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Abstract— Achieving global asymptotic stabilization of rigid-
body attitude is impossible using smooth feedback; however,
this obstruction can be overcome using a hybrid controller
that coordinates a “synergistic” family of potential functions
and their corresponding feedbacks. In this paper, we show
that it is impossible to construct a synergistic family of
potential functions from the widely used class of “modified
trace functions,” despite the fact that one can choose a subset of
these functions whose only common critical point is the identity
element. With this as motivation, we introduce a parametrized
diffeomorphism that is capable of altering the critical behavior
of potential functions and generating a synergistic family,
paving the way for global asymptotic attitude stabilization of
rigid-body attitude by hybrid feedback.

I. INTRODUCTION

It is well known that global asymptotic stabilization of

rigid-body attitude is a fundamentally difficult task due to the

topological complexity of the underlying state space, SO(3).
This is because SO(3) is not a vector space, but a compact

manifold without boundary, which implies that SO(3) does

not have the topological property of contractibility [1]. This

fact precludes the existence of a continuous, time-invariant,

state-feedback control law that globally asymptotically sta-

bilizes a particular attitude [2]–[4].

The best achievable result with smooth feedback is almost

global asymptotic stability, where the attraction basin for a

desired attitude excludes a nowhere dense set of Lebesgue

measure zero. An almost global asymptotic stability result

was obtained in [5] using “total energy” as a Lyapunov

function. The control paradigm in [5] is based on shaping

the potential energy of the closed-loop system by feedback

and removing energy from the system with an additional

damping-injection term. As in the recent work [6], this leads

the system to converge to critical points of an appropriate

potential energy (termed a “navigation function” in [5] and

an “error function” in [6], [7]), selected by the control

designer to have a global minimum at the desired attitude

and no other local minima (which lead to asymptotically

stable equilibria). Due to topological obstructions, smooth

functions on SO(3) have at least four critical points and the

so-called “modified trace function” studied in [5], [7]–[11]

is one such example that achieves this minimal number of

critical points.
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While smooth feedback strategies based on total energy

and a single potential function are inherently limited by the

topology of SO(3), a hybrid feedback that coordinates a

“synergistic” family of potential functions and their associ-

ated feedbacks can overcome such topological obstructions.

Inspired by using multiple Lyapunov functions in feedback

[12] and analysis [13], synergism, as defined in this work,

is a condition on a family of potential functions requiring

that at each critical point (that is not the desired attitude)

of each potential function in the family, there exists another

potential function of lower value. When this condition is

satisfied, it leads to a hybrid controller providing for robust

global asymptotic stability of a desired attitude [14]. In this

work, we show that the class of modified trace functions is

not large enough to generate a synergistic family. With this

negative result as motivation, we introduce a parametrized

diffeomorphism of SO(3) that is capable of generating a

synergistic family of potential functions. In fact, we provide

an explicit construction of a synergistic family of only two

potential functions, generated by composing the proposed

diffeomorphism with a modified trace function. In previous

works, the authors have applied the same strategy to planar

rotations [15] and reduced attitude stabilization for the “3D

pendulum” [16], [17].

The remainder of this paper is organized as follows. Sec-

tion II provides several preliminary definitions and notation

used in this work. Section III examines potential functions

in the context of SO(3). Section IV introduces the notion

of synergism and shows that any number of modified trace

functions cannot generate a synergistic family. Section V

introduces a particular diffeomorphism of SO(3) and uses

it to generate a synergistic family of potential functions.

Finally, Section VI provides some concluding remarks and

the Appendix provides the proof of some of the main results.

II. PRELIMINARIES

We denote the special orthogonal group of order three as

SO(3) = {R ∈ R
3×3 : R⊤R = I, det(R) = 1}.

Given two vectors y, z ∈ R
3, their cross product can be

represented by a matrix multiplication: y×z = [y]× z, where

[y]× =





0 −y3 y2
y3 0 −y1
−y2 y1 0





constitutes an isomorphism between R
3 and so(3) = {S ∈

R
3×3 : S⊤ = −S}, the Lie algebra of SO(3). We denote
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the inverse operation of [·]× as vec× : so(3) → R
3, defined

implicitly as

vec× [y]× = y,

for all y ∈ R
3. By defining skew : R

3×3 → so(3) as the

map skewA = (A − A⊤)/2, we can extend the definition

of vec× to all of R
3×3 by taking its composition with skew

[5]. In this direction, we define ψ : R
3×3 → R

3 as

ψ(A) = vec×(skewA) =
1

2





A32 −A23

A13 −A31

A21 −A12



 .

The attitude of a rigid body, denoted R, represents a

rotation of coordinates that express a vector in a body-fixed

frame to coordinates in an inertial frame. Given a Lebesgue

measurable angular velocity ω ∈ R
3, expressed in the body-

fixed frame and defined on an open interval, the rigid body

obeys the kinematic equation

Ṙ = R [ω]× R ∈ SO(3).

The n-dimensional unit sphere embedded in R
n+1 is

S
n = {x ∈ R

n+1 : x⊤x = 1}.

Given a rotation angle θ ∈ R and an axis u ∈ S
2, it follows

that eθ[u]
× ∈ SO(3) and

R(θ, u) := eθ[u]
× = I + sin θ [u]× + (1 − cos θ) [u]

2
× , (1)

where for some A ∈ R
n×n, eA denotes the matrix expo-

nential of A. This is commonly known as the angle-axis

parametrization of SO(3), or the Rodrigues formula. One

can recover the angle and axis (non-uniquely) as

u sin θ = ψ(R(θ, u)) 2 cos θ = trace(R(θ, u)) − 1.

We denote the canonical basis for R
n as {e1, . . . , en}.

Given two matrices A ∈ R
m×n, B ∈ R

p×q, we define

A⊗B =







A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB






vecA =







Ae1

...

Aen






,

as the Kronecker product of A and B and the vectorization

of A, respectively. Given vectors x, y ∈ R
n and matrices

A,B ∈ R
m×n, their inner product is defined as 〈x, y〉 :=

x⊤y and 〈A,B〉 := trace(A⊤B) = (vecA)⊤ vecB, respec-

tively. The 2-norm of a vector y ∈ R
n is |y| =

√

〈y, y〉
and the Frobenius norm of a matrix A ∈ R

n×m is ‖A‖F =
√

〈A,A〉.
For differentiable functions f : R

n → R
m and g : R

n →
R, we define their Jacobian matrix and gradient vector as

[D f(x)]ij =
∂fi(x)

∂xj

∇g(x) := (D g(x))⊤,

respectively. For a differentiable function F : R
m×n →

R
p×q , we use the matrix calculus proposed in [18], where

DF (X) =
∂ vecF (X)

∂ vecX
.

This definition induces the following chain and product rules.

Suppose that F : R
m×n → R

p×q , G : R
p×q → R

r×s,

H = G ◦ F : R
m×n → R

r×s, K : R
m×n → R

q×r are

differentiable functions. Then, we have

DH(X) = DG(F (X))DF (X) (2)

D(F (X)K(X)) = (K(X)⊤ ⊗ Im)DF (X)

+ (Ip ⊗ F (X))DK(X).
(3)

As special cases of F : R
m×n → R

p×q , when either the

domain or range of F is R, we retain some useful notation

that groups the partial derivatives together in a matrix, rather

than applying vec to them. In this direction, for differentiable

functions G : R → R
m×n and H : R

m×n → R, we define
[

dG(t)

dt

]

ij

=
dGij(t)

dt
[∇H(X)]ij =

∂H(X)

∂Xij

.

Also, we denote Ġ(t) := dG(t)/dt. Then, we have

DG(t) =
d vecG(t)

dt
= vec

dG(t)

dt

DH(X) =
∂H(X)

∂ vecX
= (vec∇H(X))⊤.

Let V = H ◦G. Applying the chain rule (2), we have

V̇ (t) = (vec∇H(G(t)))⊤ vec Ġ(t) =
〈

∇H(G(t)), Ġ(t)
〉

.

This agrees with the usual notation for differentiable func-

tions γ : R → R
n, σ : R

n → R, v = σ ◦ γ, where

v̇(t) = ∇σ(γ(t))⊤γ̇(t) = 〈∇σ(γ(t)), γ̇(t)〉 .

III. POTENTIAL FUNCTIONS AND CRITICAL POINTS

In this section, we describe the family of potential func-

tions on SO(3). Given a continuously differentiable function

V : SO(3) → R, there will exist at least four critical points1

where the shape of the state space interacts with the gradient

of V to eliminate infinitesimal change of V with respect to

R ∈ SO(3). Clearly, we have

V̇ (R(t)) =
〈

∇V (R), R [ω]×
〉

= 2
〈

ω, ψ(R⊤∇V (R))
〉

,

where we have used the property that trace(A [y]×) =
2y⊤ψ(A⊤) for any A ∈ R

3×3 and y ∈ R
3. Thus, no matter

the value of ω, when R⊤∇V (R) = ∇V (R)⊤R, there is no

infinitesimal change in V . Thus the critical points of V are

CritV = {R ∈ SO(3) : ψ(R⊤∇V (R)) = 0}.

Definition 1. A continuously differentiable function V :
SO(3) → R≥0 is a potential function on SO(3) (with respect

to I) if V (R) > 0 for all R ∈ SO(3) \ {I} and V (I) = 0.

The class of potential functions on SO(3) is denoted P .

1The fact that there are at least four critical points of any continuously dif-
ferentiable function on SO(3) follows from the calculation of its Lusternik-
Schnirelmann category, defined as the minimum number of contractible sets
needed to cover SO(3). We refer the reader to [19] for the original work by
Lusternik and Schnirelmann, and to [20] for a more modern and thorough
treatment of the ideas in [19]. We note that the Lusternik-Schnirelmann
category of SO(3) is listed in [21], [22].
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We note that since SO(3) is a Lie group, one can use the

group properties to translate potential functions. That is, if

V is a potential function on SO(3) with respect to I , then

Vd(R) = V (R⊤
d R) is a potential function on SO(3) with

respect to Rd ∈ SO(3).
A commonly used potential function on SO(3) is the so-

called “modified trace function,” defined as

PA(X) = trace(A(I −X)) = 1
2 〈I −X,A(I −X)〉 , (4)

which, taking inspiration from [8], was first introduced for

attitude control in [5]. It is helpful to see PA in the angle-axis

representation through (1). Given θ ∈ R and u ∈ S
2,

PA(R(θ, u)) = (1 − cos θ)(trace(A) − u⊤Au). (5)

As we now show, the critical points of PA are the identity

element and rotations of 180◦ about the (real) eigenvectors

of A. In this direction, for each A ∈ R
n×n, we define

E (A) = {(λ, v) ∈ C × C
n : Av = λv, |v| = 1}

and its projections onto C and C
n as

Eλ(A) = {λ ∈ C : ∃(λ, v) ∈ E (A)}
Ev(A) = {v ∈ C

n : ∃(λ, v) ∈ E (A)}.
Recall that when A is symmetric, Eλ(A) ⊂ R. In this case,

it is helpful to constrain the sets of unit eigenvectors to be

purely real as well. In this direction, we let

E
R

v (A) = {v ∈ R
n : ∃(λ, v) ∈ E (A)}.

Lemma 2. Let A ∈ R
3×3 be symmetric and positive definite.

Then, the function PA satisfies

CritPA = {I} ∪ R(π,E R

v (A)). (6)

When A has distinct eigenvalues, PA obtains the minimal

number of critical points possible.

Proof. By an obvious calculation, we have that

∇PA = −A
CritPA = {R ∈ SO(3) : R⊤A = AR}.

Then, since R−1 = R⊤, it follows that

RA2 = A2R.

Then, since RR⊤ = R⊤R = I for every R ∈ SO(3), it

follows that R is normal (that is, R⊤R = RR⊤) and so it

is diagonalizable [23, Ch. 7.5]. Clearly, both A2 and A are

also normal (and diagonalizable). Then, by [24, Theorem

1.3.19], since A2 and R commute, they are simultaneously

diagonalizable and hence, have the same set of eigenvectors.

Moreover, since A commutes with A2, they, as normal

matrices, must also have the same set of eigenvectors. Hence,

A and R must have the same set of eigenvectors.

In this direction, let R = R(θ, v) for some θ ∈ R and

v ∈ S
2. Then, Eλ(R) = {1, eiθ, e−iθ}. Let (φ, u) ∈ E (R)

and let (λ, u) ∈ E (A). It follows that

ARR⊤Au = λ2φ2u = A2u = λ2u.

Since A is positive definite, it follows that λ > 0 and so,

φ2 = 1. This implies that θ ∈ {0, π}. Finally, since v ∈
Ev(A), it follows that R is either the identity, or a 180◦

rotation about an eigenvector of A. This proves (6).

When A has distinct eigenvalues, for any (λ, v) ∈ E (A),
the dimension of the null space of A−λI is one (see [23, Ch.

7]). Since R(π,−v) = R(−π, v) = R(π, v), it follows that

R(π,E R

v (A)) has only 3 points. Hence PA has four critical

points, the minimal number possible [19].

IV. SYNERGISTIC POTENTIAL FUNCTIONS ON SO(3)

Definition 3. Let Q ⊂ Z be a finite set of N elements and

define µ : PN → R≥0 such that for each family of potential

functions V = {Vq}q∈Q,

µ(V ) = min
q∈Q

x∈Crit Vq\{I}

max
p∈Q

Vq(x) − Vp(x). (7)

The family V is synergistic if there exists δ > 0 such that

µ(V ) > δ, (8)

where we say that V is synergistic with gap exceeding δ.

Since one can use modified trace functions, defined in

(4), to produce any number of potential functions on SO(3)
having only I as a common critical point, one might won-

der whether one can find a synergistic family of potential

functions of the form V = {PAq
}q∈Q. It would seem

possible, especially since it is easy to separate the critical sets

between functions by choosing different A’s with different

eigenvectors; however, the following result shows that this is

not the case.

Theorem 4. Any finite family of modified trace functions is

not synergistic.

Proof. Let V = {PAq
}q∈Q be a family of modified trace

functions as defined in (4). Recalling Lemma 2, we have

CritPAq
\{I} = R(π,E R

v (Aq)). It follows from (5) that for

any p, q ∈ Q and any (λ, u) ∈ E (Aq) we have

PAq
(R(π, u)) − PAp

(R(π, u)) =

2(trace(Aq) − λ− trace(Ap) + u⊤Apu).

By definition, the family V is synergistic when for every

q ∈ Q and (λ, u) ∈ E (Aq), there exists p such that

trace(Aq) − λ− trace(Ap) + u⊤Apu > 0. (9)

In fact, this is impossible to satisfy. Let

q∗ = argmin
q∈Q

(trace(Aq) − max Eλ(Aq)) .

Now, let λ∗ = max Eλ(Aq∗) and let u∗ be a unit eigenvector

corresponding to λ∗ for Aq∗ . Then, it follows that

trace(Aq∗) − λ∗ − trace(Ap) + u∗⊤Apu
∗ ≤

trace(Aq∗) − λ∗ − trace(Ap) + max Eλ(Ap) ≤ 0

for every p ∈ Q. That is, there exists q ∈ Q and (λ, u) ∈
E (Aq) such that (9) is not satisfied for every p ∈ Q. This

completes the proof.
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While Theorem 4 may seem counter-intuitive, the fol-

lowing lemma sheds some light on why this is the case.

Recall that for any function V : SO(3) → R, that V̇ (R) =
2ω⊤ψ(R⊤∇V (R)). Then, to flow down the gradient of V ,

one can set ω = −2ψ(R⊤∇V (R)).

Lemma 5. Let A ∈ R
3×3 be symmetric and positive definite.

Suppose the kinematic feedback ω = −2ψ(R⊤∇PA(R)) =
2ψ(R⊤A) is applied to the system Ṙ = R [ω]×. Then,

R(π,S2) is invariant for the closed-loop system

Ṙ = R
[

2 vec× skewR⊤A
]

× = R−RAR.

Proof. Suppose that R = R⊤. Then, Ṙ⊤ = (R−RAR)⊤ =
R−RAR = Ṙ. Since Ṙ is symmetric when R is symmetric,

the set of symmetric rotations, {I} × R(π,S2) is invariant

to the flow Ṙ = R−RAR. Note that {I} and R(π,S2) are

disjoint and in fact, there exists an open neighborhood U ∋ I
such that U ∩ R(π,S2) = ∅. This implies that R(π,S2) is

invariant.

These results raise some important questions. Does there

exist a synergistic family of potentials? If so, what is the

minimum number N such that there exists a synergistic

family of N potential functions? In the following section, we

give the answers: yes and two, respectively, by construction.

V. SYNERGISTIC POTENTIALS VIA ANGULAR WARPING

Let C 1(SO(3)) denote the set of continuously differen-

tiable real-valued functions on SO(3) and let

C
1
I (SO(3)) = {P ∈ C

1(SO(3)) : P (I) = 0}.
Then, define the function T : SO(3) → SO(3) as

T (R, k, P, u) = ekP (R)[u]
×R, (10)

where k ∈ R, P ∈ C 1
I (S2), and u ∈ S

2 are fixed parameters.

In context, given a gain k ∈ R, a function P ∈ C 1
I (S2), and

a rotation axis u ∈ S
2, T applies a rotation in the amount

of kP (R) to R about the vector u.

Theorem 6. Let k ∈ R, P ∈ C 1
I (SO(3)), u ∈ S

2, V ∈ P ,

U = V ◦ T , and define Θ : SO(3) → R
3×3 as

Θ(R) = I + 2kR⊤uψ(∇P (R)R⊤)⊤R.

Then, the transformation T : SO(3) → SO(3) satisfies

T (I) = I (11)

DT (R) =
(

I ⊗ exp(kP (R) [u]×)
)

(I+

k vec([u]×R)(vec∇P (R))⊤
) (12)

det DT (R) = 1 + 2k
〈

u, ψ(∇P (R)R⊤)
〉

(13)

ψ(R⊤∇U(R)) = Θ(R)⊤ψ
(

T (R)⊤∇V (T (R))
)

(14)

Ṫ (R) = T (R) [Θ(R)ω]× . (15)

Moreover, when det DT (x) 6= 0,

Θ(R)−1 = I − 2kR⊤uψ(∇P (R)R⊤)⊤R

det DT (R)
(16)

CritU = T −1 (CritV ) . (17)

for all R ∈ SO(3).

Proof. See Appendix.

Definition 7. A map h : X → Y is a diffeomorphism if it is

bijective, differentiable, and has a differentiable inverse. The

map h is a local diffeomorphism if for each x ∈ X , there

exists an open set U ⊂ X containing x such that h : U →
h(U) is a diffeomorphism.

When det DT (R) 6= 0, T is a local diffeomorphism

of SO(3) by the inverse function theorem. Additionally,

some special structure of T implies that T is also a global

diffeomorphism for k sufficiently small in magnitude.

Theorem 8. Given k ∈ R, P ∈ C 1
I (SO(3)), u ∈ S

2, if
√

2|k|max ‖∇P (SO(3))‖F < 1, (18)

then T : SO(3) → SO(3) is a diffeomorphism.

Proof. See Appendix.

A simple consequence of Theorem 6 is that if V is a

potential function, then so is V ◦ T .

Corollary 9. Let V ∈ P , P ∈ C 1
I (SO(3)), and u ∈ S

2. If

k satisfies (18) then, V ◦ T ∈ P .

Applying the diffeomorphism T to an existing potential

function produces a new potential function, with new critical

points that are calculated by applying the inverse of T to the

critical points of the original potential function, as shown by

(17) of Theorem 6.

We now provide an existence result by example and

show that it is possible to generate a synergistic family

of potential functions using the transformation T and a

particular potential function of the type PA, defined in (4). In

fact, this example shows that one can generate such a family

of potential functions from a single potential function.

Example 10. Let w = [11 12 13]⊤, ∆ =
3diag(w)/

∑3
i=1 wi, u = w/‖w‖2. Then, define V k

1 (R) =
P∆(T (R, k, u, P∆)), V k

2 (R) = P∆(T (R,−k, u, P∆)). By

Theorem 8, T is a diffeomorphism (and V k
i ∈ P for

i ∈ {1, 2}) when k satisfies (18), or

|k| < 1/(
√

2‖∆‖F ) ≈ 0.4073.

Define the family V k = {V k
1 , V

k
2 }. It is not difficult to

compute µ(V k) for every k satisfying this bound, for which

we provide a plot in Fig. 1.

VI. CONCLUSION

The task of global asymptotic stabilization of rigid body

attitude is impossible with smooth feedback; however, this

obstacle can be overcome if one is willing to relax the control

laws to allow for a hybrid feedback that coordinates more

than one potential-based feedback in a hysteretic fashion.

As we have shown in the companion paper [14], to achieve

global asymptotic stability, such a hybrid controller requires

a “synergism” property of the potential functions, which is

not attributable to any family of “modified trace functions.”
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Fig. 1. Plot of µ(V k) for the family of potential functions in Example 10.
A choice of 0 < δ < µ(V k) provides a synergistic family of potential
functions on SO(3) with respect to I .

To generate new potential functions capable of forming a

synergistic family, we proposed a parametrized diffeomor-

phism that stretches and compresses SO(3) while leaving

the identity element a fixed point. When composed with an

existing potential function, this diffeomorphism is capable of

relocating critical points. Applying this diffeomorphism with

different parameters to the same potential function allows one

to construct a synergistic family, paving the way for global

asymptotic stabilization by hybrid feedback.

APPENDIX

In what follows, we employ many identities relating to

vectorization of matrices, Kronecker products, and the vector

cross product. Most helpful is the operator Γ : R
3×3 → R

9×3

defined as

Γ(A) = −
[

[Ae1]× [Ae2]× [Ae3]×
]⊤
.

With this definition, we use the identities

vecABC = (C⊤ ⊗A) vecB (19)

(vecA)⊤ vecB = trace(A⊤B) (20)

trace(A [z]×) = 2z⊤ψ(A⊤) (21)

|ψ(A)|2 = (1/2)‖ skewA‖2
F (22)

ψ(AB⊤) = (1/2)

3
∑

i=1

[Bei]×Aei (23)

ψ(AB⊤) = (1/2)Γ(A)⊤ vecB (24)

(I ⊗R)Γ(A)R⊤ = Γ(RA) (25)

vec [z]×A = (I ⊗ [z]×) vecA = −Γ(A)z (26)

vecR [z]× = vec [Rz]×R = −Γ(R)Rz, (27)

where A,B,C are matrices of appropriate sizes, z ∈ R
3,

and R ∈ SO(3). We note that (25) follows from the identity

R [u]×R
⊤ = [Ru]× for all R ∈ SO(3) and u ∈ R

3.

Proof of Theorem 6. Property (11) is obvious since P (I) =
0 by assumption, so exp 0 = I and T (I) = I . To prove

(12), we appeal to the product and chain rules for matrix

differentiation, (3) and (2), respectively. We have

DT (R) =
(

R⊤ ⊗ I
)

D exp(kP (R) [u]×) + (I ⊗R)DR.

Clearly, DR = I . Next, we recall that d/dt exp(At) =
A exp(At) = exp(At)A and use the chain rule to calculate

D exp(kP (R) [u]×)

=
d vec exp(t [u]×)

dt

∣

∣

∣

∣

t=kP (R)

∂kP (R)

∂ vecR

= vec
(

k exp(kP (R) [u]×)
)

[u]× (vec∇P (R))⊤.

Recalling property (19), we have

DT (R) =
(

I ⊗ exp(kP (R) [u]×)
) (

I + k vec [u]×R(vec∇P (R))⊤
)

.

This proves (12).

Recalling that for A,B ∈ R
n×n, we have detAB =

detAdetB, det(exp(A)) = exp(trace(A)) [23], and for

any skew-symmetric matrix S, trace(S) = 0, it follows that

det DT (R) = det
(

I + k vec [u]×R(vec∇P (R))⊤
)

.

To show (13) we calculate this determinant from the formula

for “rank-one updates”: for any y, z ∈ R
n, det(I + yz⊤) =

1 + z⊤y [23]. Recalling (20) and (21), we have

det DT (R) = 1 + 2k
〈

u, ψ(∇P (R)R⊤)
〉

.

Continuing, we now show (15). First, we show that

DT (R)Γ(R) = Γ(T (R)) exp(kP (R) [u]×)Λ(R),

where

Λ(R) = (I + kuψ(∇P (R)R⊤)) = RΘ(R)R⊤.

In the following development, we let Φ = exp(kP (R) [u]×).
Applying (26) we have

DT (R)Γ(R) = (I ⊗ Φ)Γ(R)
(

I − ku(vec∇P (R))⊤Γ(R)
)

Then, (24), (25), and (26), and [u]
⊤
× = − [u]×, imply

DT (R)Γ(R) = Γ(T (R)) exp(kP (R) [u]× Λ(R).

Since vec Ṙ = −Γ(R)Rω, it follows that

vec Ṫ (R) = DT (R(t))DR(t) = vec T (R) [Θ(R)ω]× .

This proves (15). Then, noting that

dV (T (R(t)))

dt
= 2ω⊤ψ(R⊤∇(V ◦ T )(R))

=
〈

∇V (T (R)), T (R) [Θ(R)ω]×
〉

= 2ω⊤Θ(R)⊤ψ
(

T (R)⊤∇V (T (R))
)

,

it follows that

ψ(R⊤∇(V ◦ T )(R)) = Θ(R)⊤ψ
(

T (R)⊤∇V (T (R))
)

.

This proves (14).

Finally, (16) follows from the follows from the Sherman-

Morrison formula (see [23, Ch. 3.8]) when det DT (R) 6= 0,

and (17) follows from the fact that Θ(R) has full rank when

det DT (R) 6= 0.
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Proof of Theorem 8. It follows from (13) that if for all

R ∈ SO(3), det DT (R) = 1 + 2k
〈

u, ψ(∇P (R)R⊤)
〉

6=
0, then T is a local diffeomorphism. This is guaranteed

when 2|k||
〈

u, ψ(∇P (R)R⊤)
〉

|2 < 1, for all R ∈ SO(3).
It follows from the general Cauchy-Bunyakovskii-Schwarz

inequality ( [23, Ch. 5.3]) and |u|2 = 1 that

|
〈

u, ψ(∇P (R)R⊤)
〉

| = |ψ(∇P (R)R⊤)|2.
Applying (22) and noting that ‖ skewA‖F ≤ ‖A‖F and

‖AU‖F = ‖A‖F for any A ∈ R
m×n and any orthogonal

matrix U , we have

|ψ(∇P (R)R⊤)|2 ≤ 1√
2
‖∇P (R)‖F

So, if 2|k|‖∇P (R)‖F /
√

2 =
√

2|k|‖∇P (R)‖F < 1 for

all R ∈ SO(3), it follows that det DT (R) 6= 0 for all R ∈
SO(3). This is clearly satisfied if

√
2|k|max ‖∇P (SO(3))‖F < 1,

which is (18). Moreover, when detDT (R) 6= 0 for all

R ∈ SO(3), Θ(R)−1 exists for all R ∈ SO(3). At this

point, the inverse function theorem guarantees that T (R) is

everywhere a local diffeomorphism. We now prove that T is

a diffeomorphism when k satisfies (18).

Since SO(3) is compact, T is a proper map, that is, the

inverse image of any compact set is compact. This implies

that T is surjective [25]. We now verify that T is injective.

Suppose that P ∈ P and u ∈ S
2 are fixed parameters and

let Tk denote a particular instance of T , with the specified

value of k. Suppose that k∗ satisfies (18). Define

τ = sup{k′ ∈ [0, |k∗|] :

Tk is a diffeomorphism ∀k ∈ [−k′, k′]}. (28)

Now, if Tτ is a diffeomorphism, there exists ǫ > 0 such that

Tk is a diffeomorphism for all k ∈ (τ − ǫ, τ + ǫ) [1, Ch. 1,

“Stability Theorem”]. But this contradicts the definition of τ
in (28). We now assume that Tτ is not injective.

Define the function W : SO(3) × R → SO(3) × R as

W(R, k) = (Tk(R), k).

Using (12) of Theorem 6 and recalling again that

d/dt exp(At) = A exp(At) = exp(At)A, we calculate the

partial derivatives of W as

DW(R, k) =

[

DTk(R) vecP (R) [u]× Tk(R)
0 1

]

.

Since DTk(R) is nonsingular whenever (18) is satisfied,

DW (R, k) is also nonsingular under the same condition, so

the inverse function theorem implies that W is also a local

diffeomorphism.

Since Tτ is not injective, let R1, R2, R
∗ ∈ SO(3) satisfy

Tτ (R1) = Tτ (R2) = R∗. But now, since W is a local

diffeomorphism, there exist disjoint open sets Ui ⊂ SO(3),
and ǫ > 0 such that Ri ∈ Ui, and that W restricted to

Ui × (τ − ǫ, τ + ǫ) is a diffeomorphism. But then, there exist

R′
1 6= R′

2 and k′ < τ such that Tk′(R′
1) = Tk′(R′

2) = R∗.

This again contradicts the definition of τ in (28). Hence, for

all k satisfying (18), Tk must be a diffeomorphism.
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