  

The supervisor monitors the commanded engine torque for 

when it has exceeded a threshold, Tthreshold 

  
eng threshold

T T≥  (34) 

Once this condition has occurred, the desired engine torque 

changes to full throttle, Teng,Des = 70 Nm.  This value is 

maintained until Tdwell time has passed.  After the dwell time has 

passed, the logic checks if the desired torque is less than a 

threshold.  By defining this threshold as done in (35), one can 

use it to ensure that there is sufficient charge in the accumulator 

to sustain the desired wheel torque. 

 
maxDes

T R X k P≤ ⋅ ⋅ ⋅  (35) 

Here an ideal pump model has been assumed, TDes is the desired 

wheel torque, R is the gear ratio, Xmax is the maximum 

pump/motor displacement, P is the accumulator pressure, and k 

is a constant ranging between 0 and 1 which can be used to tune 

how aggressively the supervisor seeks to declutch the engine 

and run on stored energy.  

Finally, at low speeds (ω < 13 rad/sec) the leakage losses of 

the pump/motor dominate.  Therefore, under these conditions 

the two way valve joining the accumulator to the hydraulic 

circuit is closed and the displacement is forced to be zero. Thus 

only the primary term of JA and JB is considered. 

D.  Constraints 

For control of the PHHV, constraints are needed for the 

allowable accumulator pressure.  A lower bound is needed to 

prevent the controller from attempting to remove oil from an 

empty accumulator and an upper bound is needed to prevent the 

system from exceeding the maximum allowable pressure of the 

hydraulic components.  The upper and lower bound were set to 

12.5 MPa (10% maximum allowable oil volume) and 35 MPa. 

IV. RESULTS 

 Using the control strategy described in section III, a 

simulation study was conducted to evaluate the relationship 

between the dwell time, accumulator capacity, and powertrain 

performance.  For this simulation study, an update rate of 2 Hz 

was used and the prediction horizon was 5 seconds.  This 

prediction horizon has been used successfully in other hybrid 

vehicle research [7], [14].  The update rate was chosen to be as 

small as possible, while ensuring sufficient time for the MPC to 

solve between updates.  Using a computer with a 2.6 GHz 

processor and 8 GB RAM, the combined average linearization 

and optimization computation time was approximately 0.05 

seconds.  For the supervisor the engine threshold, (34), was set 

to 10 Nm and k from (35) was set to 0.5.   In each simulation, 

the driver model used the EPA Urban Dynamometer Driving 

Schedule (UDDS) [15].  However, since this small passenger 

vehicle is not capable of traversing this profile, the velocities 

were scaled by a factor 0.6. 

The results of the simulation study shown in Fig. 5 

demonstrate that there is a clear tradeoff between dwell time 

and fuel economy.  For dwell times less than 5 seconds both the 

engine and pump/motor lose efficiency during transients 

associated with the many charging events.  As the dwell times 

increases, up to 20 seconds, the average efficiency when the 

engine was clutched improved for all accumulator sizes since 

there are fewer transients.  However, for dwell times in excess 

of 20 seconds, the average engine efficiency when clutched 

decreases due to accumulator saturation which prevents 

efficient engine operation.  Naturally, this effect is less 

pronounced for the larger accumulator.  In addition, as the 

dwell time increases there is a significant reduction in average 

displacement when motoring; at Tdwell = 30 sec the average 

motor displacement was 25% less than at Tdwell = 7 sec for the 

10 gal. accumulator.  This results in a net loss in efficiency and 

consequently a decrease in fuel economy.  The maximum fuel 

economy was observed for dwell times between 5 and 15 

seconds because there was balance between efficiency loss due 

to transients and low motoring displacement.  Similar tradeoffs 

have been observed in other hydraulic hybrid studies [3].  For 

larger accumulators the dwell time range over which one 

achieves this balance is slightly larger because there is a smaller 

pressure increase per unit flow. 
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Fig. 5. Fuel economy and average engine efficiency when clutched for 

varying dwell time and accumulator capacity   
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Fig. 6. Powertrain response for 10 gallon accumulator and Tdwell = 7 sec 
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Fig. 6 shows the powertrain response for the best fuel 

economy trial from the simulation study (10 gallon 

accumulator, Tdwell = 7 sec).  From these results one can see that 

the MPC was able to track the operators torque demand while 

using the engine in an on/off fashion.  Furthermore, only a 

small portion of the accumulator was used (45% of max 

allowable volume at peak charge) enabling the pump/motor to 

operate at larger displacement during motoring operation. 

To benchmark these simulation results, a non-hybrid vehicle 

was simulated using the same parameters and it achieved an 

average engine efficiency when clutched of 17.9% and a fuel 

economy of 30.5 MPG.  For the best case fuel economy 

scenario from Fig. 5, the hybrid powertrain achieved 24.5% 

average clutched engine efficiency (an improvement of 35%) 

and a fuel economy of 45.3 MPG (an improvement of 48.5 %).    

V. CONCLUSION 

A model predictive controller was successfully able to track 

the desired wheel torque, while utilizing the energy storage 

capabilities to improve fuel economy and a dwell time 

constraint to prevent high frequency cycling of the engine.  

However, it was observed that the dwell time constraint can 

have a significant impact on fuel economy.  When sizing the 

accumulator for the parallel powertrain, one must consider the 

allowable engine cycling frequency.  If a large dwell time is 

required to prevent wear on the engine, then a suitably large 

accumulator should be used to prevent accumulator saturation 

and to enable more efficient motoring of the pump/motor. 

Future work will focus on validating these results on an 

experimental system [8], and applying MPC to more complex 

hybrid powertrain architectures; the series and power split. 

APPENDIX A 

Below is a list of the parameter values used in the study. 
TABLE I 

POWERTRAIN PARAMETERS 

Ie 0.145 kgm2  cb 0.001 

De 0.106 Nm/(rad/s)  vb 0.2 s/rad 

rc 0.1 m  r 0.31 m 

vc 0.2 s/rad  Cd 0.4 

cc 0.001  Aveh 2 m2 

R 7.5:1 (1st gear) 

2.9:1 (2nd gear) 

 K 80000 N 

It 0.065 kgm2  vmin 0.1 m/s 

Iw 1.4 kgm2  Ppr 11.7 MPa 

Dt 0.001 Nm/(rad/s)  Xmax 4.5x10-6 m3/rad 

Dw 1.0 Nm/(rad/s)  Vmax 0.04 m3 

Apad 0.01 m2  Vnom 0.001 m3 

m 750 kg + (64.9: 2.5 gal, 92.8: 5 gal, 155.6: 10 gal ) 

TABLE II 

PREDICTION MODEL PARAMETERS 

I 81 kgm2 (Clutch Locked) 

80 kgm2 (Clutch Unlocked) 

R 7.5:1 (first gear) 

2.9:1 (second gear) 

D 7.5 Nm/(rad/s) ωmin 0 rad/s 

Pmin 3 MPa ωmax 500 rad/s 

Pmax 35 MPa   

 

 

 

 

TABLE III 

LINEARIZED ACCUMULATOR PARAMETERS: 10 GALLON 

Oil Volume Range (m3) M 

0-0.001 1.21x1010 
0.001-0.005 3.4x108 
0.005-0.01 4.5x108 
0.01-0.015 6.2x108 

0.015-0.0175 8.3x108 
0.0175-0.02 10.4x108 
0.02-0.0225 13.4x108 

0.0225-0.025 17.8x108 
0.025-0.0275 25.0x108 
0.0275-0.029 34.0x108 
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